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Abstract: In this article, we propose a quantification methodology for
estimating the statistical parameters of the activity inside regions of in-
terest (ROIs). Macroquantification implies a rearrangement of the emis-
sion projection data into macroprojections and a redefinition of the
system matrix based either on an image reconstruction involving itera-
tive ROI-wise regularization or on an ROI uniformity assumption. The
technique allows a very fast computation of the ROI activities and co-
variance matrix in the least squares sense using a low-dimensional
model of the tomographic problem. The macroquantification approach
is evaluated through Monte Carlo simulations using a numerical thorax
phantom, without taking into account the measurement artifacts and as-
suming a perfect a priori ROI definition. Various tumor ROI configurations
and count rates are considered to reflect clinical situations. The results
show that our technique yields low-bias ROI estimations that turn out to
be more accurate than classical estimates relying on pixel summation.
Macroquantification also provides an approximation for the ROI variance
that describes the effective variance obtained through the simulations fairly
well. The technique is then validated using single photon emission com-
puted tomography (SPECT) data from a physical phantom composed of
cylinders filled with different 99mTc concentrations for the task of ROI
comparison. Here again, the study shows excellent agreement between
themeasured and predicted values of the ROI variance resulting in efficient
estimations of ROI ratios and highly accurate ROI comparisons. In its sim-
plest formulation, macroquantification has a short computation time, mak-
ing it an ideal technique for quantitative ROI assessment that is compatible
with a wide range of routine clinical applications.
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variance estimation

(J Comput Assist Tomogr 2013;37: 770–782)

Quantitative interpretation in emission tomography requires
evaluating the uncertainty (ie, the variance) of the recon-

structed images. This is particularly true when one has to
quantify or to compare the total activity inside one or several
regions of interest (ROIs) having potential clinical interest. The
problem of estimating image variance in emission tomography
has been extensively studied. Analytical and numerical approx-
imations have been proposed, many of them focusing on a partic-
ular reconstruction algorithm. Both filtered backprojection and
maximum-likelihood (ML) algorithms have been studied since
the late 70s in emission tomography, and many approximations
have been proposed to describe the propagation of the uncer-
tainty from the recorded data to the reconstructed images.1–21 In
1996, Fessler drew a theoretical framework for characterizing
the variance of implicitly defined estimators that yields an

approximation for the particular case of emission tomogra-
phy.22 Original methods based on bootstrapping techniques23,24

or intervalist prediction25,26 have also been proposed. The compu-
tation of the whole reconstructed image covariance matrix, how-
ever, remains a fastidious task because of the huge dimensions
(typically ofO[104 × 104]) of the system matrix in classical tomo-
graphic configuration. The difficult handling of the numerical
errors (resulting from the ill conditioning of the system matrix)
and its heavy computational complexity make this task unsuit-
able for clinical routine. In addition, routine image interpreta-
tion requires ROI assessment rather than pixelwise variance
estimation. After the previous attempts to design ROI-based
techniques in emission tomography,27–31 the aim of the present
studywas to describe a macroquantification approach for the com-
putation of predefined ROIs activity and variance. The method
allows a very fast computation of the ROI activities and covariance
matrix in the least squares sense using a low-dimensional model of
the tomographic problem specially dedicated to ROI study.
When the ROI boundaries are accurately defined, it also
provides ROI estimates that are significantly less biased than
classical estimates based on pixel summation. We show that,
from a dimensional point of view, the variance estimates pro-
vided by our method fit perfectly with the classical approxi-
mate formulations proposed by Huesman1 and Budinger et al.2

The macroquantification is first evaluated through Monte Carlo
simulations using a numerical thorax phantom with tumorlike
ROIs for the estimation of the ROI statistical parameters. The
technique is then validated using a physical phantom SPECT ac-
quisition for the task of ROI comparison.

MATERIALS AND METHODS
Classical ROI Quantification

Let θ�∈ℝN be an activity distribution defined on a Carte-
sian grid, with N as the number of pixels sampling the field of

view of the acquisition device. Let p� ∈ ℝBD be the exact pro-
jections of θ�, where BD is the total number of recorded pro-
jections (with D as the number of projection angles and B as
the number of bins per projection angle). Let Λ ∈ ℝBD × N be
the radon operator (or system matrix) such that p�¼ Λθ

�
. The

system matrix component Λij gives the probability for a photon
emitted from pixel j to be recorded into projection i. Ideally,
the system matrix should perfectly model the emission/detection
process, including adverse effects such as autoattenuation,
Compton scattering, and detector response function. The actual
recorded projections p∈ℝBD are affected by Poisson noise, and
it is commonly accepted that Var(p) ≈ Diag(p) represents a good
approximation of the data variance. Tomographic reconstruction

intends to produce an estimator θ̂∈ℝ
N of the original image θ�

starting from the recorded projections p. Most of modern recon-
struction algorithms are statistical in the sense that they build
up this estimator on the basis of the conditional probability of
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the sought-after image knowing the projections. This probabil-
ity is usually called the posterior L(θ, p) and can be written
using the Baye theorem:

L θ; pð Þ ¼ ℘ ðθ pj Þ ¼ ℘
ðp θj Þ ℘ θð Þ

℘ pð Þ (1)

where the likelihood ℘ p θj Þð is such that

℘ðp θj Þ ¼ ∏
i

e−Λθi Λθð Þipi
pi!

(2)

The most straightforward way to design an estimator (which is
also one of the most commonly used in practice) consists in
searching the image that maximizes the log-posterior:

θ̂ ¼ argmax
θ∈ℝN

log L θ; pð Þð Þ½ � (3)

When one considers that no prior information is available
concerning the reconstructed object, the probability ℘ θð Þ is
set to constant and equation (3) defines the ML estimator.32,34

No explicit formulation of this estimator can be derived, and
its computation is achieved using the iterative expectation-
maximization algorithm (MLEM). MLEM is known to provide
a low-bias estimator (at least asymptotically at high count rates)
for which the Cramér-Rao bound (CRB) gives a lower limit of
the covariance:

Cov θ̂

� �
≥F−1 (4)

with F as the Fisher information matrix:

F ¼ E −
∂2

∂θ2
log L θ; pð Þð Þ

� �
¼ ΛT C−1 Λ (5)

where C stands for the covariance matrix of the recorded data:

C ¼ Cov pð Þ ¼ Diag p�ð Þ≈Diag pð Þ (6)

However, the ML estimator is known to amplify the acquisition
noise through the reconstruction process, especially at low-
count rates.35 Its covariance is thus highly dependent on the
number of iterations after which the iterative algorithm is
stopped and the CRB can no longer provide an accurate vari-
ance prediction. In addition, there exists no consensual stopping
criterion allowing an optimal management of the noise-
resolution tradeoff.

When dealing with ROI activities, the following nota-
tions will be used. Κ will denote the number of ROIs in
the studied object (usually Κ = 2, ie, 1 ROI plus the back-
ground). Ψ

�∈ℝK will denote the true activity inside the ROIs

and Ψ̂∈ℝK will stand for the estimator of the ROI activities.
Defining κ ∈ {0,1}K × N, the characteristic function of the

ROIs is κkj = 1 if pixel j is inside ROI k; κkj = 0 otherwise,
one can write the following:

Ψ
� ¼ κ θ

�
(7)

The ROI estimator is usually obtained after the reconstruction
process by simply summing the pixel values of the image esti-

mator θ̂ inside the studied ROIs:

Ψ̂ ¼ κθ̂ (8)

One may then use the CRB to compute a lower limit of the ROI
estimator covariance using the following:

Cov Ψ̂

� �
≥κ Cov θ̂

� �
κT (9)

However, some critical points have to be discussed regarding
this classical ROI quantification technique. When nonregular-
ized reconstruction algorithms are exploited to produce the im-
age estimator, the bias affecting the ROI estimate is controlled
by letting the algorithm reach convergence through a suffi-
cient number of iterations. Yet, the ROI variance remains hardly
foreseeable using the CRB because the noise affecting the image es-
timate is strongly related to the total number of iterations (this
appears clearly in our Results section; Figs. 5 and 6). When regu-
larized algorithms are used, the ROI variance amplification can be
effectively subdued if correct smoothing parameters are chosen
but at the price of an increase in the systematic bias. Lastly, from
a practical point of view, the computation of the image covariance
matrix using the CRB remains a hazardous task because of the
huge dimensions and ill conditioning of the system matrix to
be inverted. These last considerations justify our attempt to de-
velop an innovative formulation of the tomographic problem
in a macroscopic perspective, as presented in the following
section.

Macroquantification
Classical tomographic reconstruction addresses the task of

building an image using its projection data. The image is built
over a Cartesian kernel constituted of pixels representing basic
image elements inside which the activity may be considered
as uniform. In the particular case of emission tomography, the
difficulty follows from the uneasy handling of a large system
matrix Λ linking a large number of pixel values θ with a large
number of highly noisy projections p. The huge dimensions of
the linear system combined with the presence of a significant
amount of noise impede a simple and efficient computation of
the image estimator as well as its variance. The macroquan-
tification approach intends to simplify the formulation of the
problem by means of a model downsampling dedicated to
ROI quantification. The studied object will be divided into
Κ ROIs (Rk,k = 0…Κ − 1) indexed with the letter k, one being
the background (ROI R0) and the following (R1, R2, …) being
the studied ROIs themselves. These Κ ROIs will be considered
as the basic components of the reconstructed image, acting as
the pixels in classical tomography. As previously mentioned,
the ROI estimator will be denoted as Ψ̂∈ℝK. To further re-
duce the system complexity, the projection data will also be
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aggregated to create macroprojections denoted as P. For each
projection pi, let us note

γi ¼ Ri;1;…; ;Ri;m

� �
: ∀k;Rk∈γi if ∃j ∈ Rk Λij > 0

		 ��
(10)

as the set of ROIs that contain at least 1 pixel projecting onto pi.
Let

Γ ¼ γ1;…; ;γTf g : ∀ t1; t2ð Þ t1≠t2; γt1≠γt2 ;

∀i; ∃t; 1≤ t ≤T γi ¼ γtj gf (11)

be the complete set of T distinct values of γ.
The projections are then aggregated into T macropro-

jections P ∈ RT:

Pt ¼ ∑ p
i

i γi¼Γtj
(12)

Figure 1 illustrates the situation for K = 3 ROIs. The ag-
gregation process produces T = 4 macroprojections using
Γ = {{R0},{R0,R1},{R0,R2},{R0,R1,R2}}: P1 sums all the
projections that only intersect the background; P2, those
intersecting both R0 and R1; P3, those intersecting both
R0 and R2; and P4, those intersecting the 3 ROIs. Because
R1 and R2 are located inside R0, there is trivially no pro-
jection intersecting R1 and/or R2 without intersecting R0.

From the macroscopic point of view, the ROI values Ψ are
linked with the macroprojections P through a linear system
P = MΨ. The macroprojector M ∈ ℝT × K is such that its
element Mtk gives the probability for a photon emitted from
ROI k to be detected into macroprojection t. For a given ob-
ject θ, this probability depends on the activity distribution inside
the ROIs following:

Mtk ¼
∑j∈Rk

∑ijγi¼Γt
Λij θ

�
j

∑j∈Rk
∑i Λij θ

�
j

(13)

The Fisher information matrix F related to the macroscopic
problem P = MΨ is as follows:

F ¼ MT Cov−1 Pð Þ M≈MT Diag−1 Pð Þ M (14)

Because the macroprojections naturally gather a high number of
events, the estimator of the ROI activities can be computed in
the least squares sense using the following:

Ψ̂ ¼ F−1 MT Diag−1 Pð Þ P (15)

and the ROI estimator variance may hence be approximated us-
ing the following:

Cov Ψ̂

� �
¼ F−1≈ MT Diag−1 Pð Þ M
 �−1

(16)

Compared with the standard approach, the macroscopic ap-
proach (equations [15] and [16]) offers ROI quantification
expressions that are easily computable by inverting very low di-
mension matrices. The produced ROI estimator is naturally un-
biased and its variance is readily predictable. We show in
Dimensional Study section in the following paragraphs that,
from a dimensional point of view, equation (16) produces
estimates of the ROI variance that are in agreement with the
classical approximations of Huesman1 and Budinger et al.2

Computation of the Macroprojector
In the last section, we proposed a macroscopic approach to

drastically reduce the system dimensions dedicated to ROI as-
sessment. This reduction relies on a model downsampling from
pixels to ROIs and from projections to macroprojections. The
aggregation process, which affects both the data and the
unknowns of the problem, inevitably induces a loss of informa-
tion. The missing information is synthesized into the macro-
projector, which is the keystone of the macroscopic model.
For a given studied object, the components of the macro-
projector depend on the exact activity distribution inside the
object, as defined through equation (13). In practice, the orig-
inal object remains unknown and the macroprojector has to
be modelled starting from the data of the problem, that is,
the recorded noisy projections. The computation of the macro-
projector can be performed using equation (13), where the
exact activity distribution θ

�
is replaced with an image

estimate θ̂:

Mtk ¼ ∑j∈Rk
∑ijγi¼Γt

Λijθ̂j

∑j∈Rk
∑i Λijθ̂j

(17)

This estimate has to fulfill certain requirements to ensure suffi-
cient accuracy and robustness of the macroprojector (Fig. 2).
First, this estimate has to be regularized so as to warrant the sta-
bility of the macroprojector in the presence of noise. However,
if a global regularization or postfiltering of the object estimate

FIGURE 1. Aggregation of the projections into macroprojections in a 3-ROI configuration.

Bouallègue J Comput Assist Tomogr • Volume 37, Number 5, September/October 2013

772 www.jcat.org © 2013 Lippincott Williams & Wilkins

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



is performed, the macroprojector will suffer from the resolution
loss around the borders between the ROIs. One solution for the
conjunct handling of both noise and resolution relies on an iter-
ative ROI-wise regularization of the object estimate (similar re-
construction algorithms have already been proposed35–37). An
MLEM scheme is used to reconstruct the image. In between
each iteration step, a convolution of the current estimated activ-
ity is performed inside each ROI with a gaussian filter. Denoting
R( j) as the ROI containing pixel j, an iteration step is performed
using the following:

•MLEM update:

θnþ1=2
j ¼ θnj

∑iΛij
pi

Λθnð Þi
∑iΛij

(18)

• ROI-wise smoothing:

θnþ1
j ¼ ∑q∈R jð Þ Gj;s qð Þ θnþ1=2

q

∑q∈R jð Þ Gj;s qð Þ (19)

where Gj,s stands for a gaussian kernel centered on pixel j with a
standard deviation of s pixels. Using this reconstruction tech-
nique will allow the macroprojector to be accurate and robust
with respect to the noise. To be fully efficient, this technique
requires a good knowledge of the ROI boundaries so that the
high-activity region can be precisely discriminated from the
low-activity background. Because the coupling of SPECT and
positron emission tomographic (PET) acquisition with computed

tomographic (CT) scanning has tended to generalize, the circum-
scription of the ROIs may often be performed with the help of the
coregistered morphological information for an optimal computa-
tion of the macroprojector.When nomorphological information is
available, one has to exploit a prior image reconstruction for the
definition of the ROIs. In the particular case where the defined
ROIs are a priori known to have a uniform activity distribution,
one will rely on the use of the uniform macroprojector U, which
can be built naturally without preliminary image reconstruction:

Utk ¼
∑j∈Rk

∑ijγi¼Γt
Λij

∑j∈Rk
∑i Λij

(20)

Dimensional Study
In this section, we study the order of magnitude of the var-

iance computed with equation (16). We assume that the
recorded projections are O(p). The image is reconstructed on a
grid of dimensions N × N. Let us consider a circular uniform
ROI of diameter Δ pixels called RA. A second ROI RB is defined
as a pixel inside RA (Fig. 3). For each projection angle, the ob-
ject projects onto ΔB/N bins. The total counts recorded are thus
O(p × D × ΔB/N), with p as the order of magnitude of a single
projection. From the fact that the total counts recorded in the
projections must be recovered in the reconstructed image θ,
one can infer that θ is O ðtotal counts

Δ2 Þ ¼ O ðBDpNΔ Þ.

FIGURE 2. A, Exact object. B, MLEM of 100 iterations. C, MLEM of 100 iterations followed by gaussian postfiltering of
FWMH 2 pixels. D, MLEM of 100 iterations with iterative ROI-wise gaussian filtering of FWMH 1 pixel.
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Concerning the mean of the global activity ΨA inside RA,
one has the following:

ΨA ¼ O Δ2θ
� � ¼ O total countsð Þ ¼ O

ΔBDp
N

� �
(21)

As for the mean activity ΨB inside RB, one has the following:

ΨB ¼ O θð Þ ¼ O
BDp
NΔ

� �
(22)

One rearranges the projections into 2 macroprojections:

P
�
A ¼ O

ΔBDp
N

� �
; P

�
B ¼ O

BDp
N

� �
(23)

Noting that the coefficients of M are O(1) for the couples
RA; P

�
A

� �
and RB; P

�
B

� �
and O(0) for the couples RA; P

�
B

� �

and RB; P
�

A

� �
, one computes the components of the 2 × 2

Fisher information matrix F as follows:

FAA ¼ O
N

ΔBDp

� �
; FBB ¼ O

N

BDp

� �
; FAB

¼ FBA ¼ O 0ð Þ (24)

The matrix F being approximately diagonal, the variance of the
activities into RA and RB are given by the following:

σ2
A≈F

−1
AA ¼ O

ΔBDp
N

� �
(25)

σ2
B≈F

−1
BB ¼ O

BDp
N

� �
(26)

Comparing equation (21) with equation (25), it follows that
σ2
A≈ΨA, which is in agreement with the Poisson law describing

FIGURE 3. Case of 2 ROIs, one being a single pixel.

FIGURE 4. Top, The studied numerical phantom. Bottom, The 3 studied tumor ROI configurations.
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the distribution of radioactive measurement. From equations
(22) and (26), one computes an estimate of the ratio σB/ΨB:

σB

ΨB
≈

ffiffiffiffiffiffiffiffiffiffi
BDp

p ffiffiffiffi
N

p NΔ
BDp

¼
ffiffiffi
p

p
p

1ffiffiffiffiffiffiffi
BD

p Δ
ffiffiffiffi
N

p
(27)

which can be rewritten, provided that the object has roughly the
dimensions of the field of view (ie, Δ ≈ N):

σB

ΨB
≈

ffiffiffi
p

p
p

1ffiffiffiffiffiffiffi
BD

p Δ3=2 (28)

Equation (28) is strictly equivalent to Huesman's formula1

(equation [15]), which states that the ratio between the standard
deviation and the mean activity of a pixel into a circular ROI
can be approximated by the ratio between the standard deviation
and the mean of the recorded projections, times a multiplicative
factor, this factor being the following: (the ratio between the
size of the ROI and the size of the pixel) power 3/2 divided by
the square root of the total number of projections. Denoting
W as the number of pixels into ROI A (W = O(Δ2)), equation
(27) can be rewritten as follows:

σB

ΨB
¼ 1ffiffiffiffiffiffiffi

ΨB
p σBffiffiffiffiffiffiffi

ΨB
p ≈

1ffiffiffiffiffiffiffi
ΨB

p
ffiffiffiffiffiffiffiffiffiffi
BDp

p ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffi
NΔ
BDp

s

¼
ffiffiffiffi
Δ

pffiffiffiffiffiffiffi
ΨB

p ≈
W1=4ffiffiffiffiffiffiffi
ΨB

p (29)

which is in agreement with the Budinger approximation.2

RESULTS

Monte Carlo Simulations
We studied a numerical phantom modelling a thorax slice.

The phantom was constituted of 4 tissues (bone, fat, lung, and
mediastinum) with different activities (Fig. 4, top; Table 1)

representing the background, ie, ROI 0. We simulated three
2-ROI configurations. The ROIs stood for chest tumors with
various locations, sizes, and relative uptakes with respect to
the background (Fig. 3, bottom; Table 2). The object was de-
fined and reconstructed on a 128 × 128 grid. Its projections
were simulated using 128 projection angles over 180 degrees and
128 bins per projection angle, without taking into account the
scatter or attenuation and assuming a perfect detector response.
When simulating realistic noisy records, Poisson noise was
added using the Knuth algorithm.38 The coefficients of the ra-
don matrix Λ were computed using a uniformly distributed
pixel activity model. Two count rates were considered: 25,000
events and 400,000 events (on average). For each count rate,
250 realistic noisy replicates of the projection data were simu-
lated and exploited to estimate the ROI parameters using differ-
ent methodologies. The first evaluated methodology was the
macroquantification technique. The macroprojector was com-
puted on the basis of an image estimate produced using MLEM
with iterative ROI-wise regularization. The regularization
was performed by filtering the image after each iteration, ROI
by ROI, with a gaussian kernel of full width at mid-height
(FWMH) 1 pixel. During image reconstruction, at each itera-
tion, the macroprojector was computed and equations (15)
and (16) were used to provide an estimation of the ROI activity
and variance. In what follows, the ROI estimation obtained with
this technique (equation [15]) will be denoted as Macro-Q. The
macroestimate of the ROI standard deviation (square root of the
variance predicted using equation [16]) will be called Macro-σ.
Our methodology was compared with a standard technique for
ROI assessment that consists in reconstructing an estimate of
the object using classical MLEM (with and without a posteriori
regularization) and then summing the pixel values inside the
considered ROI (equation [8]). This was done using the follow-
ing parameters:
• MLEM without regularization, referred to as MLEMNR.
• MLEM followed by postfiltering using a gaussian kernel of
FWMH 1 pixel, referred to as MLEMPF1.

• MLEM followed by postfiltering using a gaussian kernel of
FWMH 2 pixels, referred to as MLEMPF2.

The three 2-ROI configurations proposed in Figure 4 were
processed separately and independently. For each configuration
and each count rate, the 4 methods presented previously were
run for a total of 150 iterations. During the iterative process,
each of the 4 methodologies provided a set of 250 estimations of
the ROI value (Macro-Q, MLEMNR, MLEMPF1, and MLEMPF2)
corresponding to the 250 replicates of the projection data. Further-
more, the macroquantification technique allowed the computa-
tion of 250 estimates of the ROI standard deviation (Macro-σ).
Figure 5 presents the results obtained for the 3 ROI configura-
tions after the 25,000 event simulations. The bottom curves show
the evolution with the number of iterations of the mean of the 4
ROI estimators. Macro-Q is displayed using a thick line; MLEMNR,
using a thin line; MLEMPF1, using a dashed line; and MLEMPF2,
using a dotted line. The straight gray line stands for the true ROI
value. The top curves show the evolution with the iterations of the
standard deviation of the 4 ROI estimators. The correspondence be-
tween the line type and the method is the same as for the bottom
curves. The gray area represents the evolution with the iterations
of the range ([minimum, maximum]) of the Macro-σ predictions.
Figure 6 is the counterpart of Figure 5 for the 400,000 event
simulations. Finally, Table 3 summarizes the quantitative results
provided by themacroquantification technique for each ROI config-
uration and count rate. The proposed results correspond to a total of
150 iterations, when the method can be considered as having
reached convergence.

TABLE 1. Composition of the Numerical Thorax Phantom

Tissue Relative Uptake

Bone 1
Fat 2
Lung 4
Mediastinum 8

TABLE 2. Characteristics of the ROIs

Tumor ROI Radius Relative Uptake

ROI 1 8 pixels 6
ROI 2 6 pixels 12
ROI 3 3 pixels 20
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Physical Phantom Study
The studied physical phantom was composed of a big

cylinder of length L = 54.9 cm and diameter B = 40.2 cm
containing 3 angularly evenly spaced small cylinders of diameter
S = 12.4 cm located at a distance d = 8.5 cm from the big cy-
linder axis (Fig. 7). The big cylinder was filled with water. The
3 small cylinders were filled with 99mTc solutions with various ac-
tivities: cylinder 1 (C1) was filled with 1.5 mCi/L; cylinder 2 (C2),
with 1.25 mCi/L; and cylinder 3 (C3), with 1 mCi/L. A tomo-
graphic record of the physical phantom was acquired with an
Infinia Hawkeye 4 SPECT-CT dual-head gamma camera (GE
Healthcare, Chalfont St Giles, United Kingdom) using the follow-
ing settings: projection sampling of 128×128 corresponding to

a resolution of 4.42 × 4.42 mm2, 120 projection angles over
360 degrees, and an acquisition time of 15 seconds per projec-
tion angle. A total of 90 2-dimensional (2D) sinograms were
recorded, corresponding to 90 transaxial slices of the phantom.
Each 2D sinogram was corrected for Compton scattering by
means of the Jaszczak method. At this point, the total number
of recorded photons in the 2D sinograms exhibited a clear dis-
cordance between the internal slices and the external slices be-
cause of a significant difference in the amount of para-axial
scattering affecting the internal and external slices. To produce
projection data corrected for this bias, we proceeded as follows:
the 90 2D sinograms were summed to create a global 120 ×
128 2D sinogram gathering 8.12 million events (Fig. 8). This

FIGURE 5. Results for the 25,000-event Monte Carlo simulations. Top, Standard deviation of the ROI value estimates along with the
iterations. Bottom, Mean of the ROI value estimates along with the iterations. Left to right, ROI 1, ROI 2, and ROI 3.

TABLE 3. Monte Carlo Simulations

ROI No. Mean Count Rate True ROI Value Macro-Q Mean Relative Bias (%) Absolute Bias Macro-Q SD
Macro-σ
(min, max)

Relative
Error (%)

1 25,000 1152 1142 −0.9 −10 99 (94, 98) (−5, −1)
400,000 18,432 18,472 0.2 40 391 (382, 386) (−2, −1)

2 25,000 1248 1245 −0.2 −3 98 (94, 98) (−4, 0)
400,000 19,968 20,193 1.1 225 390 (382, 386) (−2, −1)

3 25,000 640 634 −0.9 −6 67 (66, 69) (−1, 3)
400,000 10,240 10,322 0.8 82 272 (267, 270) (−2, −1)

Quantitative results for the macroquantification of the ROI values (values at convergence, 150 iterations).

Max indicates maximum; min, minimum.
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high-statistics global sinogram was then used to generate 2 sets
of low-statistics sinograms:
• The first set is constituted of 400 low-count sinograms with a
mean count rate per sinogram of approximately 20,000.

• The second set is constituted of 400 high-count sinograms with
an approximate mean count rate per sinogram of approxi-
mately 100,000.

A sinogram S of the first set was produced as follows: S was
initialized as an identically null 120 × 128matrix. Then, the global
sinogram was swept through and each of the 8.12 million events
had a probability P = 1/400 to be affected to the low-count
sinogram S at the position (i,j) where it was recorded in the global
sinogram. Similarly, a sinogram of the second set was produced
using the same scheme with a probability P = 1/80. The emission
images were reconstructed over a 128 × 128 grid. The coeffi-
cients of the system matrix were built up using the intersection
area method and a uniform pixel model. The Infinia Hawkeye
4 gamma camera was coupled with a CT scanner that allowed
the acquisition of a morphological density scan of the phantom.
The CT reconstructed image was sampled on a 128 × 512 ×
512 grid. After downsampling to 128 × 128 to fit with the
SPECT reconstruction kernel dimensions, the CT image enabled
the definition of 4 ROIs (background plus 3 circular ROIs),
the numbering of the ROIs corresponding to the numbering
of the cylinders (Fig. 9). In addition, the CT density map allowed
the correction of the system matrix components to account for
autoattenuation.

We first focused on the estimation of the activity ratios
between the ROIs. The ratio between ROI 1 and ROI 2

(denoted as ρ12) is expected to be equal to 120%, the ratio be-
tween ROI 1 and ROI 3 (denoted as ρ13) is expected to be
equal to 150%, and the ratio between ROI 2 and ROI 3
(denoted as ρ23) is expected to be equal to 125%. Each sinog-
ram was evaluated in terms of these 3 ratios using the macro-
quantification technique. The 4 ROIs were processed all together.
The macroquantification was run using a uniform macropro-
jector as defined in equation (20). This was legitimated by our
a priori knowledge regarding the uniformity of the studied
ROIs. In this case, no image needed to be reconstructed and
the technique gave a punctual estimate of the following
parameters:
• Region-of-interest values (Macro-Q for ROI 1, 2, and 3).
• Region-of-interest covariance matrix, from which the ROI stan-
dard deviations (Macro-σ for ROI 1, 2, and 3) are extracted.

• Region-of-interest ratios (Macro-Q for ρ12, ρ13, and ρ23).
• Region-of-interest ratios standard deviation (Macro-σ for ρ12,
ρ13, and ρ23).

Equations (15) and (16) were used to provide an estima-
tion of the ROI values and covariance matrix. The ROI ratios
were produced by simply computing the quotient of the cor-
responding ROI values:

Macro�Q ρmnð Þ :¼ Ψ^ m

Ψ^ n

(30)

where m and n stand for the indices of the 2 concerned ROIs.
The macroestimate of the standard deviation of the ROI ratios

FIGURE 6. Same as Figure 4 for the 400,000-event Monte Carlo simulations.
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was then computed from the ROI values and covariance matrix
using the following:

Macro�σ ρmnð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ̂

2
n CovmmðΨ̂ÞþΨ̂2

m CovnnðΨ̂Þ−Ψ̂mΨ̂n CovmnðΨ̂Þ
q

Ψ̂
2
n

(31)

Where m and n stand for the indices of the 2 concerned ROIs.
Table 4 summarizes the quantitative results provided for ROI
ratio estimation.

A second series of calculations was then performed to de-
termine to what extent the macroquantification method enabled
correct comparisons between ROIs. Random pairs of sinograms
were considered. Let us denote with (Ψn,1,Vn,1) and (Ψn,2,Vn,2)
the corresponding pair of macroestimates of the ROI value and
variance for ROI n. The tested null hypothesis was the
following:

H0 : Ψn;1 ¼ Ψn;2 ⇔ δn≜Ψn;1−Ψn;2 ¼ 0 (32)

The corresponding z-score was computed as follows:

εn ¼ Ψn;1 −Ψn;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn;1 þ Vn;2

p (33)

In each sinogram set, 1000 random pairs were processed, pro-
viding 1000 samples for the distributions εn (n = 1…3). On
the basis of the z-score distribution, we deduced, for each set
and each ROI number, 4 statistical indicators:
• N_95: the proportion of sinogram pairs for which the 2 ROIs
were considered as having equal value with a first-order risk
of 5%.

• N_90: the proportion of sinogram pairs for which the 2 ROIs
was considered as having equal value with a first-order risk
of 10%.

• N_80: the proportion of sinogram pairs for which the 2 ROIs
was considered as having equal value with a first-order risk
of 20%.

• N_50: the proportion of sinogram pairs for which the 2 ROIs
was considered as having equal value with a first-order risk
of 50%.

Figure 10 displays the histograms of the z-scores
εn (n = 1…3) for the 2 sinogram sets. For comparison,
the standard normal distribution is superimposed on each
subplot. Finally, Table 5 summarizes the quantitative values
of the 4 aforementioned indicators for each ROI and each
count rate.

DISCUSSION

Monte Carlo Simulations
First and foremost, a few points have to be highlighted re-

garding the validation settings. First, a thorax phantom was cho-
sen to evaluate the methodology on a realistic working case
involving a tumor ROI located inside a highly nonuniform
background. The nonuniformity of the background allows eval-
uating the ability of the technique to produce an accurate
macroprojector. Three ROI configurations were tested in the
same perspective. Indeed, the macroprojector estimate has to
show good accuracy whatever the ROI size, relative uptake, or
location. One of the ROI configurations involves a tumor lo-
cated astride 2 background structures with different activities
to evaluate the behavior of the quantification technique in this

FIGURE 7. Geometry of the physical phantom: L = 59.4 cm, B = 40.2 cm, S = 12.4 cm, d = 8.5 cm.

FIGURE 8. The high-statistics global 2D sinogram of the
physical phantom.
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particularly common case. Second, it was decided not to take
into account the classical measurement artifacts affecting the
projections in emission tomography. All of these artifacts can
be modelled inside the system matrix Λ whenever this is neces-
sary using classical data corrections as presented elsewhere.39

The imprecision affecting the system matrix components would
equally affect any ROI assessment methodology by inducing
a systematic bias in the ROI estimates. To judge the intrinsic
qualities of macroquantification versus classical quantification
methods, the same operator was used for data simulation and
image reconstruction, assuming the ideal case of a perfect model-
ling of the system matrix. Lastly, the boundaries of the studied
ROIs were considered as perfectly defined. This is justified by
the fact that a CT image is increasingly available along with
the SPECT or PET data allowing precise circumscription of the
ROIs on a morphological basis. Moreover, the problem of ROI
definition is linked to a segmentation issue beyond the scope of
the present study.

The results presented in the previous section tend to be rela-
tively homogenous, whatever the ROI configuration and count
rate. Concerning classical ROI quantification using MLEM and
pixel summation, Figures 5 and 6 (bottom curves) show that the
ROI estimates are affected by a systematic bias caused by partial
volume effects at the border of the ROI. The mean of the estimates
asymptotically converges toward a limit, which always under-
estimates the true ROI value. As expected, this underestimation

increases when postfiltering is applied and is correlated with
the width of the postfiltering kernel. Concerning the variability
of the classical ROI estimates, Figures 5 and 6 (top curves) in-
dicate that the standard deviation gradually rises with the num-
ber of iterations, without stabilizing. When strong postfiltering
(MLEMPF2) is applied, the variance of the estimates tends to reach
a plateau but at the price of a major bias. These last considera-
tions emphasize the difficulty to find an optimal bias/variance
tradeoff using classical ROI quantification.

As for the macroquantification approach, Figures 5 and 6
demonstrate that it allows a good tradeoff between systematic
bias and variance. The bottom curves show that the convergence
of the mean value of Macro-Q toward the true ROI value is
rather satisfying and always significantly better than with the
classical method. This is supported by the quantitative results
summarized in Table 3: the relative bias affecting the Macro-Q
estimates never exceeds 1.1 % at convergence. This superiority
of the macroscopic approach over the classical method follows
from a better handling of partial volume effects at the edges of
the ROI. When passing from the pixel model to the macroscopic
model, the sensitivity of the system matrix to partial volume
effects dramatically decreases. Regarding the variability of the
Macro-Q estimates, Figures 5 and 6 (top curves) show that
their standard deviation always reaches a plateau during the iter-
ative process. Furthermore, the plateau value is fairly well ap-
proximated by the Macro-σ estimate. As shown in Table 3, the

FIGURE 9. Left, Computed tomographic scan slice of the physical phantom. Right, Defined ROIs.

TABLE 4. Physical Phantom Study

ROI Ratio
Mean

Count Rate True Ratio
Macro-Q
Mean

Relative
Bias (%) Absolute Bias Macro-Q SD

Macro-σ
(min, max)

Relative
Error (%)

ρ12 100,000 1.2 1.25 4.2 0.05 11.6 10−3 (11.2, 12.0) 10−3 (−3, 3)
20,000 1.2 1.25 4.2 0.05 25.7 10−3 (23.9, 27.9) 10−3 (−7, 9)

ρ13 100,000 1.5 1.46 −0.7% −0.01 14.9 10−3 [14.4 15.6] 10−3 (−3, 5)
20,000 1.5 1.46 0% −0.00 33.6 10−3 [31.2 36.2] 10−3 (−7, 8)

ρ23 100,000 1.25 1.22 −4.0% −0.05 13.4 10−3 [12.9 13.9] 10−3 (−4, 4)
20,000 1.25 1.22 − 4.0% −0.05 30.8 10−3 [28.3 32.9] 10−3 (−8, 7)

Quantitative results for the macroquantification of the ROI ratios.

Max indicates maximum; min, minimum.
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Macro-σ estimates have very low dispersion with a relative error
that never exceeds 5% (Macro-σmostly underestimates the effec-
tive standard deviation). Moreover, it seems that the systematic
bias is always significantly lower than the standard deviation is,
which means that the unknown error (ie, the bias) remains small
compared with the controlled error (ie, the statistical uncertainty
fairly well approximated with Macro-σ).

Physical Phantom Study
The physical phantom study evaluated the macroquanti-

fication technique in the frame of ROI comparison. The a priori
assumption regarding the uniformity of the ROIs allowed ex-
ploiting the simple formulation on the basis of the uniform
macroprojector. A first series of calculations tested the ability
of the method to estimate the expectation and variance of the
activity ratio between 2 ROIs. The results shown in Table 4
demonstrate the good ability of macroquantification to recover
the exact values of the ROI ratios, with a relative bias always
lower than 5%. The observed bias is likely caused by a resolu-
tion loss induced by the extraction of the ROI boundaries on a
128 × 128 kernel using the 512 × 512 CT image. Concerning
the dispersion indicators, Table 4 shows a very good agreement
between the Macro-Q standard deviations and the Macro-σ pre-
dictions: the relative error ranges from −4% to 5% for the
100,000-event sinogram set and from −8% to 9% for the 20,000
event sinogram set.

A second series of calculations was performed to assess
the efficiency of macroquantification in ROI comparison. A stat-
istical test was applied to pairs of ROIs having theoretically
equal activity levels. Figure 10 shows that the computed z-score
histograms perfectly fit with the expected standard normal distri-
bution. Accordingly, the statistical indicators presented in Table 5
show perfect agreement with the expected values of 95%,
90%, 80%, and 50%, whatever the studied ROI and count rate.
The physical phantom study thereby confirms the ability of
macroquantification to provide robust and accurate estimates of

ROI statistical parameters in realistic working conditions (approx-
imate knowledge of the system matrix and a posteriori circum-
scription of the ROIs using morphological information).
Whenever this is necessary for clinical decision, the accuracy
of the Macro-σ predictions is broadly sufficient to provide a
helpful insight into the order of magnitude of the ROI (or
ROI ratio) variance. As discussed, the quality of the variance
estimate allows for efficient comparisons between ROIs using
classical statistical tests. When the studied ROIs are a priori
known to be homogenous, which is current in routine practice
(striatal neurodopaminergic imaging, for instance40), the use of
the uniform macroprojector enables an extremely fast computa-
tion of the ROI parameters (less than 1 second on a personal com-
puter) without involving any image reconstruction. This should be
particularly helpful in the frame of dynamic imaging implying
ROI quantification together with low-statistics data and stringent
time-management constraints.

CONCLUSIONS
In this article, we described an innovative methodology for

the statistical characterization of ROIs. The cornerstone of the
technique is the rearrangement of the projection data into

FIGURE 10. Physical phantom study. Histograms of the z-scores. Top, The 100,000-event sinogram set. Bottom, The 20,00-event
sinogram set. Left to right, z-Scores ε1, ε2, and ε3. The curve of the standard normal distribution is superimposed.

TABLE 5. Physical Phantom Study

ROI Count Rate N_95 N_90 N_80 N_50

1 100,000 94.3% 89.1% 80.3% 49.7%
20,000 94.6% 89.1% 78.1% 50.7%

2 100,000 94.6% 90.1% 78.2% 48.1%
20,000 94.0% 90.1% 79.5% 50.4%

3 100,000 95.1% 89.5% 80.5% 49.5%
20,000 95.7% 89.9% 78.9% 47.7%

Statistical indicators for ROI comparison.
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macroprojections that are linked to the ROI activities through a
macroprojector. We proposed a strategy for the computation of
the macroprojector using iterative image reconstruction coupled
with ROI-wise smoothing. We first evaluated the results of the
methodology through Monte Carlo simulations on the basis of
a thorax phantom and involving various tumor ROI confi-
gurations and count rates compatible with clinical practice.
For the sake of convenience and to judge the intrinsic ability
of the method to quantify ROI activities, the measurement
artifacts affecting the projection data was neglected and a per-
fect a priori definition of the ROIs was considered. The results
indicated that macroquantification allows an optimal handling
of the ROI statistical parameters. The provided ROI estimations
significantly reduced the systematic bias compared with classi-
cal ROI assessment, and the variance estimation produced by
the macroscopic approach fairly well agreed with the effective
variance of the macroscopic ROI estimates. Next, we validated
the new methodology using SPECT data of a physical phantom.
The task was to compare 3 ROIs defined on the basis of a
coregistered CT image. Here again, the bias affecting the ROI
ratio estimates was almost negligible and always less than 5%
of the true ROI ratio. The ratio variance estimates targeted fairly
well the order of magnitude of the measured variances, with a
maximum relative error ranging from approximately 5% for
the high-count sinograms to approximately 10% for the low-
count ones. The quality of these variance estimations allowed
highly accurate ROI comparisons using standard statistical de-
cision tests. Owing to its intrinsic simplicity, the macroquan-
tification approach allows fast computations compatible with a
wide range of routine clinical applications.
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