CONTRIBUTION
OF
NANOTECHNOLOGY
TO
MOLECULAR IMAGING

Michel ZANCA,
Nuclear Medicine & functional MRI, University Hospital,
UMR 5587 CNRS, Montpellier, France
Imaging and nanotechnology

We shall focus our purpose on molecular imaging and will conventionally consider two separated access to the molecular level:

the direct one that uses endogenous biophysical process or specific ligands for image contrast formation;

the indirect one that uses nanotechnology to conceptualize engineered marked probes so as to visualize cells events at the molecular level.

The marker is an infrared, luminescent or fluorescent probe in optical imaging, a radioactive tracer in TEP or TEMP imaging and a (super)para- or ferro- magnetic contrast agent in MRI.
Let's considering the direct way to reach the molecular level:

direct way to reach the molecular level:

image formation via endogenous biophysical processes and specific probes
T1 & T2 modulations in MRI
... due to physiology or pathology

Positive contrast in T1w images, negative in T2w

Mobile structures
Liquids (CSF)
T1 = T2 (≈ 4 s for H2O)

Biological tissues
T1 ≈ 10 T2
(≈ 1 s)

Non mobile structures
Solids (bone)
T1 >> T2

Dia- para- magnetism
Immobilization, Solid deposit

Viscosity

~ μs

Dia- para- magnetism

Immobilization, Solid deposit

~ μs
Spontaneous MRI T2* contrast when MetHb replaces HbO₂

HbO₂ is diamagnetic
MetHb is paramagnetic

Late aspect of an hemorrhagic stroke

From M. MOSELEY, MR role in Molecular Imaging, MR4MI_2006
Spontaneous MRI contrast due to an excess of HbO$_2$ relatively to Hb

HbO$_2$ is diamagnetic
Hb is paramagnetic

Right handed subject, pre- and post- central left activations

AC-PC + 70 mm

Tactile opposition, right thumb / V$^\text{th}$ meta origin

M ZANCA, University Hospital & UMR/CNRS 5587, MONTPELLIER
Ex vivo detection of \(\beta\) amyloidal deposits (Alzheimer) in \(T2_w\) MRI

Histology with Congo red

In the green surrounded frame, large MRI black spots correspond to amyloidal deposits seen by histology (red dots), moved forward for clarity and to avoid superimposition.

mAPP-PS1 transgenic mouse

- mAPP: mutant human amyloid precursor protein
- PS1: mutant presenilin-1 transgenes

Extra cellular \(\beta\) amyloidal peptides deposits (20-150 µm) have very short \(T2^*\)

J ZHANG, et al., Magnetic Resonance in Medicine, 2004; 51: 452-457
Metabolite cartography by 1H-MRS & CSI
Example of Alzheimer Disease (AD)

MRS

Medial temporal lobe

Healthy control

AD patient

CSI

T2w TSE

Cho

NAA

tCr

Choice

cr

NAA

Example of Alzheimer Disease (AD)

Courtesy Gwénaël HÉRIGAULT, Philips Medical Systems, 2002
Glucose metabolism is equivalently distributed in the cortex for a normal (non pathological) brain, but is greatly lowered in specific regions in AD.

Crude and grafted Parkinson disease

Clinically left Parkinson
Loss of DaT function in the right putamen
D$_2$R is normal or a little higher (up regulation)

M.E. PHELPS, JNM, 2000; 41: 661-681

Left Parkinson generated in a monkey
A Macaques Rhesus after homolateral MPTP injection and grafted stem cells

K. BAUKIEWICZ, in M.E. PHELPS, PNAS, 2000; 97(16): 9226-33
Let's now consider the indirect way to reach the molecular level using specific "engineered" probes and ligands to reveal cells activity.
The indirect way to reach the molecular level

Apart a few examples in PET and optical imaging, we'll essentially consider MRI, due to its (very) high spatial resolution and a great variety of possible contrasts.

But MRI fails by a (very) low sensitivity and we'll present some examples about how very sophisticated engineered (nano)-techniques will improve it, among which:

- Development of high relaxivity contrast media
- Amplification of relaxivity and targeting
- Development of smart agents whose action is limited to the targeted site and/or a chosen cellular activity
MRI gives access to the (very) high intrinsic spatial resolution

MRI spatial resolution ($R_{sp}^{°}$) is only limited, for a given contrast, by translational movements of water molecules, of about 2 to 20 μm.
Indirect imaging: contrast media and probes
MRI paramagnetic contrast media

Gd chelates (hypersignal in T1_w MRI, toxics)

High detection threshold, added to the very low MRI sensitivity, implies high concentrations and/or smart amplification techniques.

They often are coated and targeted by coupling or conjugation:
- toward receptors,
- toward cells (Gd-EOB-DTPA and hepatocytes),
- toward plaques or clots (conjugation to anti-fibrin antibodies)

SPIO = Superparamagnetic Iron Oxyde ($\phi > 50$ nm), marked accumulation in RES (liver, spleen, lymph nodes).

USPIO = Ultrasmall Superparamagnetic Iron Oxyde ($\phi \sim 10-50$ nm), far more efficient, with a marked accumulation in monocytes and macrophages (graft reject, plaques of atherosclerosis).

Both SPIO & USPIO have a T2* main effect (hyposignal), with a detection threshold in mM for SPIO, μM or even nM for USPIO.

MIONs (Monocrystalline Iron Oxide Nanoparticles) are (U)SPIO nanoparticles ($\phi \sim 3$ mm with > 2000 Fe atoms) without any molecular specificity.

WANG, Eur Radiol (2001) 11:2319-2331
Indirect imaging via passive probe uptake and elimination
USPIO passive uptake by macrophages allows atherosclerotic plaques detection

MRI

External carotid

Internal carotid

T2*w MR images

USPIO +24 h

Plaque T2* hypersignal before contrast

Plaque T2* hyposignal after USPIO

Histology:
CD68 (macrophages) - red
Perls (USPIO) - blue

Plaques vulnerability is determined by their macrophages content

ME KOOI, ISMRM Proceedings 2002
USPIO & vascular plaques detection

7 month old rabbit with hyperlipidemia and atherosclerosis

Hypo signals due to passive Fe uptake in macrophages confined in atherosclerotic plaques

RUEHM, SG et al, Circulation, 2001; 103: 415
... while, with Gd-DTPA, atherosclerotic plaques are not visible

The same hyperlipidemic rabbit

RUEHM, SG et al, Circulation, 2001; 103: 415
USPIO uptake by metastatic lymph nodes

USPIO (⌀ ~50 nm) improve diagnosis of metastatic axillary lymph nodes compared with precontrast MRI

Healthy lymph node captures the SPIO
T2* signal is homogeneously decreased

Tumorous lymph node does no more capture the SPIO
Persistent hypersignal

Indirect imaging via targeted probe uptake and elimination

• Targeting at the tissue level
• Targeting at the cellular level
• Targeting at the molecular level
Targeting blood in vessels:
Gd Complex coupled to Serum-Albumin

Albumin-binding (MS-325)
Enhanced relaxivity while in the blood
Long life = hi-res blood pool MRA
Phase III on-going

“Conventional” MRI Contrast-generating end

Albumin-targeting end

From M. MOSELEY, MR role in Molecular Imaging ?, MR4MI_2006
Targeting sarcoma cells with MRI Tf-MION via transferrin receptor overexpression

Gliosarcoma cells are stably transfected with an expression plasmid containing engineered transferrin receptor (ETR+) cDNA that overexpresses high levels of the transferrin receptor protein. This will result in a marked increase in the cellular binding and uptake of MION to holotransferrin (Tf-MION), as can be seen in that living mouse with a right ETR+ flank tumour and a left ETR- flank tumour.

- T1w does not separate both tumours
- T2w drastic dropout in the ETR+ tumour
- after Tf-MION, increased uptake of iron in the right ETR+ tumour

Nano particles targeted for endothelial \(\alpha_\nu\beta_3\)-integrin and angiogenesis

Integrin is a membrane receptor that binds peptides as fibronectin and laminin implied in cellular adhesion.

Integrin increases in cancer angiogenesis, at capillaries epithelial cells membranes level.

Exact correspondence between histology and MRI

\textit{Vx-2} tumour grafted in the posterior leg of a rabbit

\textit{Da SIPKINS et al., Nature Medicine, 1998 ; 4(5) : 623 - 626}
SPIO-peptides targeted for Amyloid β plaques

Magnetically labeled peptides enable in vivo detection of amyloid-β (arrows) in the brains of transgenic mice used to model Alzheimer’s Disease.

Plaques in in vivo T2* MRI
78x78x250 mm, acquisition 59 min

6-month-old APP/PS1-transgenic mouse brain

Arrows emphasize the neat agreement with plaques shown by histologic coloration

http://www.med.nyu.edu/cgi-bin/bk/showresimg.py?pid=37233
C2-Synaptotagmin SPIO and apoptosis

Synaptotagmin I binds to anionic phospholipids (phosphatidylserine, PS). During apoptosis, PS translocates from inner to outer layer of cellular plasma membranes. Thus, when cells are dying by apoptosis, SPIO conjugated to C2 domain of synaptotagmin I will bind to PS and reveal the apoptotic area (arrow).

Murine lymphoma following treatment with cyclophosphamide and etoposide

Cells in apoptosis

M ZHAO et al., Nature Medicine, 2001; 7: 1241-44
Indirect imaging via contrast over concentration (amplification)

• using (targeted) micelles
• using (targeted) dendrimers
• using carbon nanotubes
• using cellular enrichment in iron affine structures
Nanoparticle-containing micelles

Schematic representation of the encapsulating procedure of hydrophobic nanoparticles in micelles.

Iron oxide particles
PEG-lipids
in chloroform

Micellar iron oxide
in water

1. Evaporation chloroform
2. Hydration mixed film

Lipids are mixed with the nanoparticles in an apolar solvent. The mixed film obtained is hydrated. Thereafter, the nanoparticle-containing micelles and empty micelles are separated by centrifugation.

WJM Mulder, GJ Strijkers et al., NMR Biomed. 2006;19:142-164
The targeting with fibrin-specific micelles containing paramagnetic nanoparticles visualizes thrombus in the external jugular vein.

Fibrin plays the role of anti thrombic antigen.

There exists a neat T_{1w} contrast increase where paramagnetic nano particles conjugated to anti-fibrin antibody fragments accumulate (yellow arrows and circles).

Micelle-encapsulated SPIO conjugated with Tat peptide and the fluorescent label Texas Red

(A) Schematic of a micelle-encapsulated SPIO conjugated with Tat peptide and the fluorescent label Texas Red (TX-Red) for cellular delivery and combined optical imaging and MRI.

(B) Fluorescent images of Tat-linked, TX-Red-labeled SPIOs in human dermal fibroblast (HDF) cells. Images were obtained using a Zeiss confocal microscope with excitation at 543 nm and emission detection at 560 nm.

(C) MRI images of four different samples: (1) culture media only, (2) cells without SPIOs, (3) cells with SPIOs, (4) culture media only. Images were obtained using a 3 T Siemens TRIO MRI machine.

L Laconte, N Nitin, and G Bao, NanoToday, Mai 2005
http://www.bme.gatech.edu/groups/bao/mion.html
A dendrimer component is a polymeric, 3D tree-like structure. It contains a great number of 3D voids acting as pockets carrying numerous particles of contrast agent (Gd^{3+} or super-paramagnetic nanoparticles as MION). Magnetodendrimers allow efficient labeling of mammalian cells, including human neural stem cells and mesenchymal stem cells. Their use in MRI allows growth tracking of new neural pathways from the stem cell transplant.

Nanotechnology and Medicine, Nanopedia, the web course of nanotechnology
Application of magnetodendrimers as cellular markers after transplantation

Stem cells containing magnetic nano particles in dendrimers were transplanted in dysmyelinated rat spinal cord

At 10 days following transplantation, 3D ex vivo MR image shows the migration of labeled cells along the dorsal column away from the injection site.

There exists an excellent concordance between MRI and immunohistochemical coloration of new formed neural myelin

At 6 weeks following transplantation, 3D in vivo MR image shows the migration of labeled cells into the parenchyma away from the ventricle

JWM BULTE, Nature Biotech, 2001
Amplification and targeting with carbon nanotubes loaded with hydrated Gd$^{3+}$ ions

Carbon nanotubes can be noncovalently functionalized by amphiphilic Gd$^{3+}$ chelates.

Coronal in vivo MR image of the muscle of a mouse legs... after Gd$^{3+}$ multiwalled carbon nanotubes injection... and lipid injection

Here is another way to load carbon nanotubes with Gd$^{3+}$

Modifying images by activable contrasts

- smart or reporter agents
- Magnetic relaxation switch of CLIO
- Magnetic relaxation amplification
- Reporter gene imaging
Smart contrast agents

Smart contrast agents are activable agents that undergo a large change in relaxivity upon activation: one state is off and corresponds to low contrast enhancement, while the other state, the on state, corresponds to high contrast enhancement.

The activatable agent can be switched from one state to the other by the occurrence of a metabolic or physiological event.

With Gd$^{3+}$ agents, contrast enhancement is generally linked to a decrease in $T1$ but may follow a chemical exchange saturation transfer (CEST) event as the switch.

For iron oxide agents, contrast enhancement is due to an enhanced anisotropy that leads to a dramatic decrease in $T2$.
Examples of a “smart” MRI probes

EGadMe - MRI detection of β-galactosidase mRNA expression in living X. laevis embryos

EGadMe has been used as a MR functional reporter agent for displaying *in vivo* β-galactosidase activity.

Brighter images of Xenopus embryos injected with β-gal mRNA and EgadMe (top) compared with EgadMe alone (bottom).

Fluorochromes-labeled smart probe, activated by cathepsin-B

Color-encoded near-infrared fluorescence image of a mouse implanted with two different human breast tumors differing in tissue invasiveness.

The mouse was injected with a fluorochromes-labeled smart probe, activated by cathepsin-B.

The agent is more activated in the more invasive right tumor (where is more cathepsin-B).

Image courtesy of Ralph Weissleder, CMIR

Magnetic relaxation switch of covalently coupled SPIO to biomolecules

When (U)SPIO are covalently coupled to oligo-nucleotids, nucleic acids, small molecules, peptides, receptors ligands, proteins, antibodies, ..., they form CLIO (Cross Linked Iron Oxides), interacting with molecular targets (DNA, small molecules, proteins, enzymes, ...).

The cooperative auto aggregation of CLIO at the target level greatly increases their relaxing power by a local over concentration and a partial immobilization, allowing to visualize the aggregation site by the T2* hyposignal it implies.

JM PEREZ et al., Nature Biotech., 2002; 20: 816-20
MR switch detection of L-Phenylalanine

In this example, a CLIO, made of an SPIO core coated with an aminated dextran, is covalently coupled to a derivative of d-phenylalanine (d-Phe)

Addition of anti d-Amino Acids Antibody leads to monomers aggregation. The T2* relaxivity is thus high because of concentration & immobilization

When L-Phe is present, CLIO-d-Phe/anti d-AA aggregates disrupt, inducing a T2* relaxivity decrease leading to a signal increase by MR switch

A TSOURKAS et al., Angew. Chem. 2004, 116, 2449 -2453
Magnetic relaxation amplification: Enzymatic activity by MRamp

Activation of hydroxyphenol by peroxidase in the presence of H_2O_2 results in spontaneous condensation and polymerization of chelated gadolinium and an hypersignal in $T1_w$ MRI.

A TSOURKAS et al., Angew. Chem. 2004, 116, 2449-2453
To define the location of transplanted Embryonic Stem cells in the myocardium, cells were stably transduced with a lentiviral vector carrying a novel triple-fusion (TF) reporter gene that consists of firefly luciferase, monomeric red fluorescence protein, and truncated thymidine kinase (fluc-mrfp-ttk).

Two weeks after cell transplantation, animals underwent $[^{18}F]$-FHBG reporter probe imaging (top row) followed by $[^{18}F]$-FDG myocardial viability imaging (middle row).

F. CAO, S. LIN, et al., Circulation 2006;113;1005-1014
Embryonic Stem Cell-Derived Teratoma Formation Can Be Selectively Ablated by Ganciclovir Therapy

Ablation of teratoma formation with the PET reporter gene ttk (truncated thymidine kinase) as both a reporter and a suicide gene

Treatment of control animals with saline resulted in multiple teratoma formation by week 5. In contrast, study animals treated with ganciclovir for 2 weeks showed abrogation of both bioluminescence and PET imaging signals

F. CAO, S. LIN, et al., Circulation 2006;113;1005-1014
Many thanks to...

M DENAIN, CEA
M. MOSELEY;
J ZHANG;
G HÉRIGAULT, Philips Medical Systems,
W KLUNK and C MATHIS,
ME PHELPS,

...and all researchers whose work made this presentation possible

And thanks to all of you for kind listening