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Abstract 

In this paper we propose a quantification methodology for estimating the statistical parameters of the 

activity inside regions of interest (ROIs). Macro-quantification implies a rearrangement of the emission 

projection data into macro-projections and a redefinition of the system matrix based either on an image 

reconstruction involving iterative ROI-wise regularization or on an ROI uniformity assumption. The 

technique allows a very fast computation of the ROI activities and covariance matrix in the least squares 

sense using a low-dimensional model of the tomographic problem. The macro-quantification approach 

is evaluated through Monte-Carlo simulations using a numerical thorax phantom, without taking into 

account the measurement artifacts and assuming a perfect a-priori ROI definition. Various tumor ROI 

configurations and count rates are considered in order to reflect clinical situations. The results show that 

our technique yields low bias ROI estimations which turn out to be more accurate than classical 

estimates relying on pixel summation. Macro-quantification also provides an approximation for the ROI 

variance that describes the effective variance obtained through the simulations fairly well. The technique 

is then validated using SPECT data from a physical phantom composed of cylinders filled with different 
99mTc concentrations for the task of ROI comparison. Here again, the study shows excellent agreement 

between the measured and predicted values of the ROI variance resulting in efficient estimations of ROI 

ratios and highly accurate ROI comparisons. In its simplest formulation, macro-quantification has a 

short computation time, making it an ideal technique for quantitative ROI assessment compatible with 

a wide range of routine clinical applications. 
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1. Introduction 

 

Quantitative interpretation in emission tomography requires evaluating the uncertainty (i.e., the 

variance) of the reconstructed images. This is particularly true when one has to quantify or to compare 

the total activity inside one or several regions of interest (ROIs) having potential clinical interest. The 

problem of estimating image variance in emission tomography has been extensively studied. Analytical 

and numerical approximations have been proposed, many of them focusing on a particular 

reconstruction algorithm. Both filtered back-projection and maximum-likelihood algorithms have been 

studied since the late seventies in the field of emission tomography and many approximations have been 

proposed to describe the propagation of the uncertainty from the recorded data to the reconstructed 

images [1-21]. In 1996, Fessler drew a theoretical framework for characterizing of the variance of 

implicitly defined estimators which yields an approximation for the particular case of emission 

tomography [22]. Original methods based on bootstrapping techniques [23-24] or intervalist prediction 

[25-26] have also been proposed. The computation of the whole reconstructed image covariance matrix 

however, remains a fastidious task due to the huge dimensions (typically of O(104×104)) of the system 
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matrix in classical tomographic configuration. The difficult handling of the numerical errors (resulting 

from the ill-conditioning of the system matrix), along with its heavy computational complexity make 

this task unsuitable for clinical routine. Besides, routine image interpretation requires region of interest 

assessment rather than pixel-wise variance estimation. Following the previous attempts to design ROI-

based techniques in emission tomography [27-31], the aim of the present paper is to describe a macro-

quantification approach for the computation of pre-defined ROIs activity and variance. The method 

allows a very fast computation of the ROI activities and covariance matrix in the least squares sense 

using a low-dimensional model of the tomographic problem specially dedicated to ROI study. When the 

ROI boundaries are accurately defined, it also provides ROI estimates that are significantly less biased 

than classical estimates based on pixel summation. We show that from a dimensional point of view the 

variance estimates provided by our method fit perfectly with the classical approximate formulations 

proposed by Huesman and Budinger [1-2]. The macro-quantification is first evaluated through Monte-

Carlo simulations using a numerical thorax phantom with tumor-like ROIs for the estimation of the ROI 

statistical parameters. The technique is then validated using a physical phantom SPECT acquisition for 

the task of ROI comparison. 

 

2. Materials and Methods 

 

2.1. Classical ROI quantification 

 

Let �̅� ∈ ℝN be an activity distribution defined on a Cartesian grid with N the number of pixels sampling 

the field of view of the acquisition device. Let �̅� ∈ ℝBD be the exact projections of �̅� where BD is the 

total number of recorded projections (with D the number of projection angles and B the number of bins 

per projection angle). Let 𝚲 ∈ ℝBD×N be the Radon operator (or system matrix) such that �̅� = 𝚲�̅�. The 

system matrix component 𝚲𝑖𝑗 gives the probability for a photon emitted from pixel 𝑗 to be recorded into 

projection 𝑖. Ideally the system matrix should perfectly model the emission/detection process, including 

side-effects such as auto-attenuation, Compton scattering, and detector response function. The actual 

recorded projections 𝐩 ∈ ℝBD are affected by Poisson noise, and it is commonly accepted that 𝑉𝑎𝑟(𝐩) ≈

𝐷𝑖𝑎𝑔(𝐩) represents a good approximation of the data variance. Tomographic reconstruction intends to 

produce an estimator �̂� ∈ ℝN of the original image �̅� starting from the recorded projections 𝐩. Most of 

modern reconstruction algorithms are statistical in the sense that they build up this estimator on the basis 

of the conditional probability of the sought after image knowing the projections. This probability is 

usually called the posterior 𝐿(𝛉, 𝐩) and can be written using Baye’s theorem: 

𝐿(𝛉, 𝐩) =  ℘(𝛉|𝐩) =  
℘(𝐩|𝛉) ℘(𝛉)

℘(𝐩)
  

                 (1) 

where the likelihood ℘(𝐩|𝛉) is such that: 

℘(𝐩|𝛉) = ∏
𝑒−𝚲𝛉𝑖  (𝚲𝛉)𝑖

𝐩𝑖

𝐩𝑖  !
𝑖

 

                 (2) 

The most straightforward way to design an estimator (which is also one of the most commonly used in 

practice) consists in searching the image that maximizes the log-posterior: 

�̂� =   𝑎𝑟𝑔𝑚𝑎𝑥
𝛉∈ℝN

 [ log (𝐿(𝛉, 𝐩)) ] 

                      (3) 
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When one considers that no prior information is available concerning the reconstructed object, the 

probability ℘(𝛉) is set to constant and equation (3) defines the maximum-likelihood (ML) estimator 

[32-33]. No explicit formulation of this estimator can be derived and its computation is achieved using 

the iterative expectation-maximization algorithm (MLEM). MLEM is known to provide a low bias 

estimator (at least asymptotically at high count rates) for which the Cramér-Rao bound (CRB) gives a 

lower limit of the covariance: 

𝐶𝑜𝑣(�̂�) ≥ 𝐅−1 

                 (4) 

with F the Fisher information matrix: 

𝐅 =  𝐸 (− 
𝜕2

𝜕𝛉2
 log (𝐿(𝛉, 𝐩)) ) =  𝚲T 𝐂−1 𝚲 

                      (5) 

where C stands for the covariance matrix of the recorded data: 

𝐂 = 𝐶𝑜𝑣(𝐩) =  𝐷𝑖𝑎𝑔(�̅�) ≈ 𝐷𝑖𝑎𝑔(𝐩)              (6) 

However, the ML estimator is known to amplify the acquisition noise through the reconstruction 

process, especially at low count rates [34]. Its covariance is thus highly dependent on the number of 

iterations after which the iterative algorithm is stopped and the CRB can no longer provide an accurate 

variance prediction. Besides, there exists no consensual stopping criterion allowing an optimal 

management of the noise-resolution tradeoff. 

When dealing with ROI activities, the following notations will be employed. K will denote the number 

of ROIs in the studied object (usually K = 2, i.e., one ROI plus the background). �̅� ∈ ℝK will denote 

the true activity inside the ROIs and �̂� ∈ ℝK will stand for the estimator of the ROI activities. Defining 

𝜿 ∈ {0,1}ℝK×N the characteristic function of the ROIs as 𝜿𝑘𝑗 = 1 if pixel 𝑗 is inside ROI 𝑘 and 𝜿𝑘𝑗 = 0 

otherwise, one can write: 

�̅� = 𝜿 �̅�                 (7) 

The ROI estimator is usually obtained after the reconstruction process by simply summing the pixel 

values of the image estimator �̂� inside the studied ROIs: 

�̂� = 𝜿  �̂�                 (8) 

One may then use the CRB in order to compute a lower limit of the ROI estimator covariance using:  

𝐶𝑜𝑣(�̂�) ≥ 𝜿 𝐶𝑜𝑣(�̂�) 𝜿T                   (9) 

However, some critical points have to be discussed regarding this classical ROI quantification technique. 

When non regularized reconstruction algorithms are exploited to produce the image estimator, the bias 

affecting the ROI estimate is controlled by letting the algorithm reach convergence through a sufficient 

number of iterations. The ROI variance remains though hardly foreseeable using the CRB since the 

noise affecting the image estimate is strongly related to the total number of iterations (this appears 

clearly in our results section, Figures 5 and 6). When regularized algorithms are employed, the ROI 

variance amplification can be effectively subdued if correct smoothing parameters are chosen but at the 

price of an increase in the systematic bias. Last, from a practical point of view, the computation of the 

image covariance matrix using the CRB remains a hazardous task due to the huge dimensions and ill-

conditioning of the system matrix to be inverted. These last considerations justify our attempt to develop 

an innovative formulation of the tomographic problem in a macroscopic perspective, as presented in the 

following section. 

 

2.2. Macro-quantification 

 

Classical tomographic reconstruction addresses the task of building an image using its projection data. 

The image is built over a Cartesian kernel constituted of pixels representing basic image elements inside 
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which the activity may be considered as uniform. In the particular case of emission tomography, the 

difficulty follows from the uneasy handling of a large system matrix 𝚲 linking a large number of pixel 

values 𝛉 with a large number of highly noisy projections 𝐩. The huge dimensions of the linear system 

combined with the presence of a significant amount of noise impede a simple and efficient computation 

of the image estimator as well as its variance. The macro-quantification approach intends to simplify 

the formulation of the problem by means of a model down-sampling dedicated to ROI quantification. 

The studied object will be divided into K ROIs (R𝑘 , 𝑘 = 0 … 𝐾 − 1) indexed with the letter 𝑘, one being 

the background (ROI R0) and the following (R1, R2, …) being the studied ROIs themselves. These K 

ROIs will be considered as the basic components of the reconstructed image, acting as the pixels in 

classical tomography. As above, the ROI estimator will be denoted �̂� ∈ ℝℝK. In order to further reduce 

the system complexity, the projection data we will also be aggregated to create macro-projections 

denoted 𝐏. For each projection 𝐩𝑖, let us note 

𝛄𝑖 = {R𝑖,1, … , R𝑖,𝑚}   ∶    ∀𝑘, R𝑘 ∈ 𝛄𝑖 if {∃𝑗 ∈ R𝑘  | 𝚲𝑖𝑗 > 0}         (10) 

the set of ROIs that contain at least one pixel projecting onto 𝐩𝑖. Let: 

𝚪 = {𝛄1, … , 𝛄T}   ∶    ∀(𝑡1, 𝑡2) 𝑡1 ≠ 𝑡2, 𝛄𝑡1
≠ 𝛄𝑡2

   ;    ∀𝑖, {∃𝑡, 1 ≤ 𝑡 ≤ T | 𝛄𝑖 = 𝛄𝑡}     (11) 

be the complete set of T distinct values of 𝛄. 

The projections are then aggregated into T macro-projections 𝐏 ∈ ℝℝT: 

𝐏𝑡 = ∑ 𝐩𝑖

𝑖|𝛄𝑖=𝚪𝑡

 

                  (12) 

Figure 1 illustrates the situation for K = 3 ROIs. The aggregation process produces T = 4 macro-

projections using 𝚪 = {{R0}, {R0, R1}, {R0, R2}, {R0, R1, R2}}: 𝐏1 sums all the projections that only 

intersect the background, 𝐏2 those intersecting both R0 and R1, 𝐏3 those intersecting both R0 and R2, 

and 𝐏4 those intersecting the three ROIs. As R1 and R2 are located inside R0, there is trivially no 

projection intersecting R1 and/or R2 without intersecting R0. 

 

 
Figure 1. Aggregation of the projections into macro-projections in a 3 ROI configuration. 

 

From the macroscopic point of view, the ROI values 𝚿 are linked with the macro-projections P through 

a linear system 𝐏 = 𝐌𝚿. The macro-projector 𝐌 ∈ ℝℝT×K is such that its element 𝐌𝑡𝑘 gives the 

probability for a photon emitted from ROI 𝑘 to be detected into macro-projection 𝑡. For a given object 

�̅� this probability depends on the activity distribution inside the ROIs following: 

𝐌𝑡𝑘 =  
∑  ∑  𝚲𝑖𝑗�̅�𝑗𝑖|𝛄𝑖=𝚪𝑡𝑗∈R𝑘

∑  ∑  𝚲𝑖𝑗�̅�𝑗𝑖𝑗∈R𝑘

 

   (13) 
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The Fisher information matrix F related to the macroscopic problem 𝐏 = 𝐌𝚿 is: 

𝐅 =  𝐌T 𝐶𝑜𝑣−1(𝐏) 𝐌 ≈  𝐌T 𝐷𝑖𝑎𝑔−1(𝐏) 𝐌            (14) 

As the macro-projections naturally gather a high number of events, the estimator of the ROI activities 

can be computed in the least squares sense using: 

�̂� =  𝐅−1 𝐌T 𝐷𝑖𝑎𝑔−1(𝐏) 𝐏             (15) 

and the ROI estimator variance may hence be approximated using: 

𝐶𝑜𝑣(�̂�) = 𝐅−1 ≈ [𝐌T 𝐷𝑖𝑎𝑔−1(𝐏) 𝐌]−1           (16) 

Compared with the standard approach, the macroscopic approach (equations (15) and (16)) offers ROI 

quantification expressions that are easily computable by inverting very low dimension matrices. The 

produced ROI estimator is naturally unbiased and its variance is readily predictable. We show in section 

2.4 below that from a dimensional point of view equation (16) produces estimates of the ROI variance 

that are in agreement with the classical approximations of Huesman and Budinger [1-2].  

 

2.3. Computation of the macro-projector 

 

In the last section, we proposed a macroscopic approach to drastically reduce the system dimensions 

dedicated to ROI assessment. This reduction relies on a model down-sampling from pixels to ROIs and 

from projections to macro-projections. The aggregation process, which affects both the data and the 

unknowns of the problem, inevitably induces a loss of information. The missing information is 

synthesized into the macro-projector which is the keystone of the macroscopic model. For a given 

studied object, the components of the macro-projector depend on the exact activity distribution inside 

the object, as defined through equation (13). In practice, the original object remains unknown and the 

macro-projector has to be modelled starting from the data of the problem, i.e., the recorded noisy 

projections. The computation of the macro-projector can be performed using equation (13) where the 

exact activity distribution �̅� is replaced with an image estimate �̂�: 

𝐌𝑡𝑘 =  
∑  ∑  𝚲𝑖𝑗�̂� 𝑗𝑖|𝛄𝑖=𝚪𝑡𝑗∈R𝑘

∑  ∑  𝚲𝑖𝑗�̂� 𝑗𝑖𝑗∈R𝑘

 

                (17) 

This estimate has to fulfil certain requirements in order to ensure sufficient accuracy and robustness of 

the macro-projector (Figure 2). First, this estimate has to be regularized so as to warrant the stability of 

the macro-projector in the presence of noise. However, if a global regularization or post-filtering of the 

object estimate is performed, the macro-projector will suffer from the resolution loss around the borders 

between the ROIs. One solution for the conjunct handling of both noise and resolution relies on an 

iterative ROI-wise regularization of the object estimate (similar reconstruction algorithms have already 

been proposed [35-37]). An MLEM scheme is employed to reconstruct the image. In between each 

iteration step, a convolution of the current estimated activity is performed inside each ROI with a 

Gaussian filter. Denoting R(𝑗) the ROI containing pixel 𝑗, an iteration step is performed using: 

 MLEM update:   

𝛉𝑗
𝑛+1/2

=  𝛉𝑗
𝑛  

∑ 𝚲𝑖𝑗
𝐩𝑖

(𝚲𝛉𝑛)𝑖
𝑖

∑ 𝚲𝑖𝑗𝑖
 

               (18) 

 ROI-wise smoothing:   

𝛉𝑗
𝑛+1 =   

∑  𝐺𝑗,𝑠(𝑞) 𝛉𝑞
𝑛+1/2

𝑞∈R(𝑗) 

∑ 𝐺𝑗,𝑠(𝑞) 𝑞∈R(𝑗) 
 

               (19) 
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where 𝐺𝑗,𝑠 stands for a Gaussian kernel centered on pixel 𝑗 with a standard deviation of 𝑠 pixels. Using 

this reconstruction technique will allow the macro-projector to be accurate and robust with respect to 

the noise. In order to be fully efficient, this technique requires a good knowledge of the ROI boundaries 

so that the high activity region can be precisely discriminated from the low activity background. As the 

coupling of SPECT and PET acquisition with CT scanning has tended to generalize, the circumscription 

of the ROIs may often be performed with the help of the co-registered morphological information for 

an optimal computation of the macro-projector. When no morphological information is available, one 

has to exploit a prior image reconstruction for the definition of the ROIs. In the particular case where 

the defined ROIs are a-priori known to have a uniform activity distribution, one will rely on the use of 

the uniform macro-projector 𝐔 which can be built naturally without preliminary image reconstruction: 

𝐔𝑡𝑘 =  
∑  ∑  𝚲𝑖𝑗𝑖|𝛄𝑖=𝚪𝑡𝑗∈R𝑘

∑  ∑  𝚲𝑖𝑗𝑖𝑗∈R𝑘

 

               (20) 

 

Figure 2. A: Exact object. B: MLEM 100 iterations. C: MLEM 100 iterations followed by Gaussian post-filtering 

of FWMH 2 pixels. D: MLEM 100 iterations with iterative ROI-wise Gaussian filtering of FWMH 1 pixel. 

 

 

2.4. Dimensional study 

 

In this section, we study the order of magnitude of the variance computed with equation (16). We assume 

that the recorded projections are 𝑂(p). The image is reconstructed on a grid of dimensions N × N. Let 

us consider a circular uniform ROI of diameter Δ pixels called RA. A second ROI RB is defined as a 

pixel inside RA (Figure 3). For each projection angle, the object projects onto ΔB/N bins. The total 

counts recorded are thus 𝑂(p × D × ΔB/N ) with p the order of magnitude of a single projection. From 

the fact that the total counts recorded in the projections must be recovered in the reconstructed image θ, 

one can infer that θ is 𝑂 (
total counts

Δ2 ) = 𝑂 (
BDp

NΔ
). 

Concerning the mean of the global activity ΨA inside RA, one has: 

ΨA = 𝑂(Δ²θ) = 𝑂(total counts) =  𝑂 (
ΔBDp

N
)              (21) 

As for the mean activity ΨB inside RB, one has: 

ΨB = 𝑂(θ) =  𝑂 (
BDp

NΔ
)             (22) 
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Figure 3. Case of two ROIs, one being a single pixel 

 

One rearranges the projections into two macro-projections: 

P̅A =  𝑂 (
ΔBDp

N
)  ;  P̅B =  𝑂 (

BDp

N
)            (23) 

Noting that the coefficients of 𝐌 are 𝑂(1) for the couples (RA, P̅A) and (RB, P̅B), and 𝑂(0) for the 

couples (RA, P̅B) and (RB, P̅A),  one computes the components of the 2 𝐅 

as follows: 

𝐅AA =  𝑂 (
N

ΔBDp
)  ;   𝐅BB =  𝑂 (

N

BDp
)  ;   𝐅AB = 𝐅BA =  𝑂(0)           (24) 

The matrix 𝐅 being approximately diagonal, the variance of the activities into RA and RB are given by: 

σA
2  ≈  𝐅AA

−1  =  𝑂 (
ΔBDp

N
)               (25) 

σB
2  ≈  𝐅BB

−1  =  𝑂 (
BDp

N
)               (26) 

Comparing equation (21) with equation (25), it follows that σA
2  ≈ ΨA, which is in agreement with 

Poisson’s law describing the distribution of radioactive measurement. From equations (22) and (26) one 

computes an estimate of the ratio σB/ΨB: 

σB

ΨB
 ≈  

√BDp

√N
 

NΔ

BDp
=  

√p

p
 

1

√BD
 Δ √N 

                (27) 

which can be rewritten, provided that the object has roughly the dimensions of the field of view (i.e., 

Δ ≈ N): 

σB

ΨB
 ≈  

√p

p
 

1

√BD
 Δ3/2 

                  (28) 

Equation (28) is strictly equivalent to Huesman’s formula ([1] equation (15)) which states that the ratio 

between the standard deviation and the mean activity of a pixel into a circular ROI can be approximated 

by the ratio between the standard deviation and the mean of the recorded projections, times a 

multiplicative factor, this factor being: (the ratio between the size of the ROI and the size of the pixel) 

power 3/2 divided by the square root of the total number of projections. Denoting W the number of 

pixels into ROI A (W = 𝑂(Δ2)), equation (27) can be rewritten as: 

σB

ΨB
=  

1

√ΨB

 
σB

√ΨB

 ≈  
1

√ΨB

 
√BDp

√N
 √

NΔ

BDp
=  

√Δ

√ΨB

≈  
W1/4

√ΨB

 

                (29) 

which is in agreement with Budinger’s approximation [2]. 
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3. Results 

 

3.1. Monte-Carlo simulations 

 

We studied a numerical phantom modelling a thorax slice. The phantom was constituted of four tissues 

(bone, fat, lung and mediastinum) with different activities (Figure 4 top and Table 1) representing the 

background, i.e., ROI 0. We simulated three two-ROI configurations. The ROIs stood for chest tumors 

with various locations, sizes and relative uptakes with respect to the background (Figure 3 bottom and 

Table 2). 

 

Figure 4. Top: the studied numerical phantom. Bottom: the three studied tumor ROI configurations. 

 

Table 1. Composition of the numerical thorax phantom 

 

Tissue Relative uptake 

Bone 1 

Fat 2 

Lung 4 

Mediastinum 8 

 

 

Table 2. Characteristics of the ROIs 

 

Tumor region of 

interest 

Radius Relative uptake 

ROI 1 8 pixels 6 

ROI 2 6 pixels 12 

ROI 3 3 pixels 20 

 

 

The object was defined and reconstructed on a 128 × 128 grid. Its projections were simulated using 128 

projection angles over 180° and 128 bins per projection angle, without taking into account the scatter or 

attenuation and assuming a perfect detector response. When simulating realistic noisy records, Poisson 

noise was added using Knuth’s algorithm [38]. The coefficients of the Radon matrix 𝚲 were computed 

using a uniformly distributed pixel activity model. Two count rates were considered: 25,000 events and 

400,000 events (on average). For each count rate, 250 realistic noisy replicates of the projection data 

were simulated and exploited to estimate the ROI parameters using different methodologies. The first 

evaluated methodology was the macro-quantification technique. The macro-projector was computed on 

the basis of an image estimate produced using MLEM with iterative ROI-wise regularization. The 
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regularization was performed by filtering the image after each iteration, ROI by ROI, with a Gaussian 

kernel of full width at mid-height (FWMH) 1 pixel. During image reconstruction, at each iteration, the 

macro-projector was computed and equations (15) and (16) were employed to provide an estimation of 

the ROI activity and variance. In what follows, the ROI estimation obtained with this technique 

(equation (15)) will be denoted Macro-Q. The macro-estimate of the ROI standard deviation (square 

root of the variance predicted using equation (16)) will be called Macro-. Our methodology was 

compared with a standard technique for ROI assessment which consists in reconstructing an estimate of 

the object using classical MLEM (with and without a-posteriori regularization) and then summing the 

pixel values inside the considered ROI (equation (8)). This was done using the following parameters: 

 MLEM without regularization, refered to as MLEMNR.  

 MLEM followed by post-filtering using a Gaussian kernel of FWMH 1 pixel, refered to as MLEMPF1. 

 MLEM followed by post-filtering using a Gaussian kernel of FWMH 2 pixels, refered to as MLEMPF2. 

The three two-ROI configurations proposed in Figure 4 were processed separately and independently. 

For each configuration and each count rate, the four methods presented here above were run for a total 

of 150 iterations. During the iterative process, each of the four methodologies provided a set of 250 

estimations of the ROI value (Macro-Q, MLEMNR, MLEMPF1 and MLEMPF2) corresponding to the 250 

replicates of the projection data. Furthermore, the macro-quantification technique allowed the 

computation of 250 estimates of the ROI standard deviation (Macro-). Figure 5 presents the results 

obtained for the three ROI configurations after the 25,000 event simulations. The bottom curves show 

the evolution with the number of iterations of the mean of the four ROI estimators. Macro-Q is displayed 

using a thick line, MLEMNR using a thin line, MLEMPF1 using a dashed line and MLEMPF2 using a dotted 

line. The straight gray line stands for the true ROI value. The top curves show the evolution with the 

iterations of the standard deviation of the four ROI estimators. The correspondence between the line 

type and the method is the same as for the bottom curves. The gray area represents the evolution with 

the iterations of the range ([min max]) of the Macro- predictions. 

 
Figure 5. Results for the 25,000 event Monte-Carlo simulations. Top: standard deviation of the ROI value estimates along 

with the iterations. Bottom: mean of the ROI value estimates along with the iterations. Left to right: ROI 1, ROI 2, and ROI 3. 
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Figure 6 is the counterpart of Figure 5 for the 400,000 event simulations. Finally, Table 3 summarizes 

the quantitative results provided by the macro-quantification technique for each ROI configuration and 

count rate. The proposed results correspond to a total of 150 iterations, when the method can be 

considered as having reached convergence. 

 

 
Figure 6. Same as Figure 4 for the 400,000 event Monte-Carlo simulations. 

 

 

Table 3. Monte-Carlo simulations. Quantitative results for the macro-quantification of the ROI values (values at 

convergence: 150 iterations). 

 

ROI 

number 

Average 

count rate 

True ROI 

value 

Macro-Q 

mean 

Relative 

bias 

Absolute 

bias 

Macro-Q  

std. dev. 
Macro- 

[min  max] 

Relative 

error 
 

1 25,000 1152 1142 - 0.9 % - 10 99 [94  98] [-5  -1] % 

400,000 18432 18472 + 0.2 % + 40 391 [382  386] [-2  -1] % 
 

2 25,000 1248 1245 - 0.2 % - 3 98 [94  98] [-4  0] % 

400,000 19968 20193 + 1.1 % + 225 390 [382  386] [-2  -1] % 
 

3 25,000 640 634 - 0.9 % - 6 67 [66  69] [-1 +3] % 

400,000 10240 10322 + 0.8 % + 82 272 [267  270] [-2  -1] % 

 
 

3.2. Physical phantom study 

 

The studied physical phantom was composed of a big cylinder of length L = 54.9 cm and diameter B = 

40.2 cm containing three angularly evenly spaced small cylinders of diameter S = 12.4 cm located at a 

distance d = 8.5 cm from the big cylinder axis (Figure 7). The big cylinder was filled with water. The 

three small cylinders were filled with 99mTc solutions with various activities: cylinder 1 (C1) was filled 

with 1.5 mCi/L, cylinder 2 (C2) with 1.25 mCi/L, and cylinder 3 (C3) with 1 mCi/L. A tomographic 

record of the physical phantom was acquired with an Infinia Hawkeye 4 SPECT-CT dual-head gamma-

camera (GE Healthcare, Chalfont St. Giles, UK) using the following settings: projection sampling 

128128 corresponding to a resolution of 4.424.42 mm², 120 projection angles over 360°, and an 

acquisition time of 15 seconds per projection angle. A total of 90 2D sinograms were recorded, 
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corresponding to 90 transaxial slices of the phantom. Each 2D sinogram was corrected for Compton 

scattering by means of the Jaszczak method. At this point, the total number of recorded photons in the 

2D sinograms exhibited a clear discordance between the internal slices and the external slices due to a 

significant difference in the amount of para-axial scattering affecting the internal and external slices. 

 

Figure 7. Geometry of the physical phantom: L = 59.4 cm, B = 40.2 cm, S = 12.4 cm, d = 8.5 cm. 

 

In order to produce projection data corrected for this bias, we proceeded as follows: the 90 2D sinograms 

were summed to create a global 120128 2D sinogram gathering 8.12 million events (Figure 8). This 

high statistics global sinogram was then used to generate two sets of low statistics sinograms: 

 The first set is constituted of 400 low-count sinograms with an approximate average count rate per 

sinogram of about 20,000. 

 The second set is constituted of 400 high-count sinograms with an approximate average count rate per 

sinogram of about 100,000. 

    

 

A sinogram S of the first set was produced as follows: S was initialized as an identically null 120128 

matrix. Then the global sinogram was swept through and each of the 8.12 million events had a 

probability p = 1/400 to be affected to the low count sinogram S at the position (i,j) where it was recorded 

in the global sinogram. Similarly, a sinogram of the second set was produced using the same scheme 

with a probability p = 1/80. The emission images were reconstructed over a 128128 grid. The 

coefficients of the system matrix were built up using the intersection area method and a uniform pixel 

Figure 8. The high statistics global 2D 

sinogram of the physical phantom. 

Figure 9. Left: CT scan slice of the physical phantom. 

Right: defined regions of interest. 
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model. The Infinia Hawkeye 4 gamma-camera was coupled with a CT scanner that allowed the 

acquisition of a morphological density scan of the phantom. The CT reconstructed image was sampled 

on a 128512512 grid. After down-sampling to 128128 in order to fit with the SPECT reconstruction 

kernel dimensions, the CT image enabled the definition of four ROIs (background plus three circular 

ROIs), the numbering of the ROIs corresponding to the numbering of the cylinders (Figure 9). Besides, 

the CT density map allowed the correction of the system matrix components in order to account for 

auto-attenuation. 

We first focused on the estimation of the activity ratios between the ROIs. The ratio between ROI 1 and 

ROI 2 (denoted ρ12) is expected to be equal to 120%, the ratio between ROI 1 and ROI 3 (denoted ρ13) 

is expected to be equal to 150%, and the ratio between ROI 2 and ROI 3 (denoted ρ23) is expected to be 

equal to 125%. Each sinogram was evaluated in terms of these three ratios using the macro-

quantification technique. The four ROIs were processed all together. The macro-quantification was run 

using a uniform macro-projector as defined in equation (20). This was legitimated by our a-priori 

knowledge regarding the uniformity of the studied ROIs. In this case, no image needed to be 

reconstructed and the technique gave a punctual estimate of the following parameters: 

 ROI values (Macro-Q for ROI 1, 2 and 3). 

 ROI covariance matrix, from which the ROI standard deviations (Macro- for ROI 1, 2 and 3) are 

extracted. 

 ROI ratios (Macro-Q for ρ12, ρ13 and ρ23). 

 ROI ratios standard deviation (Macro- for ρ12, ρ13 and ρ23). 

Equations (15) and (16) were employed to provide an estimation of the ROI values and covariance 

matrix. The ROI ratios were produced by simply computing the quotient of the corresponding ROI 

values: 

Macro_Q(ρ𝑚𝑛) ∶=  
�̂�𝑚

�̂�𝑛

 

               (30) 

where 𝑚 and 𝑛 stand for the indices of the two concerned ROIs. The macro-estimate of the standard 

deviation of the ROI ratios was then computed from the ROI values and covariance matrix using: 

Macro_σ(ρ𝑚𝑛)  =
√�̂�𝑛

2 𝐶𝑜𝑣𝑚𝑚(�̂�)  +  �̂�𝑚
2  𝐶𝑜𝑣𝑛𝑛(�̂�)  −  �̂�𝑚�̂�𝑛 𝐶𝑜𝑣𝑚𝑛(�̂�)

�̂�𝑛
2

 

     

   (31) 

where 𝑚 and 𝑛 stand for the indices of the two concerned ROIs. Table 4 summarizes the quantitative 

results provided for ROI ratio estimation. 

 

Table 4. Physical phantom study. Quantitative results for the macro-quantification of the ROI ratios. 

 

ROI 

ratio 

Average 

count rate 

True ratio Macro-Q 

mean 

Relative 

bias 

Absolute 

bias 

Macro-Q  

std. dev. 
Macro- 

[min  max] 

Relative 

error 
 

12 
100,00 1.2 1.25 + 4.2 % + 0.05 11.6 10-3 [11.2  12.0] 10-3 [-3  +3] % 

20,000 1.2 1.25 + 4.2 % + 0.05 25.7 10-3 [23.9  27.9] 10-3 [-7  +9] % 
 

13 
100,00 1.5 1.46 - 0.7 % - 0.01 14.9 10-3 [14.4  15.6] 10-3 [-3  +5] % 

20,000 1.5 1.46 0 % - 0.00 33.6 10-3 [31.2  36.2] 10-3 [-7  +8] % 
 

23 
100,00 1.25 1.22 - 4.0 % - 0.05 13.4 10-3 [12.9  13.9] 10-3 [-4  +4] % 

20,000 1.25 1.22 - 4.0 % - 0.05 30.8 10-3 [28.3  32.9] 10-3 [-8  +7] % 
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A second series of calculations was then performed in order to determine to what extent the macro-

quantification method enabled correct comparisons between regions of interest. Random pairs of 

sinograms were considered. Let us denote with (Ψ𝑛,1, V𝑛,1) and (Ψ𝑛,2, V𝑛,2)  the corresponding pair of 

macro-estimates of the ROI value and variance for ROI 𝑛. The tested null hypothesis was the following: 

H0: Ψ𝑛,1 =  Ψ𝑛,2    ⟺    𝛿𝑛 ≜ Ψ𝑛,1 − Ψ𝑛,2 = 0             (32) 

The corresponding z-score was computed as: 

𝜀𝑛 =  
Ψ𝑛,1 −  Ψ𝑛,2

√V𝑛,1 + V𝑛,2 
 

                    (33) 

In each sinogram set, 1000 random pairs were processed, providing 1000 samples for the distributions 

ε𝑛 (𝑛 = 1 … 3). On the basis of the z-score distribution, we deduced for each set and each ROI number 

four statistical indicators: 

 N_95 the proportion of sinogram pairs for which the two ROIs were considered as having equal value 

with a first-order risk of 5%. 

 N_90 the proportion of sinogram pairs for which the two ROIs were considered as having equal value 

with a first-order risk of 10%. 

 N_80 the proportion of sinogram pairs for which the two ROIs were considered as having equal value 

with a first-order risk of 20%. 

 N_50 the proportion of sinogram pairs for which the two ROIs were considered as having equal value 

with a first-order risk of 50%. 

Figure 10 displays the histograms of the z-scores ε𝑛 (𝑛 = 1 … 3) for the two sinogram sets. For 

comparison, the standard normal distribution is superimposed on each subplot. Finally, Table 5 

summarizes the quantitative values of the four aforementioned indicators for each ROI and each count 

rate. 

 

 
Figure 10. Physical phantom study. Histograms of the z-scores. Top: 100,00 event sonogram set. Bottom: 20,00 event 

sonogram set. From left to right: z-scores ε1, ε2 and ε3. The curve of the standard normal distribution is superimposed. 
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Table 5. Physical phantom study. Statistical indicators for ROI comparison. 

 

ROI 

 

Count rate N_95 N_90 N_80 N_50 

 

1 

100,00 94.3  % 89.1  % 80.3 % 49.7  % 

20,000 94.6  % 89.1  % 78.1 % 50.7  % 

 

2 

100,00 94.6  % 90.1  % 78.2  % 48.1  % 

20,000 94.0  % 90.1  % 79.5  % 50.4  % 

 

3 

100,00 95.1  % 89.5  % 80.5  % 49.5  % 

20,000 95.7  % 89.9  % 78.9  % 47.7  % 

 

 

4. Discussion 

 

4.1. Monte-Carlo simulations 

 

Foremost, a few points have to be highlighted regarding the validation settings. First, a thorax phantom 

was chosen to evaluate the methodology on a realistic working case involving a tumor region of interest 

located inside a highly non-uniform background. The non-uniformity of the background allows 

evaluating the ability of the technique to produce an accurate macro-projector. Three ROI configurations 

were tested in the same perspective. Indeed, the macro-projector estimate has to show good accuracy 

whatever the ROI size, relative uptake or location. One of the ROI configurations involves a tumor 

located astride two background structures with different activities in order to evaluate the behavior of 

the quantification technique in this particularly common case. Second, it was decided not to take into 

account the classical measurement artifacts affecting the projections in emission tomography. All of 

these artifacts can be modelled inside the system matrix 𝚲 whenever this is necessary using classical 

data corrections as presented elsewhere [39]. The imprecision affecting the system matrix components 

would equally affect any ROI assessment methodology by inducing a systematic bias in the ROI 

estimates. In order to judge the intrinsic qualities of macro-quantification versus classical quantification 

methods, the same operator was used for data simulation and image reconstruction, assuming the ideal 

case of a perfect modelling of the system matrix. Last, the boundaries of the studied ROIs were 

considered as perfectly defined. This is justified by the fact that a CT image is increasingly available 

along with the SPECT or PET data allowing precise circumscription of the ROIs on a morphological 

basis. Moreover, the problem of ROI definition is linked to a segmentation issue beyond the scope of 

the present paper. 

The results presented in the previous section tend to be relatively homogenous, whatever the ROI 

configuration and count rate. Concerning classical ROI quantification using MELM and pixel 

summation, Figures 5 and 6 (bottom curves) show that the ROI estimates are affected by a systematic 

bias caused by partial volume effects at the border of the ROI. The mean of the estimates asymptotically 

converges toward a limit which always underestimates the true ROI value. As expected, this 

underestimation increases when post-filtering is applied and is correlated with the width of the post-

filtering kernel. Concerning the variability of the classical ROI estimates, Figures 5 and 6 (top curves) 

indicate that the standard deviation gradually rises with the number of iterations, without stabilizing. 

When strong post-filtering (MLEMPF2) is applied, the variance of the estimates tends to reach a plateau 

but at the price of a major bias. These last considerations emphasize the difficulty to find an optimal 

bias/variance tradeoff using classical ROI quantification. 

As for the macro-quantification approach, Figures 5 and 6 demonstrate that it allows a good tradeoff 

between systematic bias and variance. The bottom curves show that the convergence of the mean value 

of Macro-Q toward the true ROI value is rather satisfying and always significantly better than with the 
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classical method. This is supported by the quantitative results summarized in Table 3: the relative bias 

affecting the Macro-Q estimates never exceeds 1.1 % at convergence. This superiority of the 

macroscopic approach over the classical method follows from a better handling of partial volume effects 

at the edges of the ROI. When passing from the pixel model to the macroscopic model, the sensitivity 

of the system matrix to partial volume effects dramatically decreases. Regarding the variability of the 

Macro-Q estimates, Figures 5 and 6 (top curves) show that their standard deviation always reaches a 

plateau during the iterative process. Furthermore, the plateau value is fairly well approximated by the 

Macro- estimate. As shown in Table 3, the Macro- estimates have very low dispersion with a relative 

error that never exceeds 5 % (Macro- mostly underestimates the effective standard deviation). 

Moreover, it appears that the systematic bias is always significantly lower than the standard deviation, 

which means that the unknown error (i.e., the bias) remains small compared with the controlled error 

(i.e., the statistical uncertainty fairly well approximated with Macro-). 

4.2. Physical phantom study 

 

The physical phantom study evaluated the macro-quantification technique in the frame of ROI 

comparison. The a-priori assumption regarding the uniformity of the ROIs allowed exploiting the simple 

formulation based on the uniform macro-projector. A first series of calculations tested the ability of the 

method to estimate the expectation and variance of the activity ratio between two regions of interest. 

The results shown in Table 4 demonstrate the good ability of macro-quantification to recover the exact 

values of the ROI ratios, with a relative bias always lower than 5 %. The observed bias is likely due to 

a resolution loss induced by the extraction of the ROI boundaries on a 128128 kernel using the 512512 

CT image. Concerning the dispersion indicators, Tables 4 shows a very good agreement between the 

Macro-Q standard deviations and the Macro- predictions: the relative error ranges from -4% to +5% 

for the 100,000 event sinogram set and from -8% to +9% for the 20,000 event sinogram set. 

A second series of calculations was carried out to assess the efficiency of macro-quantification in ROI 

comparison. A statistical test was applied to pairs of ROIs having theoretically equal activity levels. 

Figure 10 shows that the computed z-score histograms perfectly fit with the expected standard normal 

distribution. Accordingly, the statistical indicators presented in Table 5 show perfect agreement with the 

expected values of 95%, 90%, 80% and 50%, whatever the studied ROI and count rate. The physical 

phantom study thereby confirms the ability of macro-quantification to provide robust and accurate 

estimates of ROI statistical parameters in realistic working conditions (approximate knowledge of the 

system matrix and a-posteriori circumscription of the ROIs using morphological information). 

Whenever this is necessary for clinical decision, the accuracy of the Macro- predictions is broadly 

sufficient to provide a helpful insight into the order of magnitude of the ROI (or ROI ratio) variance. As 

discussed, the quality of the variance estimate allows for efficient comparisons between regions of 

interest using classical statistical tests. When the studied ROIs are a-priori known to be homogenous, 

which is current in routine practice (striatal neurodopaminergic imaging for instance [40]), the use of 

the uniform macro-projector enables an extremely fast computation of the ROI parameters (less than 1 

second on a personal computer) without involving any image reconstruction. This should be particularly 

helpful in the frame of dynamic imaging implying ROI quantification together with low statistics data 

and stringent time-management constraints. 

 

5. Conclusion 

 

In this paper, we described an innovative methodology for the statistical characterization of regions of 

interest. The cornerstone of the technique is the rearrangement of the projection data into macro-

projections that are linked to the ROI activities through a macro-projector. We proposed a strategy for 
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the computation of the macro-projector using iterative image reconstruction coupled with ROI-wise 

smoothing. We first evaluated the results of the methodology through Monte-Carlo simulations based 

on a thorax phantom and involving various tumor ROI configurations and count rates compatible with 

clinical practice. For the sake of convenience and in order to judge the intrinsic ability of the method to 

quantify ROI activities, the measurement artifact affecting the projection data were neglected and a 

perfect a-priori definition of the ROIs was considered. The results indicated that macro-quantification 

allows an optimal handling of the ROI statistical parameters. The provided ROI estimations significantly 

reduced the systematic bias compared with classical ROI assessment, and the variance estimation 

produced by the macroscopic approach fairly well agreed with the effective variance of the macroscopic 

ROI estimates. Next, we validated the new methodology using SPECT data of a physical phantom. The 

task was to compare three regions of interest defined on the basis of a co-registered CT image. Here 

again, the bias affecting the ROI ratio estimates was almost negligible and always below 5% of the true 

ROI ratio. The ratio variance estimates targeted fairly well the order of magnitude of the measured 

variances, with a maximum relative error ranging from about 5% for the high count sinograms to about 

10 % for the low count ones. The quality of these variance estimations allowed highly accurate ROI 

comparisons using standard statistical decision tests. Owing to its intrinsic simplicity, the macro-

quantification approach allows fast computations compatible with a wide range of routine clinical 

applications. 
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