TRAITEMENT DES IMAGES SCINTIGRAPHIQUES

Denis MARIANO-GOULART Département de médecine nucléaire CHRU de Montpellier http:\\scinti.edu.umontpellier.fr

Le symbole des points particulièrement importants à comprendre et connaître Le symbole *r* marque des points un peu délicats qui ne sont pas exigibles à l'examen Le symbole des concerne un exercice ou une réflexion à mener ensemble

PLAN DU COURS

① Réponse d'une γ-caméra (3h30)

- réponse impulsionnelle
- échantillonnage
- formation d'une image
- effet de volume partiel
- déconvolution

② Bruit et filtrages (2h30)

- bruit stochastique
- filtrages d'images
- ③ Recalage d'images (1h)
- ④ Segmentation (1h)
- ⑤ Visualisation volumique (1h)

① REPONSE D'UNE GAMMA-CAMERA

Réponse impulsionnelle d'un appareil d'imagerie. Echantillonnage d'une image scintigraphique. Processus de formation d'une image Effet de volume partiel

Déconvolution

Nb: les artefacts d'atténuation, traités dans un cours spécifique ne sont pas repris ici.

RFPONSE

Quantitative Analysis in Nuclear Medicine Imaging, Springer US. 2006; CE Metz. Phys Med Biol 1990; 35.

Interprétation 2

Chaque composante fréquentielle de la TF code une certaine vitesse de variation des niveaux de gris d'un pixel à l'autre :

La composante de fréquence maximale (f_{max} =3/ 2 π) code donc pour la variation de niveau de gris la plus rapide, soit une ligne (blanche) se répétant tous les D = D_{min}= 1/f_{max} = 2 π /3 mm

La composante sin $(2\pi f.i)$ code pour des signaux intenses se répétant tous les 1/f mm. Elle adoucit le contraste de la composante HF.

La composante constante correspond au niveau de gris moyen autour duquel les autres harmoniques créent le contraste.

Interprétation 2

 $D \leq LMH \Rightarrow$ images fusionnées

and)

es $D > LMH \Rightarrow$ images non fusionnées

f= 1/D ≥ 1/LMH La composante fréquentielle f n'est pas transmise f= 1/D < 1/LMH La composante fréquentielle f est transmise

$$LMH = \frac{1}{f_{max}^{transmise}} = D_{min}^{transmise} = résolution = pouvoir séparateur$$

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

LMH $\downarrow \Rightarrow f_{max} \uparrow \Rightarrow$ variation de contraste maximale possible \uparrow

Théorème de Shannon

Si la taille du pixel est identique à la LMH, alors aucun contraste n'est numérisé pour des objets ponctuels distants d'un peu plus que la LMH:

Perte de résolution

and)

REPONSE D'UNE γ-CAMERA

- Réponse d'une γ -caméra = Gaussienne
- LMH de la gaussienne =
 - Résolution
 - Pouvoir séparateur
 - La plus petite période de signal transmise
 - l'inverse de la fréquence spatiale maximale dans l'image
- LMH linéaire avec distance(source-collimateur)
- Shannon \Rightarrow taille du pixel = LMH/2

Interprétation en fréquence

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDUCED A

Interprétation en fréquence

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Rappel : expo. Complexe & TF $e^{j.\nu.\omega_0.i} \stackrel{DEF}{=} \cos(\nu.\omega_0.i) + j.\sin(\nu.\omega_0.i)$ $\sin(\nu.\omega_0.i)$ j est le nombre complexe de carré -1 $V.\omega_0 i$ $f_{\nu} = \nu f_0 = \nu . \omega_0 / (2\pi)$ $\cos(\nu.\omega_{0}.i)$ $e^{j.\nu.\omega_0.i}$ représente la fonction circulaire (sin ou cos) de fréquence ν fois la fréquence f_0 = harmonique ν $p(i) = \frac{1}{N} \sum_{\nu=0}^{N-1} \hat{p}(\nu) \cdot e^{j \cdot (\nu \cdot \omega_0)i} \iff p(i) = \frac{1}{N} \left[\hat{p}(0) + \hat{p}(1) \cdot e^{j \cdot \omega_0 \cdot i} + \dots + \hat{p}(N-1) \cdot e^{j \cdot ((N-1) \cdot \omega_0)i} \right]$ $o\dot{u} \ \hat{p}(\nu) = \sum_{k=0}^{N-1} p(k) \cdot e^{-j \cdot (\nu, \omega_0) \cdot k} \iff \hat{p}(\nu) = p(0) + p(1) \cdot e^{-j \cdot \omega_0 \cdot i} + \dots + p(N-1) \cdot e^{-j \cdot ((N-1) \cdot \omega_0) i}$

CONVOLUTION VOLUME PAR

Interprétation en fréquence

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL

Réponses impulsionnelle et en fréquence

Interprétation d'une image en fréquence

donc en représentation en fréquence...

Les signaux constituées de droites parallèles espacées de d sont représentées dans l'espace de Fourier par un seul point localisé sur la droite perpendiculaire aux droites des signaux et à la distance 1/d de l'origine

Parties horizontales des cotes Parties obliques à 45% des cotes

Cq1: Résolution et distance

FORMATION D'UNE IMAGE

- Convolution du signal acquis par la réponse impulsionnelle de la γ-caméra
 - Moyenne pondérée dans un voisinage du signal RA par les amplitudes de la réponse impulsionnelle (gaussienne)
 - Agit en lissant les contours des parties du signal RA acquis
- Multiplication du spectre du signal acquis par la réponse en fréquence gaussienne de la γ-caméra

 Amplification des composantes fréquentielles du signal par les amplitudes de la réponse en fréquence (gaussienne)

• Agit en diminuant l'influence des HF

POINT D'ETAPE 2

Cq3: Déconvolution, pour...

- corriger l'EVP en améliorerant la résolution
 - Via un coef. de restauration = activité mesurée/vraie
 - Niveau pixel(s) ou ROI(s), dans les coupes ou les projections
 - Par déconvolution (filtres e Metz, Wiener)
 - en 2D ou après reconstruction, sous hypothèse d'invariance
 - En 3D, dans l'espace des projections, <u>en prenant en compte la</u> <u>distance au collimateur</u> (principe fréquence-distance)
 - Par modélisation de la PSF dans l'opérateur de Radon (projection/rétroprojection)
- **corriger les artefacts de dilution & recirculation d'un bolus** K Erlandsson, I Buvat et al. Phys Med Biol 2012 (57) – J Yang et al. IEEE TNI 1996 (43) -

Cq3: Coefficient de Recouvrement

Cq3: Déconvolution (planaire)

Dans une image de projection, la distance entre la source et le détecteur où se forme l'image est inconnue. On néglige donc la dépendance en D de la réponse impulsionnelle.

Filtre de déconvolution de Metz

DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Déconvolution en TEMP γ

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Relation fréquence-distance

θ

DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Relation fréquence-distance

DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Déconvolution en TEMP par RFD

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

W Xia et al, IEEE TMI 1995;14-Hawkins et al. IEEE TMI 1988;7-Lewitt et al. Proc SPIE 1989; 1092-Glick et al. IEEE TMI 1994;13.

Projection/rétroprojection : Rappel

 Les opérateurs de projection et de rétroprojection sont les sousprogrammes de base des algorithmes de reconstruction tomographique.
 Ils modélisent la réponse impulsionnelle d'un tomographe.

Projection/rétroprojection

- Les opérateurs de projection et de rétroprojection sont les sousprogrammes de base des algorithmes de reconstruction tomographique.
 Ils modélisent la réponse impulsionnelle d'un tomographe.
- Ils ne dépendent que de la matrice de Radon (r_{i,j}) où
- r_{i,j} = % de la valeur du pixel j qui se projette dans la projection i
- r_{i,j} = % de la valeur de la projection i qui se rétro-projette dans le pixel j

f_1 $f_2 \rightarrow p_1 = r_{1,1} f_1 + r_{1,2} f_2$		
f_3 $f_4 \rightarrow p_2 = r_{2,3} f_3 + r_{2,4} f_4$	$b_1 = r_{1.1} p_1 + r_{3,1} p_3$	$b_2 = r_{1,2} p_1 + r_{4,2} p_4 - p_1$
	b ₃ = r _{2.3} p ₂ + r _{3,3} p ₃	$b_4 = r_{2,4} p_2 + r_{4,4} p_4 - p_2$
$p_4 = r_{4,2} f_2 + r_{4,4} f_4$		
$p_3 = r_{3,1} f_1 + r_{3,3} f_3$	P ₃	p ₄

Exemple de déconvolution

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

RPF BTW O=5 F=0.7

PROJECTION GAUSSIENNE

PRINCIPE FREQ-DISTANCE

Résultats comparables pour les deux méthodes

V Kohli et al. Phys Med Biol 1998;43.

Exemple de déconvolution

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Applications cliniques : restore[®], evolution for bone[®]...

Généralisation de la méthode

DECONVOLUTION

La modélisation de la réponse impulsionnelle est valable pour <u>tous</u> les algorithmes de reconstruction tomographique utilisant des fonctions de projection et de rétroprojection, c'est-à-dire pour:

les méthodes itératives (ART, MLEM, OSEM, GC...)
mais aussi la rétroprojection filtrée

(seule l'inversion directe par la formule de Radon ne peut pas en bénéficier)

En revanche, l'inversion de la transformée de Radon (directe ou par rétroprojection filtrée) se plie mal à une correction des artefacts d'atténuation, ce qui explique (entre autres) le développement d'OSEM en SPECT et PET.

CONVOLUTION

Image = convolution de la distribution de radioactivité par la réponse impulsionnelle

- = moyenne pondérée d'une activité par les activités voisines
- = atténuation (par x) des fréquence spatiales les plus hautes

Effet de volume partiel =

- sous estimation de l'activité si dimension anatomique < 2.LMH
- Environ –25% si e=LMH; environ –55% si e=LMH/2.

Déconvolution

- En / par la réponse en fréquence puis filtre passe-bas (Metz)
- En / par la réponse en fréquence dans la TF2 du sinogramme
- En modélisant la projection gaussienne dans le projecteur

POINT D'ETAPE 3

OLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU Désintégration radioactive Sans mémoire (désintégrations indépendantes) les désintégrations qui ont eu lieu avant l'instant t n'influent pas sur celles qui auront lieu après l'instant t. Stationnaire la probabilité d'une désintégration entre t et t+h ne dépend que de h (et pas de t) $P(C_{\Lambda\tau}=n)$ ♦ **Rare** : Si $\Delta t \rightarrow 0$, alors n=1 • $P(C_{\Lambda t} = 1) \rightarrow \lambda N.\Delta t$ • $P(C_{\Lambda t} = 0) \rightarrow 1 - \lambda N.\Delta t$ n=0• $P(C_{At} > 1) \rightarrow 0$ 3

http://pbil.univ-lyon1.fr/R/pdf/AvnerDea_mer.pdf, pages 16 à 22 cg.ensmp.fr/bibliotheque/1965/MATHERON/Cours/DOC_00287/MATHERON_Cours_00287.pdf, pages 18-22

BRUIT FILTRES RECALAGE SEGMENTATION RENDU

ad)

Statistique de Poisson (4)

CONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

and

şing

ECHANTILLONNAGE pratique (2) Champ d'une gamma-caméra : 40x53 cm ◆ LMH en mode planaire = 7 mm • 530 / 3.5 = 151 pixels / $c t c t \Rightarrow 256$ pixels Si 512 pixels (pixels découpés en 4) : Résolution inchangée • C divisé par $4 \Rightarrow$ S/B divisé par 2 \bullet LMH en mode tomographique = 18 mm • 530 / 9 = 59 pixels / $c\hat{o}t\hat{e} \Rightarrow 64$ pixels Si 128 pixels (pixels découpés en 4) : Résolution inchangée • C divisé par $4 \Rightarrow$ S/B (fortement) diminué

OLUTION BRUIT FILTRES RECALAGE SEGMENTATION REND

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

TAUX DE COMPTAGE

- Désintégration = rare, sans mémoire, stationnaire
 - Donc statistique de Poisson de moyenne $\overline{C} = \sigma^2$
 - Donc S/B = $\sqrt{\overline{C}}$

- Activité injectée suffisante, pas de point d'injection (masqué)
- Mais surtout : temps de pose suffisant

Taille des pixels lors de la numérisation

- d = LMH/2
- Si d < LMH /2, on dégrade le rapport S/B sans gain en résolution.
- Si d > LMH /2 on dégrade la résolution et on aggrave les effets de volume partiel.

Notion de filtrage

VOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

• un <u>critère pour discriminer</u> signaux parasites et pertinents

• un <u>algorithme pour éliminer</u> les signaux parasites

1° idée : critère fréquentiel

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Filtrage linéaire d'image

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES

ad

Exemple: filtres de Butterworth

and

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Filtres linéaires

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT

FILTRES

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

FILTRES LINEAIRES

Ils opèrent par convolution (moyenne pondérée) ou par amplification sélective des fréquences spatiales. Ces filtres sont réversibles si $\hat{h}(\nu) \neq 0$ pour toute fréquence de l'image. ▲ Facilité (relative) de synthèse ▲ via une fréquence de coupure et un gabarit ▲ ou par définition d'un masque de convolution ▲ Contrôle des caractéristiques modifiées ▲ via les fréquences spatiales amplifiées \blacktriangle en lien avec la résolution de la γ -caméra Information de voisinage mal prise en compte Altération de la résolution si filtrage passe-bas

(Elsevier Masson SAS, Paris), Radiodiagnostic - Principes et techniques d'imagerie, 35-100-A-10, 2009, p. 1-21.

Lissage sur masque adapté (VSS)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Accumulation pour moyenne des

$s(i',j') \in s(i,j)\pm 2\sqrt{s(i,j)}$

Ce filtre opère toujours une moyenne, mais n'est plus linéaire car non invariant en translation (le masque change).

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU Filtre médian Connexité 4 Connexité 8 Connexité 4 Connexité 8 Taille 1 Taille 2 On remplace s(i,j) par la valeur de pixel médiane dans un voisinage fixe de (i,j)

Ce filtre opère de façon non linéaire (il ne calcule pas de moyenne pondérée)

Opérateurs morphologiques

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES

(11)

$\acute{\text{erosion}} \epsilon(s)(i,j) = \inf_{(i',j') \in V_{i,j}} s(i',j')$

Algorithme : remplace chaque valeur de pixel par le minimum des valeurs des pixels du voisinage S Diminue le signal, élargit les hypo-signaux, gomme les hyper-signaux

Opérateurs morphologiques

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

(11)

dilatation $\delta(s)(i,j) = \sup_{(i',j') \in V_{i,i}} s(i',j')$

Algorithme : remplace chaque valeur de pixel par le maximum des valeurs des pixels du voisinage & Augmente le signal, élargit les hyper-signaux, gomme les hypo-signaux

Opérateurs morphologiques

(11)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES

fermeture $\varphi(s)(i, j) = (\varepsilon \circ \delta)(s)(i, j)$

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

(11)

ouverture $\gamma(s)(i, j) = (\delta \circ \varepsilon)(s)(i, j)$

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

$\gamma \varphi(s)(i, j) = (\delta \circ \varepsilon)(\varepsilon \circ \delta)(s)(i, j)$

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

(00)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDI

Contrôle de l'activité d'un filtre

Opérateurs géodésiques

- dilater A ⊂ E tant que le résultat est inclus (<) dans E
- éroder A \supset E tant que le résultat (>) contient E

original $\delta_{s}^{\infty}(\varepsilon)$ puis $\varepsilon_{s}^{\infty}(\delta_{B})$ Différence seuillée

F. Zana et JC. Klein du Centre de Morphologie Mathématique de l'Ecole des Mines de Paris

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REND

Contrôle de l'activité d'un filtre

Opérateurs géodésiques

- dilater A ⊂ E tant que le résultat est inclus dans E
- éroder $A \supset E$ tant que le résultat contient E

Centres: on se donne une famille de filtres,

 et pour chaque pixel, on choisi le moins actif si tous les filtres agissent dans le même sens, sinon, on ne modifie pas le pixel.

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

- Opérateurs géodésiques
- Centres
- Extrema d'opérateurs
 - Abandonner l'invariance dans le décalage de l'élément structurant: Sup d'érodés ou Inf de dilatés.

Idée : isoler les caractéristiques principales de chaque sujet Sⁱ en ne le décrivant que par le point mⁱ (« costaud » ou pas) : \downarrow le nombre de variables

JP Benzecri 1992. Correspondence Analysis Handbook.(new-York: Dekker).

Idée : isoler les caractéristiques principales de chaque sujet Sⁱ en ne le décrivant que par le point mⁱ (« costaud » ou pas) : \downarrow le nombre de variables

JP Benzecri 1992. Correspondence Analysis Handbook.(new-York: Dekker).

AFC appliquée au filtrage du bruit

P. Hannequin & J Mas, Phys med Biol 2002; 47 - P Marano. Ann. Télécom. 1972; 27

FILTRES

Statistical Heuristic Image Noise Extraction

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

FILTRES NON LINEAIRES

- Il s'agit toujours de comparer des a priori sur la nature du signal et du bruit à l'information de voisinage, mais de façon non linéaire.
- Ces filtres sont irréversibles.
- Non invariants dans le décalage
 - Modus operandi différent suivant la région de l'image traitée
 - Ex : lissage sur masque adapté
- N'opérant pas par moyenne pondérée
 - Ex : filtres de nature statistique: filtre médian, SHINE
 - Ex : filtres morphologiques : ouvertures et fermetures.
- Difficultés
 - Pour paramétrer et pour contrôler l'activité de ces filtres.

JBA MAINTZ Med Image Anal 1998;2 - O.MIGNECO Revue ACOMEN 1999;

Transformations rigides

RECALAGE

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REND

Transformations affines

Gauchissement

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDI

Mesures de similarité S, sur...

$T = \arg \max_{T \in E} S[\{V^{R}\}; \{T(V^{I})\}]$

• des marqueurs :

• articiels externes ou frontières anatomiques

les valeurs des voxels

différences, variances, corrélations,...

Une information mutuelle...

Marqueurs

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE

Extraction des frontières

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE

JL Bernon et al, Comput Med Imag & Graphics 2001; 25

Recalage des frontières

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Différence d'intensité

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE

Exemple : translation d'images

RECALAGE

Exemple : translation d'images

RECALAGE

Intercorrélation maximale

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Optimisation

- Au moyen d'un programme capable d'optimiser la mesure de similarité en ajustant itérativement les paramètres géométriques du recalage
- Méthodes avec gradient
 - <u>Gradient conjugué</u>, Levenberg-Marquardt...
 - BFGS, KNITRO...
- Méthodes sans gradient
 - Powell: succession d'optimisations 1D
 - Simplex

WH Press et al. Numerical recipes in C. Cambridge University Press Les codes de ces programmes sont disponibles gratuitement sur la toile.

RECALAGE

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Applications

- Morpho-fonctionnel
 - diagnostic (traceurs spé)
 - thérapeutique
- Atlas anatomique
- Comparaison de traceurs
 - neuro, cardio, pneumologie
 - parathyroïdes
- Suivi d'un patient
- SPM
- Correction d'artefacts
 - vol. partiel, atténuation
 - mouvement...
- Reconstruction multimodale
 - xSPECT-Bone[®]

O. Mignéco. Revue de l'Acomen 1999;5

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDI

RECALAGE

Notion de segmentation

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

Partition d'une image en régions d'intérêt (ROI)

Première étape d'une analyse d'image

Extraction d'une mesure physique dans une ROI

Quantification morphologique ou fonctionnelle

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REN

Méthodes de segmentation

- Seuillages
- Croissance de régions
- Recherches de frontières entre objets
 - Méthodes dérivatives
 - Méthodes morphologiques (gradients, LPE)
- Autres
 - Champs de Markov, réseaux de neurones, regroupement de pixels, étiquetage par analogie à des modèles, modèles déformables, atlas, analyse d'une évolution temporelle (ventriculographie, scintigraphie rénale...)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REND

Seuillage simple

Définition d'un seuil T sur l'image ou l'histogramme

 Sélection des pixels de niveau supérieurs ou inférieurs à T

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

Choix du seuil

- Minimum de l'histogramme
- % d'un extrema de l'image
- Automatique:

(aa)

Initialisation de T

• $R1 = \{(i,j) / S(i,j) > T\} et R2 = \{(i,j) / S(i,j) \le T\}$

- M1=Moyenne $_{R1}$ S(i,j) et M2=Moyenne $_{R2}$ S(i,j)
- T = (M1+M2)/2 tant que M1 ou M2 change
- Optimisation d'une fonctionnelle

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

Croissance de régions

PJ Slomka et al. J Nucl Med 1995; 36 (myocarde) – KJ Van Laere et al. J Nucl Med 2002;43 (cerveau)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REN

Filtres passe-haut: Gradients

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

GV (GH) isole les frontières verticales (horizontales)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENI

Segmentation par gradient (Canny)

Pour optimiser la sensibilité et la localisation des frontières :

- Lissage par filtre Gaussien
- Calcul du gradient et de sa norme
- Extraction des maxima locaux dans la direction du gradient
- Seuillage par hystérésis de l'image des maxima locaux

Segmentation par gradient (Canny)

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION

(d)

Filtres passe-haut: Laplacien

ad

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION REN

Segmentation par Laplacien

Calcul du Laplacien

 Création de l'image des passages par zéro affectés par la norme du gradient

• Seuillage par hystérésis de cette image

Ligne de partage des eaux

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

Ligne de partage des eaux

REPONSE ECHANTILLONNAGE CONVOLUTION VOLUME PARTIEL DECONVOLUTION BRUIT FILTRES RECALAGE SEGMENTATION RENDU

LPE par amincissement homotopique

j-1 *j*-1 *j*-1 *j*+1 Mariano-Goulart et al.EJNM 1998; 22:1300-07 et Revue Acomen 2000;6:69-77

SEGMENTATION

- par seuillages :
 - Choix du seuil, Seuillage par hystérésis
- par croissance de régions
- à partir des dérivées du signal
 - par extrema de gradient
 - par passage par zéro du laplacien
- par gradient morphologique : δ -I, I- ϵ , δ - ϵ ...

POINT D'FTAPF 8

- Par ligne de partage des eaux
 - immersion
 - amincissements homotopiques

MIP : Maximum Intensity Projection

E.K. Fishman et al. RadioGraphics 2006 : http://radiographics.rsnajnls.org/cgi/content/full/26/3/905

MIP et rendu de volume

MIP

RENDU DE VOLUME : Transparence, brillance...

RENDU

E.K. Fishman et al. RadioGraphics 2006 : http://radiographics.rsnajnls.org/cgi/content/full/26/3/905

Rendu volumique: généralisation

$$C(p_i) = \sum_{\substack{j=1 \\ j=1}}^{\max} c(v_{i,j}) Contrib(v_{i,j})$$

Contrib
$$(v_{i,j}) = \alpha(v_{i,j}) P(k_a, k_d; v_{i,j}) \prod_{k=0}^{n} [1 - \alpha(v_{i,k})]$$

i-1

Transparence : $\alpha(v_{i,j}) \in [0,1]$

Brillance :
$$P(k_a, k_d; v_{i,j})$$

Techniques de rendu de surface

Il s'agit de projeter sur un plan une surface opaque d'un espace 3D: cerveau, os, poumon, vasculaire...

RENDU

- extraction d'isosurfaces (marching cubes)
- lancé de rayons (ray casting)
- volume splatting
- shear wrap
- Texture mapping (GPU) ...

W. Lorensen,HE. Cline. SIGGRAPH 87 Proceedings, 21(4) July 1987, p. 163-170 http://fr.wikipedia.org/wiki/Marching_cubes

Marching cubes

RENDU Marching cubes Intensité de coloration proportionnelle à $\vec{n}.\vec{L} \propto \cos\theta$ H 1 W. Lorensen, HE. Cline. SIGGRAPH 87 Proceedings, 21(4) July 1987, p. 163-170 http://fr.wikipedia.org/wiki/Marching cubes

VISUALISATION 3D

Algorithme de construction d'une image MIP

- Masque d'éventuelles hyperfixations
- Utile pour une vue d'ensemble à condition de générer des projections sur 360°.
- Notions de MIP, rendu de volume et rendu de surface
- MIP utile surtout dans l'analyse de la surface de certains organes :

cerveau, poumon, reins, squelette

POINT D'ETAPE 9

10 NOTIONS A MAITRISER :

1. LMH = $D_{min} = 1/f_{max}$ = Pouvoir Séparateur \propto distance

FNDU

(ad)

- 2. Shannon : Dimension du pixel = LMH/2
- 3. EVP: CR < 100% si dimension de l'objet < 2.LMH
- 4. Convolution \equiv Passe-bas :
 - Moyenne pondérée dans un voisinage
 - x des fréquences par les valeurs d'une Gaussienne
- 5. Déconvolution de Metz ou dans l'opérateur de Radon
- 6. Radioactivité = Poisson \Rightarrow S/B = \sqrt{C}
- 7. Filtres linéaires et non linéaires
- 8. Recalage affine : T,R,H,G \rightarrow Similarité \rightarrow Optimisation
- 9. Segmentation: Seuils, Gradient & Laplacien, LPE
- 10. Visualisation: MIP, rendus de volume et de surface

QUELQUES REFERENCES

- Bases physiques de l'imagerie médicale.
 - A. Desgrez & I. Idy-Peretti. 1992, Masson
- Précis d'analyse d'images.
 - M. Coster & JL. Chermant, 1989, Presses du CNRS.

Morphologie mathématique

- M. Schmidt & J. Mattioli. 1994, Masson.
- I. Bloch lien http://perso.telecom-paristech.fr/~bloch/ANIM/morpho.pdf
- Introduction au traitement numérique des images. D. Mariano-Goulart.
- Reconstruction tomographique en imagerie médicale. D. Mariano-Goulart.
 2015, Encyclopédie médico-chirurgicale
 - Radiologie et imagerie médicale principes et technique radioprotection

Merci pour votre attention...

http://scinti.edu.umontpellier.fr

d-mariano_goulart@chu-montpellier.fr