Tomo-ventriculographie isotopique en routine clinique

Ventriculographie isotopique \odot et \otimes

Tomo-ventriculographie isotopique

Segmentation et analyse globale

Modélisation de CTA et analyse locale

Validation clinique

Denis MARIANO-GOULART Service de médecine nucléaire. CHRU Lapeyronie. Montpellier

Ventriculographie isotopique Marquage des GR au ^{99m}Tc : Contraste Synchronisation ECG

K affi Fichier

palette

selection de l'image

Analyse multi-harmonique

Rythmologie :

•Analyse locales et mesure de σ_{TES} •Pb : Superposition \Rightarrow OAG, OAD, PG •Pb : bruit \Rightarrow \uparrow stat, H3 et filtrages...

Ventriculographie isotopique planaire

Etalon or pour le <u>suivi</u> de FEVG Simple

- Automatique : H1 en OAG
- Variabilité inter-op. = 2-3%
- Analyse sectorielle possible

- Exacte au premier passage (seulement)
- Acquisition délicate (ESV, bolus)

Pb1 : Superposition des plans

Acquisition de projection :

- ◆ FEVD planaire au 1° passage
- FEVG planaire sous estimée
- Volumes ?
- Débits ?

Schedule Schedule Schedules White the second schedules QBS, BP-SPECT, QBE, TOMPOOL...

Améliorations possibles

Tomoventriculographie isotopique

- Mesures non sous-estimées de FEVG
- Mesures de FEVD à l'équilibre
- Mesures des volumes ventriculaires D et G
- Mesures des débits cardiaques D et G
- Dépolarisation intraventriculaire

Optimisation du fit de la CTA

TOMO-VENTRICULOGRAPHIE

« Effet de volume partiel »

Squelette

Soit X=U X_i une réunion de régions compactes disjointes.

SKIZ

SK

On définit la zone d'influence de X_i :

 $IZ(X_i) = \{x, d(x, X_i) < d(x, X \setminus X_i)\}$

 $SKIZ(\mathbf{X}) = \mathbf{X} \setminus \bigcup IZ(\mathbf{X}_i)$

et le squelette de X :

 $SK(X) = \left\{ x \in X, \exists (p,p') \in \partial X^2, p \neq p'/d(x,\partial X) = d(s,p) = d(s,p') \right\}$

J. Serra. Image Analysis & Mathematical Morphology. Academic Press. Vol 1(1982) et 2 (1988). M. Schmidt & J. Mattioli. « Morphologie Mathématique ». 1994. Masson.

Squelette : propriété

$SK(X) = \left\{ x \in X, \exists (p,p') \in \partial X^2, p \neq p'/d(x,\partial X) = d(s,p) = d(s,p') \right\}$ $SKIZ(X) = X \setminus \bigcup \left\{ x, d(x, X_i) < d(x, X \setminus X_i) \right\}$

Ligne de partage des eaux

Soit f de classe C¹ / f(m)= 0 si m est un minimum local. On définit :

 $LPE(f) = \{x, \exists (m, m') \text{ minima locaux/d}_{f}(x, m) = d_{f}(x, m')\}$

Propriété : la LPE est un SKIZ(U{m_i}) pour d_f

Intérêt en segmentation

Ebarbulage par amincissement

Mariano-Goulart et al.EJNM 1998; 22:1300-07 et Revue Acomen 2000;6:69-77

Mariano-Goulart et al.EJNM 1998;22 et EJNM 2001;28

TOMO-VENTRICULOGRAPHIE

Analyse locale

Ajustement en temps

	200 ms,65%	H1	H2	H3	М
	TES (ms)	81.4 ± 9.9	44.2 ± 6.2	24.2 ± 6.8	15.0±12
	EF (%)	-16.5±2	- 2.5 ±2.2	0.9±2.3	0.4±3.4
	PER (EDA.s ⁻¹)	3.74±0.06	2.15 ± 0.14	1.21±0.27	0.48±0.63
Validation	PFR (EDA. s^{-1})	-0.80±0.06	$\mathbf{0.20^*} \pm 0.19$	0.23±0.3	$0.20^* \pm 0.42$
vanacion	400 ms, 65%	H1	H2	H3	М
	TES (ms)	29.5±7.7	- 8.6 ±8.9	0.8±16.6	-6.5±15.7
	EF (%)	-5.4±1.8	-0.6±2.0	-0.7±2.1	0.5±2.1
	PER (EDA.s ⁻¹)	0.54±0.06	-0.28±0.16	-0.25±0.29	-0.19±0.37
	PFR (EDA.s $^{-1}$)	$0.13 {\pm} 0.06$	$0.05 {\pm} 0.19$	0.25±0.27	0.20±0.39
	600 ms,65%	H1	H2	H3	М
	TES (ms)	-27.7±8.2	-19.8±7.5	-13.4±8.4	-7.3±11.4
	EF (%)	-9.5±1.8	- 3.5 ±2.0	-0.24±2.3	-0.05±2.4
	PER (EDA. s^{-1})	0.36±0.06	0.38±0.2	-0.47±0.3	0.3±0.3
	PFR (EDA. s^{-1})	-1.65 ± 0.06	-0.73±0.18	0.3±0.3	-0.17±0.39
	200 ms, 20%	H1	H2	H3	М
	TES (ms)	48.7±40.9	21.1±25.6	6.9±27.3	15.9±44.2
	EF (%)	-6.6±2.9	-1.4±3.2	1.14±3.5	0.16±3.7
	PER (EDA.s ⁻¹)	1.08±0.09	0.57±0.2	0.16±0.32	0.37±0.43
	PFR (EDA. s^{-1})	-0.47±0.09	-0.07 ± 0.19	0.30±0.3	-0.06±0.33
	400 ms,20%	H1	H2	H3	М
	TES (ms)	32.4±28.2	- 1.9 [*] ± 37	7.8±57.2	-2.3* ± 48.1
	EF (%)	- 1.66 ±2.2	0.48±3.0	1.82±3.2	0.90±3.2
	PER (EDA. s^{-1})	0.17±0.09	-0.12±0.19	-0.28±0.26	-0.20±0.31
	PFR (EDA. s^{-1})	-0.01±0.09	0.09±0.16	0.33±0.25	0.14±0.25
	600 ms,20%	H1	H2	H3	М
	TES (ms)	-7.0±28.6	7.0±37.6	- 6.2 ±42.9	0.1±42.4
	EF (%)	- 1.94 ±2.8	-0.27±2.9	2.00±3.2	0.87±3.2
	PER (EDA. s^{-1})	0.15±0.09	0.01±0.18	0.27±0.27	-0.07±0.25
	PFR (EDA. s^{-1})	-0.19±0.09	$0.03 {\pm} 0.19$	0.21±0.24	0.14±0.3

C. Caderas de Kerleau et al. IEEE Trans Med Imaging. 2004;23: 485-491

SENSIBILITE A L'ECHANTILLONNAGE

C. Caderas de Kerleau et al. IEEE Trans Med Imaging. 2004;23: 485-491

ANALYSE 3D DE CTA LOCALES

ANALYSE 3D DE CTA LOCALES

STIMULATION : DIV, Δt , σ_{TES} ...

Non stimulé

Stimulé

Valeurs normales: Moyenne $\pm \sigma$

QUID DU GATED SPECT ?

Limité au VG

EF, VTS ⇒ Pronostic < Echo 3D et IRM

Imprécis Hypoperfusion > 50% Activité digestive FE ↗ (Petits cœurs) Volumes ↘

De Winter, JNC 05; Chan, J. Am. Soc. Echo. 06; Achtert, JNC 98; Ford, JNM 01

D. Mariano-Goulart et al. Eur J Nucl Med. 1998; 25: 1300-1307 - D. Doumit et al. J Nucl Med 2001; 42: 1043-1049

D. Mariano-Goulart et al. Eur J Heart Fail. 2003;5:481-488

		Parameter	Control subjects	Patient localized	swith Pa IARVD dif	tients with fuse ARVD
		EF (%) EDV (mL) ESV (mL) σ-EF (%) σ-TES (ms)	63 ± 7 101 ± 17 37 ± 8 13 ± 3 63 ± 24	60 ± 107 ± 43 ± 14 ± 167 ±	5 20 10 1 2 64 [†] 2	$33 \pm 12^{\dagger}$ $80 \pm 81^{\ddagger}$ $24 \pm 70^{\dagger}$ 11 ± 3 $77 \pm 106^{\dagger}$
Sensitivity,	Specificity, Poses, and σ -TES	sitive Predictive Value (PP for Diagnosis of Diffuse A	V), and Negative RVD in Patients	Predictive with Sympt	Value (NPV) of F omatic Ventricu	Right Ventricular EF Iar Arrhythmias
Parameter	Threshold	% Sensitivity (95% CI)	% Specificity (9	5% CI)	% PPV (95% CI)	% NPV (95% C
Parameter EF EDV ESV	Threshold 49% 104 mL 53 mL	% Sensitivity (95% Cl) 95 (77–100) 91 (71–99) 95 (77–100)	% Specificity (9 100 (84–10 71 (52–91 100 (84–10	95% CI) 00) 1) 00)	% PPV (95% CI) 100 (84–100) 77 (61–93) 100 (84–100)	% NPV (95% C 95 (77–100) 88 (64–98) 95 (77–100)

DYSPLASIE ARYTHMOGENE VD

Perspectives de recherche

- Evaluation pronostique des IC
 - FEVD, Volumes, dyskinésies
- Rythmologie
 - Diagnostic
 - Indications de PMK multisites, def. implantables
- Débits ventriculaires D et G
 - CIV, valvulopathies...
- Lien MIBG σ TES ?

Références en anglais

Semi-automatic segmentation of gated blood-pool emission tomographic images by watersheds. Application to the determination of right and left ejection fractions. D Mariano-Goulart, H Collet, PO Kotzki, M Zanca, M Rossi. *Eur J Nucl Med* 1998; 25(9): 1300-07.

Routine measurements of left and right ventricular output by gated blood-pool emission tomography in comparison with thermodilution measurements : a preliminary study. D Mariano-Goulart, C Piot, V Boudousq, F Raczka, F Comte, MC Eberlé, M Zanca, PO Kotzki, JM Davy, M Rossi. *Eur J of Nucl Med.* 2001; 28(4): 506-513.

Electrocardiographically gated blood-pool spect and left ventricular function: comparative value of 3 methods for ejection fraction and volume estimation. D Daou, F Harel, BO Helal, T Fourme, P Colin, R Lebtahi, D Mariano-Goulart, M Faraggi, M Slama, D Le Guludec. *J Nucl Med* 2001; 42(7): 1043-9.

Major increase of brain natriuretic peptide indicates right ventricular systolic dysfunction in patients with heart failure. D Mariano-Goulart, MC Eberlé, V Boudousq, A Hejazi-Moughari, C Piot, C Caderas de Kerleau, R Verdier, ML Barge, F Comte, N Bressot, M Rossi, PO Kotzki. *Eur J Heart Failure* 2003; 5(4): 481-488.

Automatic generation of noise-free time-activity curve with gated blood-pool emission tomography using deformation of a reference curve. C Caderas de Kerleau, E Ahronowitz, M Rossi, D Mariano-Goulart. IEEE Trans Med Imaging 2004 ; 23(4) : 485-91

Diagnosis of Diffuse and Localized Arrhythmogenic Right Ventricular Dysplasia using Gated Blood-Pool SPECT. D Mariano-Goulart, L Déchaux, F Rouzet, E Barbotte, C Caderas de Kerleau, M Rossi, D Le Guludec. *J Nucl Med* 2007; 48(9):1416-1423

Références en français

Détermination des fractions d'éjection et des débits cardiaques par tomoventriculographie isotopique. Méthodologie et validation clinique. D Mariano-Goulart, V Boudousq, MC Eberlé, H Collet, F Comte, M Rossi. *Revue de l'Acomen* 2000; 6(1) :69-77.

Corrélation entre les valeurs du BNP plasmatique et les mesures isotopiques de la fraction d'éjection ventriculaire gauche. M Rasamisoa, N Bressot, C Vergnes, D Mariano-Goulart, M Rossi. *Immunoanalyse & Biologie Spécialisée* 2002; 17(5) :311-315

Extraction automatique des paramètres ventriculaires locaux en tomo-ventriculographie isotopique. D Mariano-Goulart, C Caderas de Kerleau, M Rossi. *Médecine nucléaire* 2005; 29(3): 115-130.

Apport de la tomo-ventriculographie isotopique dans le diagnostic de la dysplasie arythmogène du ventricule droit . L. Déchaux, F. Rouzet, D. Le Guludec, M. Rossi, D. Mariano-Goulart. Médecine nucléaire 2006 ; 30(5) :261-269.

Actes de congrès internationaux

Routine measurements of right and left ejection fractions thanks to the segmentation of gated blood pool emission tomographic images by a watershed algorithm. D Mariano-Goulart, H Collet, MC Eberle, V Boudousq, PO Kotzki, M Zanca, M Rossi. *Eur J of Nucl Med* 1999; 26(9): 1078

Accuracy of two different softwares for left ventricular ejection fraction and volume estimation with ECG-gated blood pool imaging. D. Daou, F. Harel, D. Mariano-Goulart, R. Lebtahi, I. Carel, T. Fourme, P. Colin, B.O. Helal, M. Slama, M. Faraggi, D. Le Guludec.

Eur J of Nucl Med 2000 ; 27(8) :1048.

Calculation of left ventricular ejection fraction from planar and tomographic radionuclide ventriculography studies : a dynamic left ventricular study. P. De Bondt, S Vandenberghe, J De Sutter, S De Mey, T Cottens, C Van de Wielel, O De Winter, P Segers, D Mariano-Goulart, P Verdonck, RA Dierckx. Xth Triennal Symposium of the Belgian Society for Nuclear Medicine. Knokke: 2001:21.

Comparative value of two different processing softwares for left ventricular ejection fraction and volume estimation with ECG gated blood pool imaging. D. Daou, F. Harel, D. Mariano-Goulart, B. Helal, M. Slama, M. Faraggi, D. Le Guludec. 5th International Conference of Nuclear cardiology. May 2-5,2001.Vienne. Autriche.

ECG-gated blood pool SPECT versus planar imaging for the determination of left ventricular filling pressure coronary artery disease. D Daou, BO Helal, Carol, C Coaguila, D Vilain, T Fourme, S Dinanian, M Slama. *J Nucl Cardiol.* 2001;S109:16.50

A template-based model dedicated to the analysis of Time Activity Curves in Gated Blood-Pool Ventriculography. Denis Mariano-Goulart, Charles Caderas de Kerleau and Michel Rossi. (communication orale). *Eur J of Nucl Med* 2005;32(1):S42.

Evaluation of tomographic gated blood-pool ventriculography in the diagnosis of arrhythmogenic right ventricular dysplasisa. D. Mariano-Goulart, L. Déchaux, E. Barbotte, D. Le Guludec, Michel Rossi. *Eur J of Nucl Med* 2006;33(2):P091.

