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Abstract. We describe a hybrid method for left ventricle (LV) endocardial and epicardial segmentation on car-
diac magnetic resonance (CMR) images requiring minimal operator intervention. Endocardium extraction results
from the union of three independent estimations based on adaptive thresholding, region growing, and active
contour with Chan—Vese energy function. Epicardium segmentation relies on conditional morphological dilation
of the endocardial mask followed by active contour optimization. The proposed method was first evaluated using
an open access database of 18 CMR for which expert manual contouring was available. The method was further
validated on a retrospective cohort of 29 patients, who underwent CMR with expert manual segmentation.
Regarding the open access database, similarity (Dice index) between hybrid and expert segmentations was
good for end-diastolic (ED) endocardium (0.92), end-systolic (ES) endocardium (0.88), and ED epicardium
(0.92). As for derived LV parameters, concordance (Lin’s coefficient) was good for ED volume (0.91), ES volume
(0.93), ejection fraction (EF; 0.89), and fair for myocardial mass (MM; 0.74). Regarding the retrospective patient
study, concordance between expert and hybrid estimations was excellent for ED volume (0.95), ES volume
(0.96), good for EF (0.86), and fair for MM (0.71). Hybrid segmentation resulted in small biases (−6 mL for
ED volume, þ4 mL for ES volume, −6% for EF, and −6 g for MM) with little clinical relevance and acceptable
for routine practice. The quickness and robustness of the proposed hybrid method and its ability to provide
LV volumes, functions, and masses highly concordant with those given by expert segmentation support its
pertinence for routine clinical use. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.024002]
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1 Introduction
The estimation of left ventricle (LV) functional parameters, such
as end-diastolic volume (EDV), end-systolic volume (ESV), and
ejection fraction (EF), requires the segmentation of the LV
cavity on short axis (SA) dynamic cardiac magnetic resonance
(CMR) images.1 Assessment of myocardial mass (MM), a cru-
cial parameter in the diagnosis and follow-up of hypertrophic
cardiomyopathy, necessitates further delineation of the LV
epicardial border. In routine practice, a manual delineation of
the endocardial (and eventually epicardial) contours is usually
performed, which is known to be highly time consuming and
prone to intra- and interobserver variability.2,3 The main issues
regarding endocardium segmentation relate to gray-level inho-
mogeneities in the blood flow, the presence of wall irregularities
(papillary muscles and trabeculations), partial volume effect in
apical slices, noise and motion artifacts associated to heart
dynamics. With respect to epicardium delineation, its complex-
ity rises from the presence of several surrounding tissues
(fat, lung, and liver) with different intensity profiles and poor
contrast with the myocardium. The development of automatic

or semiautomatic LV segmentation methods is therefore an
active research focus in the field of medical image processing,3,4

and numerous approaches have been reported these last two dec-
ades in the literature. Most rely either on image-based methods,
such as thresholding5,6 or dynamic programming,7,8 pixel
classification methods, such as Gaussian mixture models9 or
clustering,10,11 or deformable models, such as active contour.12,13

These methods imply weak or even no prior assumption regard-
ing object shape or signal distribution. On the other hand,
image-based methods usually require operator intervention for
initialization of the segmentation process and/or a posteriori
manual correction, which might be time-consuming and impact
reproducibility. Besides, automatic organ segmentation can
benefit from the use of a statistical model regarding shape and/
or gray levels, to increase its robustness and accuracy. Such
methods using strong priors include deformable models,14–16

active shape and appearance models,17,18 and atlas-guided seg-
mentation.19,20 Their main drawback lies in the need to build
large training datasets with manually generated segmentations
accounting for the considerable variability in shape and intensity
of the heart chambers across patients, notably in pathological
cases. While most segmentation methods focus on endocardial
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border delineation for LV volume and function assessment, sev-
eral algorithms also extend to epicardium segmentation allowing
(based on voxel summation and an average value for myocar-
dium density of 1.05 g∕mL) to estimate MM.17,21–23

The aim of the present paper is to describe a semiautomated
algorithm for LVendocardial and epicardial contour delineation
in SA cine-MR images, which requires minimal operator inter-
vention. The proposed method is hybrid in the sense that it
combines the results of three distinct segmentation algorithms
(adaptive thresholding, active contour, and region growing) in
order to optimize LV cavity extraction. LV epicardial boundary
was performed starting from the endocardial mask using mor-
phological dilation followed by active contour segmentation.
Adaptive thresholding, active contour, and region growing
were chosen because they are well-established, computationally
efficient techniques that do not imply any prior regarding myo-
cardial shape. They were implemented in a chained and sequen-
tial fashion in order to ensure robustness by minimizing operator
intervention.

The performance of the method was first assessed using
an open access clinically validated cine-MR database. Semiau-
tomated hybrid segmentations were compared with manual
expert delineations using Dice overlapping metrics and average
perpendicular distance, and in terms of LV functional parame-
ters (EDV, ESV, EF, and MM). Second, the method was evalu-
ated on CMR data of a retrospective cohort from Montpellier
University Hospital, France. EDVs and ESVs, EFs, and MMs
estimated using the hybrid method were compared to those pro-
vided by expert manual CMR.

2 Materials and Methods

2.1 Hybrid Segmentation Algorithm

The proposed technique was developed and run using MATLAB
(Math Works, Natick, Massachusetts). LV endocardial contour
determination was composed of three segmentation methods
which results were combined. The final LV cavity segmentation
was defined as the union of the endocardial segmentations pro-
vided by the three methods. As a preprocessing step, SA images
were contrast-enhanced using morphological opening with
a seven-pixel radius structuring element, and then pixel values
were resampled using 256 gray levels between 0 and 255. The
first method consisted in an adaptive thresholding algorithm,
which required manual intervention for region affectation either
to LV or background. The second and third methods relied,
respectively, on active contour and region growing and were
fully automated. They exploited as initial condition the segmen-
tation mask provided by the first method. After endocardium
extraction, LV epicardial boundary was estimated starting
from the endocardial segmentation mask using morphological
dilation with structuring elements of increasing size followed
by active contour optimization.

2.1.1 Endocardial boundary—adaptive thresholding

Adaptive thresholding was realized on each SA slice through
the following steps:

– Multilevel image thresholding using Otsu’s method24 with
an empirically fixed number of levels set to 7. Otsu’s
method is a fast algorithm for optimal histogram cluster-
ing based on interclass variance maximization.

– Labeling of the connected components.

– Hole-filling of the label image.

– Smoothing of the label image using morphological
opening (erosion using as a structuring element a 2 pixel
radius disk, then dilation using as structuring element
a 4 pixel radius disk).

– Manual selection of the lowest mean intensity region
belonging to the LV cavity. This was the only step requir-
ing operator intervention.

– Aggregation to the manually selected region, among those
connected to it, of those with higher mean intensity.

2.1.2 Endocardial boundary—active contour

We used the “active contours without edge method” proposed
by Chan and Vese.25 It is inspired by the Mumford–Shah
model,26 which approximates an image I defined over a
bounded domain Ω by a piece-wise smooth function u as the
solution of the minimization problem:

EQ-TARGET;temp:intralink-;e001;326;531argminu;C

�
μLengthðCÞ þ σ

Z
Ω
½IðxÞ − uðxÞ�2dx

þ
Z
Ω\C

j∇uðxÞj2dx
�
; (1)

where C is an edge set curve where u is allowed to be discon-
tinuous, and μ and σ are weighting constants. The Mumford–
Shah approximation suggests selecting this edge set C as the
segmentation boundary. Compared to the Mumford–Shah
model, the key differences in the Chan—Vese model are
an additional term penalizing the enclosed area and a further
simplification that u is piecewise constant and allowed to
have only two values:

EQ-TARGET;temp:intralink-;e002;326;369uðxÞ ¼
�
c1 where x is insideC
c2 where x outsideC

; (2)

where C is the boundary of a closed set and c1, c2 are the values
of u, respectively, inside and outside of C. The Chan—Vese
method is to find among all u of this form the one that best
approximates I:

EQ-TARGET;temp:intralink-;e003;326;280argminc1;c2;C

�
μLengthðCÞþ νArea½ insideðCÞ�

þ σ1

Z
insideðCÞ

jIðxÞ− c1j2dxþ σ2

Z
outsideðCÞ

jIðxÞ− c2j2dx
�
:

(3)

In our case, we set empirically μ ¼ 0.2, ν ¼ 0, σ1 ¼ σ2 ¼
0.8. The minimization was accomplished by applying the
level set technique, as described in Ref. 25, which, instead of
manipulating C explicitly, represents it as the zero-crossing
of a level set function. The level set function was initialized
using the endocardial contour provided by the adaptive thresh-
olding algorithm.

2.1.3 Endocardial boundary—region growing

The third segmentation algorithm consisted in standard region
growing27 using as seed pixel the barycenter of the segmentation
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mask provided by the adaptive thresholding method. Pixels
were progressively added to the growing region by scanning the
8-neighborhood of each boundary pixel and aggregating
the pixels such that bI − hIRic ≤ 4 with I the pixel value and
hIRi the mean gray-level inside the growing region.

2.1.4 Epicardial boundary

Epicardial boundary extraction was performed through the
following steps:

– Rough right-ventricle (RV) segmentation using pixel
thresholding (gray level >100) with a connectivity con-
strain and a topographic argument (rightmost quadrant
with respect to LV cavity).

– Morphological dilation of the LV endocardium mask
using structuring elements with increasing sizes as long
as the intersection between the dilated mask and the
RV mask remained empty.

– Using the result of the dilated mask for initialization,
epicardial boundary extraction by means of the “active
contour without edge” method described above with the
same energy function as for endocardium segmentation.

2.2 Validation Using an Open Access Database

We exploited an open access cine-MR database of the LVof 18
patients referred to Mondor University Hospital (Paris, France)
for recent myocardial infraction. The database contains voxel
data as well as two manual segmentations of each sequence
of images that were validated from a clinical point of view.28

Patients were examined on a 1.5 T MR (Magnetom Symphony,
Siemens, Erlangen, Germany). The number of SA slices
required to cover the entire LV ranged from 9 to 14. The number
of frames acquired during the entire cardiac cycle ranged from
22 to 37 depending on heart rate. Images were sampled on
a 100 × 100 matrix with a pixel size ranging from 1.45 to
2.08 mm and a slice thickness of 6 mm without interslice
gap. Further technical details regarding image acquisition and
segmentation are described in Refs. 7 and 28. Conventional
manual segmentation of the LV cavity was performed by
two independent and blinded expert cardiologists using the
Analyze software package (Biomedical Imaging Resource,
Mayo Clinic Foundation, Rochester, Minnesota). For each
slice location, the experts manually overlaid the endocardial
contours both at ED and ES times. During manual tracing,
papillary muscles and LV trabeculae were included within
the LV myocardium.

For each patient, the datasets corresponding to ED and
ES were processed using the hybrid algorithm described in
the previous section. All the computations were performed
blind to the results of the manual segmentation. For each patient
and each key frame (ED and ES), the similarity between
hybrid and expert segmentations was assessed using the
Dice overlapping metrics, the true positive and false negative
volume fractions, and the average perpendicular distance.
The concordance between EDVs and ESVs, EFs, and MMs
provided by the hybrid segmentation and the average value
of the corresponding measures over the two expert segmenta-
tions was evaluated using Lin’s concordance correlation
coefficient.

2.3 Clinical Validation

We conducted a retrospective study on a cohort of 29 patients
that had already been exploited for prospective assessment of
gated blood pool SPECT versus CMR.29 Patients were aged
61� 14 years (range 34 to 87 years), 70% were male. All had
clinical indications for CMR study to diagnose cardiac disease
or as follow-up. Reasons for referral were coronary artery
disease (n ¼ 15), myocarditis (n ¼ 4), arrhythmogenic right
ventricular dysplasia (n ¼ 2), constrictive pericarditis (n ¼ 2),
pulmonary hypertension (n ¼ 4), scleroderma (n ¼ 1), and
adrenergic cardiomyopathy (n ¼ 1). All subjects were recruited
from inpatient and outpatient populations at Montpellier Univer-
sity Hospital between August 2008 and June 2009. The study was
approved by the local ethics committee, and the requirement for
individual informed consent was waived.

2.3.1 CMR data acquisition

CMR data were collected on a 1.5 T scanner (Magnetom Sonata;
Siemens Medical Solutions, Erlangen, Germany) using breath-
hold TrueFISP cine CMR.30 Multiplane localizers identified
the cardiac position and the usual cardiac imaging planes
using a standard iterative scouting technique. Retrospective
ECG-gated cine images were then acquired using a segmented
steady-state precession sequence TrueFISP. About 10 to 25 SA
views encompassing the entire LV and RV were acquired using
the following parameters from the Society for Cardiovascular
Magnetic Resonance (SCMR).31 Slice thickness was 6 to
13 mm with a 2-mm interslice gap, 256 × 208 matrix with a
pixel size ranging from 1.48 to 2.29 mm, temporal resolution
40 ms, and field-of-view diameter of 30 to 40 cm depending
on the patient’s chest size.

2.3.2 CMR processing

Images were examined offline by an expert radiologist using
commercially available software (ARGUS, Siemens Medical
Solutions). LV contours were drawn on all phases and ES
and ED were automatically defined as the phases with the high-
est and lowest volumes. CMR values were derived independ-
ently by modified Simpson’s rule from semiautomated SA
regions that were modified manually to conform to endocardial
borders.32,33 Ventricular basal limits were defined as proposed
by Alfakih et al.34 In line with the SCMR recommendations,
no corrections were performed to compensate for papillary
muscles, so as to simplify the CMR measurements for optimal
reproducibility, saving postprocessing time, and to use local
institution normal reference ranges.31,35 In 15 patients for whom
there was a suspicion of LV hypertrophy, the epicardial boun-
dary was manually delineated on ED frame, which allowed
the estimation of MM. Because LV epicardial delienation is a
time-consuming operation, it was not systematically performed
in patients without suspicion of LV hypertrophy.

CMR data were also processed using the automatic algorithm
described in the previous section. For each patient, the first SA
slice corresponding to the left ventricular basal limit was chosen
by visual inspection with the help of coregistered long axis
slices. All frames were systematically processed. ED and ES
frames were defined as those corresponding to maximal and
minimal LV volume, respectively. All the computations were
performed blind to the results of the expert manual postprocess-
ing. The concordance between EDVs and ESVs and EFs provided
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by the hybrid segmentation and the value of the corresponding
measures provided by CMR manual segmentation was evalu-
ated using Lin’s concordance correlation coefficient and Bland–
Altman analysis.

3 Results
The average processing time for one SA image was about 1 s
including visual inspection of the segmented regions produced
by Otsu’s histogram clustering, mouse clicking that with the
lowest intensity belonging to LV cavity, and the subsequent
numerical computations for automatic endocardium and epicar-
dium delineation. Accordingly, for a typical cine-MR study
composed of 15 to 20 SA slices and 15 to 20 time frames,
the total processing time using our hybrid method was about
5 min using an Intel® Core™ 2 Duo 2.20 GHz central processing
unit with 2 Gb of RAM.

3.1 Validation Using an Open Access Database

Figure 1 schematizes the steps of the hybrid segmentation
method for (from top to bottom) ED endocardium, ED epicar-
dium, and ES endocardium. For illustration purposes, Fig. 2
shows the results provided by the hybrid method (top rows)
and by expert manual delineation (middle and bottom rows) for
patient #1 from the database (two more representative examples
from the database are available at Ref. 36).

Figure 3 shows the results in terms of Dice overlapping
metrics between hybrid and expert segmentations (light gray)
and between the two expert segmentations (dark gray). Mean
hybrid−expert similarity was 92.3% (versus 94.8% for mean
interexpert similarity) regarding ED endocardial boundary,
88.4% (versus 92.1%) for ES endocardial boundary, and 91.5%
(versus 96.2%) for ED epicardial boundary. Figure 4 shows
the results in terms of average perpendicular distance (APD).
Mean hybrid−expert APD was 1.6 mm (versus 1.1 mm for

Fig. 1 Diagram of the steps of the hybrid segmentation. From top to bottom: ED endocardium, ED epi-
cardium, and ES endocardium. Endocardial boundary was segmented using successively (a) adaptive
thresholding, (b) active contour, and (c) region growing. Active contour and region growing used as input
the result of adaptive thresholding. Final endocardial segmentation was the union of (a), (b), and (c).
Epicardial boundary was segmented using dilation of the endocardial boundary and then active contour
and was constrained by RV segmentation.
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mean interexpert APD) regarding ED endocardium, 1.9 mm
(versus 1.3 mm) for ES endocardium, and 2.2 mm (versus
1.0 mm) for ED epicardium. True-positive volume fractions
were 89%� 3%, 88%� 2%, and 87%� 4% for ED endocar-
dium, ES endocardium, and ED epicardium, respectively.
Corresponding false-negative volume fractions were 11%�
3%, 12%� 2%, and 13%� 4%, respectively.

Table 1 summarizes the results of the comparison between
hybrid and expert segmentations in terms of LV functional
parameters. Concordance between hybrid and mean expert
values as given by Lin’s coefficient was good for ED volumes
(0.91), ES volume (0.93), and EF (0.89). Concordance was
lower yet fair regarding MM (0.74). The bias induced by hybrid
segmentation with respect to mean expert values is to be

Fig. 2 Results of the hybrid method and expert manual delineation for patient #1 from the open access
database.

Fig. 3 Hybrid versus expert and interexpert similarity (Dice index)
in LV contour delineation for ED and ES endocardium and ED
epicardium. Boxes: median and interquartile range, whiskers:
mean� 1.5 std dev.

Fig. 4 Hybrid versus expert and interexpert average perpendicular
distance in LV contour delineation for ED and ES endocardium
and ED epicardium. Boxes: median and interquartile range, whiskers:
mean� 1.5 std dev.
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compared with interexpert variability measured by root mean
squared difference: −11 mL versus 5 mL for ED volume,
−4 mL versus 6 mL for ES volume, −3% versus 4% for EF,
and −13 g versus 15 g for MM.

3.2 Clinical Validation

Figures 5 shows the results regarding the comparison (correla-
tion plot and Bland–Altman diagram) between LV functional
parameters provided by the hybrid method and those given
by manual expert segmentation (from left to right: LV EDV,
LV ESV, LV EF, and LV mass). Concordance between hybrid
and manual segmentation, as assessed by Lin’s coefficient, was,
respectively, 0.95, 0.96, and 0.86 for EDV, ESV, and EF (all
p-values <0.001). Regarding MM, there was a fair concordance
between hybrid and expert estimations with a Pearson’s corre-
lation of 0.79 and a Lin’s coefficient of 0.71 (p < 0.001).
Compared to expert segmentation, hybrid segmentation
underestimated EDVs (−6 mL, p ¼ 0.01; 95% limits of
agreement [−28 17] mL), overestimated ESVs (þ4 mL, p ¼
0.01; [−10 17] mL), underestimated EFs (−6%, p < 0.01;
[−17% 5%]), and underestimated MMs (−6 g, not significant;
[−43 31] g).

4 Discussion
We described a hybrid method allowing for very fast and robust
semiautomated extraction of LV endocardial and epicardial
boundaries on cine-MR SA images. In clinical routine, expert
radiologists or cardiologists are compelled to manually adjust
on each SA slice a dozen of control points around the endocar-
dial border and as much around the epicardial border, leading to
a total processing time usually exceeding half an hour and final
results that are naturally prone to intra- and interoperator vari-
ability. In view of the sustained increase in clinical demand for
CMR examinations, along with the progressive reduction in
acquisition time due to the development of fast imaging sequen-
ces, postprocessing quickness and robustness appear as crucial
parameters, which will undoubtedly favor in the short to
medium term a widespread diffusion of automated postprocess-
ing tools in radiology labs.

The detailed results exposed in the previous section demon-
strate that our hybrid method provides pertinent results in
terms of LV functional parameters, which are perfectly compat-
ible with routine clinical use. The assessment of the method
using the 18 CMR open access database showed a fine similarity
between hybrid and expert LV boundary delineations, with

Table 1 Comparison between LV parameters given by expert manual delineation and hybrid semiautomated segmentation.

Hybrid-expert concordance Hybrid-expert bias Interexpert concordance Interexpert variability

ED volume (mL) 0.91 −11 0.94 5

ES volume (mL) 0.93 −4 0.93 6

Ejection fract. (%) 0.89 −3 0.91 4

MM (g) 0.74 −13 0.88 15

Note: ED: end-diastole, ES: end-systole, and MM: myocardial mass. All concordance coefficients are statistically significant (p < 0.001).

Fig. 5 Comparison between functional parameters (from left to right: LV EDV, LV ESV, LV EF, and
LV mass) provided by hybrid segmentation (CMR_hyb) and manual expert segmentation (CMR_exp).
Top: scatter plot. The dashed line stands for the linear regression (ccc: Lin’s coefficient). Bottom: Bland–
Altman diagram. The dashed lines indicate the mean difference (grayed is the 95% confidence interval)
and the plain lines indicate the 95% limits of agreement.
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a Dice overlapping index around 90% and a mean APD around
1.5 to 2 mm, versus ∼95% and 1 to 1.5 mm for interexpert
similarity. As a consequence, the hybrid−expert concordance
for the derived clinical parameters was excellent, with a
hybrid—expert bias that remained comparable to interexpert
variability. The clinical validation on a retrospective cohort of
29 patients with various cardiomyopathies revealed once again
an almost perfect concordance between hybrid and expert
LV volumes and EFs. Hybrid−expert systematic bias, although
statistically significant, was small compared to the required
accuracy for clinical diagnosis and follow-up (<10 mL for
LV volumes, −6% for EF). With respect to MM evaluated in
a subgroup of 15 patients, hybrid—expert concordance was
satisfying and systematic bias (<10 g) was neither clinically
nor statistically significant.

The main limitation of our study is the lack of comparison
with conventional semiautomated segmentation. This was due to
the fact that such semiautomated segmentation results were not
provided with the open access database. Semiautomated results
were not available for patient data, because the radiology team
in our institution do not use semiautomated software for routine
LV assessment.

The results exposed here seem consistent with those reported
previously using state-of-the-art semiautomated extraction tech-
niques. In a systematic review of CMR segmentation methods,
Petitjean and Dacher3 reported mean APDs to the reference seg-
mentation ranging roughly from 1 to 2.5 mm for endocardium
and 1 to 3 mm for epicardium. In more recent research, Zhang
et al.17 used a combination of active shape model and active
appearance model to produce a four-dimensional mesh of LV
and RV. Resulting mean overlapping indices with the reference
segmentation in normal subjects was 90% for LV endocardium
and 92% for LVepicardium, corresponding to mean APDs of 1.7
and 1.8 mm, respectively. Ma et al.23 proposed a neural network
approach for gradient-based endocardium extraction coupled
with a gradient vector flow snake for epicardium segmentation.
In a mixed population of healthy and pathological subjects, the
method yielded mean overlapping indices with the reference
segmentation of 89% for endocardium and 92% for epicardium,
both corresponding to APDs of 2.4 mm. Mean biases in EF and
MM estimations were, respectively, 3% and 11 g, similar to
those reported here. The foremost strengths of the hybrid
method described in the present paper include a short processing
time with minimal operator intervention, no prior regarding LV
shape or signal distribution, both endocardial and epicardial
boundary extraction, high similarity with expert manual delin-
eation yielding low bias in LV parameters estimation with
respect to interexpert variability, and full clinical validation
against classical CMR in terms of LV volume, EF, and MM, in
a population of patients with various cardiomyopathies. Further
development is ongoing to improve the technique toward full
automation of LV cavity localization using Hough’s transform
and motion tracking between adjacent slices and time frames.

5 Conclusion
This paper presents an original semiautomated algorithm for LV
segmentation, which allows both endocardium and epicardium
extraction in a short processing time with minimal operator
intervention. Its evaluation using an open access database
showed a high similarity of the produced contours with those
provided by expert manual delineation. The validation study
conducted on a cohort of patients demonstrated that its results

in terms of LV parameters (volume, EF, and MM) were concord-
ant with those obtained by expert postprocessing, which attests
that the method should be workable in daily clinical practice.
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