Abstract: A 49-year-old woman presented to the emergency room with subacute paraparesis associated with bilateral cervicobrachial neuralgia. Brain and spine MRI revealed a heterogeneous hypervascular pineal tumor and a multifocal thoracolumbar intradural-extramedullary infiltrate with signs of medullary compression. C7-T2 laminectomy was performed on the same day for medullary decompression, allowing for partial lesion excision. Histological examination was in favor of a poorly differentiated anaplastic ependymoma. Two weeks later, FDG-PET showed markedly increased uptake in the pineal mass and significant hypermetabolism of the spinal metastases.

Key Words: anaplastic ependymoma, intradural extramedullary metastases, MRI, FDG-PET

REFERENCES

FIGURE 1. MRI of the brain and spine was performed in a 49-year-old woman presenting to the emergency department with subacute paraparesis associated with intense bilateral cervicobrachial neuralgia. Brain MRI (A, FLAIR; B–D, Gd-enhanced T1-weighted) showed a 25-mm heterogeneous hypervascular tumor centered on the pineal region, inducing third ventricle compression and mild ventricular dilation. Cervicothoracic spinal cord MRI (E, T2-weighted; F, STIR; G–H, Gd-enhanced T1-weighted) exhibited a 35 × 7-mm posterior intradural extramedullary lesion (white arrowhead) at the cervicothoracic junction, associated with signs of medullary compression (STIR spinal cord hyperintensities) and a second 10 × 4-mm posterior intradural extramedullary lesion located at the level of T3-T4 (G, black arrowhead). Lumbar spine Gd-enhanced T1-weighted MRI (I) revealed a third intradural extramedullary metastasis (white arrow). C7-T2 laminectomy was performed on the same day for medullary decompression, allowing for partial lesion excision. Histological examination found a glial proliferation with important haemorrhagic suffusion in favor of a poorly differentiated anaplastic ependymoma. Ki67 index was up to 40%. Palliative care was decided and ventriculoperitoneal derivation was performed 1 week later due to acute hydrocephalus. Ependymomas are rare primary gliomas that may affect both children and adults. In adults, supratentorial locations are uncommon (<20%), and the anaplastic type (WHO grade III) accounts for 3% to 5% of ependymal neoplasms. Intradural-extramedullary ependymomas are extremely rare and predominate in women in the fifth decade of life. Only two cases of multifocal anaplastic intradural-extramedullary ependymomas have been reported in the literature.
FIGURE 2. Two weeks after surgery, PET acquisition was performed 60 minutes after IV injection of 171 MBq 18FDG. PET images fused with high-resolution Gd-enhanced T1-weighted MRI showed markedly increased FDG uptake in the caudal portion of the pineal tumor (SUVmax, 16) as well as moderately hypermetabolic foci centered on the C7-T2 (yellow arrow; SUVmax, 7), T3-T4 (red arrow; SUVmax, 5), and L1-L2 (pink arrow; SUVmax, 3) intradural extramedullary lesions. No additional hypermetabolic lesion was evidenced. Few studies have reported on FDG-PET findings in cerebral and spinal ependymal neoplasms, some of which focused on pediatric patients.$^{7-10}$ There is no consensus regarding the diagnostic and prognostic value of FDG-PET particularly in case of spinal involvement, as PET sensitivity is highly dependent on malignancy grade and lesion size.8,9 Although data are scarce, quantitative uptake of anaplastic ependymomas seems variable,8 and there exists to date no report on FDG-PET in intradural extramedullary anaplastic ependymoma. This case report suggests that FDG-PET might prove helpful in determining the cerebral and spinal extension of high-grade multifocal ependymal neoplasms.