INTRODUCTION MODELISATION RADON RPF ART

FORMATION TIC (Phymed, STIC, Télécom) BASES DE TOMOGRAPHIE MEDICALE

Fayçal Ben Bouallègue - faybenb@hotmail.com http://scinti.etud.univ-montp1.fr

Imagerie médicale

IMAGERIE DE TRANSMISSION X

dx

Scanner X = Computed Tomography

Scanner X = Computed Tomography

Scanner X = Computed Tomography

 $r_{i,i}$ = contribution du pixel jà la projection i

Single Photon Emission CT

Tomographie par Emission de Positons

Tomographie: problème inverse linéaire

Modélisation analytique

Modélisation algébrique

Projection / Rétroprojection

$${}^{t}R.\vec{p} = \vec{b}$$

Théorème de coupe centrale

(1017) 262_77

Interprétation (II)

Interprétation (II)

Rétroprojection filtrée (I)

$$f(\vec{x}) = \int_{\phi=0}^{\sigma=+\infty} \hat{f}(\sigma \vec{\omega}^{\perp}) e^{i\sigma \vec{\omega}^{\perp} \cdot \vec{x}} |\sigma| d\sigma d\phi$$

$$f(\vec{x}) = \int_{\phi=0}^{\pi} \int_{\sigma=-\infty}^{\sigma=+\infty} \hat{p}_{\vec{\omega}}(\sigma) |\sigma| e^{i\sigma\vec{\omega}^{\perp}.\vec{x}} d\sigma d\phi$$

$$\mathbf{TF}_{s}^{-1}\left[\hat{\mathbf{p}}_{\vec{\omega}} \, . \, \mathbf{abs}\right] \left(\vec{\omega}^{\perp} . \, \vec{x}\right)$$

 $p_{\vec{\omega}}^{f}$

J. Radon 1887-1956

$$\xi_{2} \qquad \sigma.d\phi \qquad d\sigma \qquad \phi \qquad \xi_{1}$$

 $f(\vec{x}) = (R^* p^f)(\vec{x})$

Rétroprojection filtrée (II)

Rétroprojection filtrée (III)

Exemple pour d = $\frac{1}{2}$, on obtient le filtre: $\begin{pmatrix} 0 & -\frac{1}{2.5} & 1 & -\frac{1}{2.5} & 0 \end{pmatrix}$

Rétroprojection filtrée (IV)

Rétroprojection filtrée (V)

Limites des techniques analytiques

Nécessité de données sur 180°

- Problème important en TEP 3D.
- L'inversion directe ou la RPF ne fonctionnent pas sur des données tronquées.

Prise en compte des artefacts en SPECT et PET :

- Dans le théorème de la coupe centrale, f(x) et non pas f(x,s, \u03c6)
- Difficulté majeure d'introduire des facteurs du type exp(-μL_{x,s,φ})
- D'où un problème pour corriger les artefacts d'atténuation (photoélectrique, Compton).
- En revanche, une déconvolution de la réponse impulsionnelle est faisable.

Ajustement de la fréquence de coupure délicate

Nécessité d'un filtre passe-bas associé au filtre valeur absolue

Algebraic Reconstruction Technique (I)

On construit une suite de coupes \vec{f}^n en projetant chaque itéré sur l'un puis l'autre hyperplan.

S. Kaczmarz 1895-1940

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

Algebraic Reconstruction Technique (II)

S. Kaczmarz 1895-1940 $\mathbf{p}_1^n = \mathbf{r}_{1,1}\mathbf{f}_1^n + \mathbf{r}_{1,2}\mathbf{f}_2^n$, projection qui serait mesurée si fⁿ était la solution

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

Algebraic Reconstruction Technique (II)

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

Algebraic Reconstruction Technique (III)

