Du signal physique à une image médicale exploitable

Les artefacts d'acquisition

Réponse de l'appareil d'imagerie

Modification du signal avant détection

Correction des artefacts (planaire & tomographie)

UE optionnelle DFGSM : Imagerie métabolique et fonctionnelle 26 mars 2015. 14h-18h. D. Mariano-Goulart

PLAN DU COURS

HISTORIQUE

- TRACEURS EN IMAGERIE FONCTIONNELLE
- SIGNAL PHYSIQUE \rightarrow IMAGE MEDICALE
 - Quel paramètre physique mesure-t-on ?
 - Artefacts liés à la formation de l'image ?
 - Artefacts d'atténuation en imagerie d'émission
 - Corrections en imagerie planaire
 - Corrections en imagerie tomographique

EXTRACTION DE PARAMETRES PHYSIOLOGIQUES ET DIAGNOSTIQUES
CINETIQUE DES TRACEURS
EXPLOITATION D'ACQUISITIONS
EXTRACTION DE PARAMETRES PHYSIOLOGIQUES A PARTIR DE MODELES PHARMACOCINETIQUES ET STATISTIQUES (GLUCOSE, IRMF, NEURO)

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV, PE, C) PLANAIRE TOMOGRAPHIE **IMAGERIE D'EMISSION** Xp $\frac{X^+ - X^-}{X^+ + X^-}$ **S** = χ+ PM Scintillateur Collimateur Localisation Réponse Diffusion Incertitudes géométrique, Compton de localisation Pénétration et dans le cristal diffusion septales réponse intrinsèque

Interprétation 2

D>LMH	Chaque composante fréquentielle de la TF code une certaine vitesse de variation des niveaux de gris d'un pixel à l'autre :
2^{-} image: s(i)=1	La composante sin(2πf.i) code pour un signal intense (ligne blanche) se répétant tous les 1/f mm.
+sin i +sin 3i	La composante maximale (f_{max} =3/2 π) code donc pour la variation de niveau de gris la plus rapide, soit une ligne (blanche) se répétant tous les
$\int_{-1}^{1} \int_{-1}^{2} \int_{-1}^{3} \int_{-1}^{3$	$D_{min} = 1/f_{max} = 2\pi/3 \text{ mm} = LMH$

Interprétation

 $D \le LMH \Rightarrow$ images fusionnées $D > LMH \Rightarrow$ images non fusionnées

f= 1/D ≥ 1/LMH La composante fréquentielle f n'est pas transmise f= 1/D < 1/LMH La composante fréquentielle f est transmise

D

D>LMH

$$LMH = \frac{1}{f_{\max}^{transmise}} = D_{\min}^{transmise} = résolution = pouvoir séparateur$$

LMH $\downarrow \Rightarrow f_{max} \uparrow \Rightarrow$ variation de contraste maximale possible \uparrow

Théorème de Shannon

Si la taille du pixel est identique à la LMH, alors aucun contraste n'est produit pour des objets ponctuels distants d'un peu plus que la LMH:

Perte de résolution

LMH

REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PELC) PLANAIRE TOMOGRAPHIE **RESOLUTIONS EN MEDECINE** 0.1 mm 1 mm 5 mm 10 mm 15 mm Scintigraphie γ Radiographie Mammographie IRM et TDM X TEP **SPECT** CZT Echographie

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (Décv. PE. C) PLANAIRE TOMOGRAPHIE FORMATION DE L'IMAGE p(1) p(0)-0 p(-1) -1-ACQUISITION $p(i) = \sum p(k).\delta(i-k)$, i fixé k=–∞ = 0 sauf si k=i où $\delta(0)=1$ $\sum_{k=0}^{n} p(k).\delta(i-k) = p(-1)\delta(i+1) + p(0)\delta(i) + p(1)\delta(i-1)$ k=–∞ Si i = 1:

Pour déterminer s, il faut faire des hypothèses sur M, donc sur les caractéristiques de la caméra... SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PELC) PLANAIRE TOMOGRAPHIE Caméra ≈ linéaire & invariante (SLID) p(i) s(i)=M[p](i) M[] $s(i)+\lambda s'(i)$ $p(i)+\lambda p'(i)$

p(i-k)

k

ACQUISITION 4

s(i-k)

k

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PELC) PLANAIRE TOMOGRAPHIE FORMATION DE L'IMAGE **SLID** ⁹⁹43 Tc $p(i) = \sum_{k=1}^{n} p(k) . \delta(i-k)$ ACQUISITION s(i) = M[p](i) = ? $h(i) = M[\delta](i)$ $s(i) = M\left[\sum_{k=1}^{+\infty} p(k).\delta(i-k)\right] = \sum_{k=1}^{+\infty} p(k).M[\delta(i-k)] = \sum_{k=1}^{+\infty} p(k).h(i-k)$ k=–∞ k=–∞ k=–∞ Invariance dans le décalage $s(i) = \sum p(k).h(i-k) = \sum h(k).p(i-k) = (p*h)(i)$

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PELC) PLANAIRE TOMOGRAPHIE FORMATION DE L'IMAGE **SLID** ⁹⁹43 Tc → s(i) $s(i) = \sum_{k=0}^{+\infty} h(k) \cdot p(i-k) = (p*h)(i)$ ACQUISITION p(i) k=–∞ ACQUISITION

INTERPRETATION EN FREQUENCE

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PE. C) PLANAIRE TOMOGRAPHIE **INTERPRETATION EN FREQUENCE** \////// p(i) s(i) convolution Amm $p(i) = 1 + \frac{8}{\pi} \left[\sin(i) + \frac{1}{3}\sin(3i) + \frac{1}{5}\sin(5i) + \dots \right]$ $s(i) = 1 + \frac{8}{\pi} \left[\sin(i) + \frac{1}{2} \frac{1}{3} \sin(3i) + \frac{1}{4} \frac{1}{5} \sin(5i) \right]$ $\widehat{\mathbf{p}}(\mathbf{v})_{\mathbf{A}}$ $\widehat{\mathbf{s}}(\mathbf{v}) = \widehat{\mathbf{p}}(\mathbf{v}).\widehat{\mathbf{h}}(\mathbf{v})$ $\widehat{h}(3) = \frac{1}{2}$ $\widehat{h}(5) = \frac{1}{4}$ 0 1 2 3 0 2 3 5 1

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV. PELC) PLANAIRE TOMOGRAPHIE Théorème de convolution $\hat{\mathbf{s}}(\mathbf{v}) = \hat{\mathbf{p}}(\mathbf{v}).\hat{\mathbf{h}}(\mathbf{v})$ $\hat{\mathbf{p}}(\mathbf{v})$ Graphic Equalizer SI ID DEDSS 3 2 0 2 3 GE-10 () $\widehat{s}(\nu)$ = multiplication par $\widehat{h}(\nu)$ de la TF de la grandeur physique $\widehat{p}(\nu)$ s = convolution par h de la grandeur physique p $s(i) = h(i) * p(i) \implies \widehat{s}(v) = \widehat{h}(v) \cdot \widehat{p}(v)$ Introduction au traitement numérique des images médicales. D. Mariano-Goulart. EMC. (Elsevier Masson SAS, Paris), Radiodiagnostic - Principes et techniques d'imagerie, 35-100-A-10, 2015.

REPONSES IMPULSIONNELLES & EN FREQUENCE

s = moyenne pondérée par h de la grandeur physique p

$$\sigma = k.D + k'$$

Cq 1 : RESOLUTION ET DISTANCE EN SPECT

D'un signal physique à une image médicale exploitable

Les artefacts d'acquisition

Réponse de l'appareil d'imagerie

Modification du signal avant détection

Correction des artefacts (planaire & tomographie)

ATTENUATION COMPTON: $\mu_C \approx k' \rho$

Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85–R112

D'un signal physique à une image médicale exploitable

Les artefacts d'acquisition

Correction des artefacts

Déconvolution & atténuation en mode planaire

Déconvolution & atténuation en mode tomographique

DECONVOLUTION PLANAIRE

Dans une image de projection, la distance entre la source et le détecteur où se forme l'image est inconnue. On néglige donc la dépendance en D de la réponse impulsionnelle.

ATTENUATION PHOTOELECTRIQUE (PLANAIRE)

Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85–R112

D'un signal physique à une image médicale exploitable

Les artefacts d'acquisition

Correction des artefacts (planaire & tomographie)

Déconvolution & atténuation en mode planaire

Déconvolution & atténuation en mode tomographique

SPECT/CT Physical Principles and Attenuation. Correction. JA. Patton & TG Turkington. J Nucl Med Technol 2008; 36:1–10

SPECT/CT Physical Principles and Attenuation. Correction. JA. Patton & TG Turkington. J Nucl Med Technol 2008; 36:1–10

Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85–R112

TOMOGRAPHIE: SYSTEME LINEAIRE

Prise en compte des artefacts en SPECT et PET :

- Difficulté majeure d'introduire des facteurs du type exp(-μL_{x,s,φ})
- Problème pour corriger les artefacts d'atténuation (photoélectrique, Compton).
- En revanche, une déconvolution de la réponse impulsionnelle est faisable.

Nécessité d'un filtre passe-bas associé au filtre valeur absolue

Projection / Rétroprojection

S. Kaczmarz 1895-1940

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

$$\hat{p}(\boldsymbol{\omega},n) = \underbrace{\frac{1}{\hat{h}_n(\boldsymbol{\omega})}} \hat{p}_c(\boldsymbol{\omega},n)$$

Edholm, Lewitt et al. Proc SPIE 1986, et IEEE-TMI, 1989

 $\hat{p}_{c}(\omega,n)$ pente -t

EXEMPLE DE DECONVOLUTION

RPF BTW O=5 F=0.7

PROJECTION GAUSSIENNE

PRINCIPE FREQ-DISTANCE

Résultats comparables pour les deux méthodes

V Kohli et al. Phys Med Biol 1998;43.
SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DéCv, PE, C) PLANAIRE TOMOGRAPHIE

EXEMPLE DE DECONVOLUTION

Applications cliniques : restore[®], evolution for bone[®]...

SIGNAL REPONSE CONVOLUTION ATTENUATIONS CORRECTIONS (DECV, PE, C) PLANAIRE TOMOGRAPHIE

Bibliographie :

Introduction au traitement numérique des images médicales. D. Mariano-Goulart. Encyclopédie Médico-chirurgicale, 35-100-A-10, 2015.

Reconstruction tomographique en imagerie médicale. D. Mariano-Goulart Encyclopédie Médico-chirurgicale, 35-105-A-10, 2015.

The Mathematics of Computerized Tomography. F. Natterer. 2001. SIAM.

Merci de votre attention...

denis.mariano-goulart@univ-montp1.fr

http:\\scinti.edu.umontpellier.fr