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Abstract 

This study investigated how the choice of fixed planes for the representation of the projection data of a 

cylindrical PET scanner simplifies the frequency interpolation required by the 3D Fourier slice theorem 

(3D-FST). A new gridding algorithm based on a two-plane geometry and requiring only 1D interpolations 

in the Fourier domain was compared with the direct implementation of the 3D-FST. We show that the use 

of two orthogonal planes leads to signal to noise ratios similar to those achieved with the 3D-FST algorithm 

from projection data acquired with up to two times more count rates, while the resolution remains similar. 
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1. Introduction 

 

The widespread clinical use of whole-body fully three-dimensional Positron Emission Tomography 

scanners (3D-PET) has made necessary accurate reconstruction algorithms whose execution time is similar 

to the time needed to record the next set of projection data (i.e., the next bed position). Moreover, the need 

to decrease patient irradiation or speed up the acquisition procedure (for dynamic PET, for instance) has 

stimulated research to optimize the signal to noise ratio in the reconstructions.This has led to the 

development of reconstruction methods that are theoretically able to take advantage of the redundancy of 

3D-PET projection data. 

Significant improvements in the reconstruction speed can be achieved using exact or approximate 

algorithms that sort the 3D projections into a 2D dataset containing one sinogram for each transaxial slice 

to be reconstructed. The resulting sinograms are processed using conventional 2D tomographic 

reconstruction algorithms. Among these so-called rebinning methods, the approximate Fourier rebinning 

algorithm (FORE) allows a significant speed-up in the reconstruction and provides a reliable alternative to 

3D reconstruction algorithms in routine clinical settings [1-8]. However, the FORE algorithm is based on 

an approximation that breaks down when the axial aperture of the scanner increases.  

Following the pioneering research of Orlov [9-10], most noteworthy contributions toward a fully 3D 

tomographic reconstruction procedure have been inspired by the search for a generalization of the usual 

2D reconstruction algorithms [11]. 3D versions of iterative algorithms (such as 3D-OSEM) can provide 

accurate volume reconstructions and do not require shift-invariance of the projection data. However, in 

spite of the recent works that intended to speed up the 3D back- and forward-projection operators [12- 15], 
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the intensive use of these procedures by the iterative algorithms makes them relatively slower compared 

with other 3D reconstruction methods such as direct Fourier methods.  

Other 3D reconstruction algorithms are based on the Fourier slice theorem and require shift-invariance of 

the projection data. This is generally not the case for the usual cylindrical PET scanners, since some line 

integrals characterized by a particular direction may be measured for points that are located near the center 

of the field of view but not for points located at the border of the field of view. The shift-invariance of the 

projection data can be achieved by forward-projecting a first estimate of the unknown radioactive 

distribution, which is reconstructed from those projection views that are complete. Among these 

algorithms, the 3D filtered back-projection (3D-FBP) algorithm has been studied extensively [16-19]. Like 

other algorithms using back-projections (and forward-projections to estimate the missing projection data), 

the 3D-FBP remains much more time-consuming than 2D slice-by-slice algorithms or 3D direct Fourier 

methods. 

Alternatively, the 3D Fourier slice theorem makes it possible to compute the 3D Fourier transform of the 

unknown radioactive distribution from the set of 2D Fourier transforms of the projection data [20-25].  

These direct Fourier methods (DFM) have the potential to substantially speed up the reconstruction process 

(when a simple 3D interpolation procedure is used with no oversampling, the processing time is 28 times 

faster compared with a back-projection procedure [22]) and are likely to produce accurate and high-speed 

3D reconstructions, provided that the interpolation accuracy in the Fourier domain is controlled. The 

complex interpolation in the frequency space required by DFM can be controlled by an increase in the 

sampling frequency, achieved by zero padding in the projection data and the image [26]. More recently, 

gridding interpolation with proper interpolating window (e.g., a modified Kaiser-Bessel window) and data 

weighting functions has been proposed to optimize the interpolation process [27-36].  

Besides this progress in the interpolation process, some improvement in the accuracy of DFM for 3D-PET 

may be found in the better adjustment of the grids that are used to process the unknown 3D distribution of 

radioactivity from the 2D projection data in the Fourier space. The reduction of the interpolation 

dimensionality for DFM is based on a principle similar to that of the linogram method that was first 

developed by Edholm et al. [37,38]. The first step was achieved by replacing the 3D interpolation (required 

by the Fourier slice theorem) by 2D interpolations within the transverse planes. This was enabled by 

conserving the axial sampling of the ring PET scanner geometry [22,31,36]. Similarly, Brasse et al. 

proposed a fast and accurate 3D back-projection algorithm for planar detector arrays [15]. This so-called 

planogram method succeeded in simplifying and accelerating the back-projection procedure by applying 

Fourier transforms in the natural acquisition geometry of planar detectors and using only 2D interpolations. 

Brasse et al. [15] noted that the planogram method can be used to design forward-projection procedures 

(using only 1D interpolations), which are interesting, for example, to compute the missing projection data 

in a cylindrical PET scanner. However, they did not exploit the planogram method to simplify the 

interpolation step in direct Fourier methods, nor did they propose any validation study for this class of 3D 

reconstruction methods. A few months later, a theoretical paper emphasized the interest of processing the 

projection data of a cylindrical PET scanner on a single fixed transversal plane to implement direct Fourier 

reconstruction methods using 1D interpolations in the Fourier space only [39]. After evaluation, the 

proposed method appeared however to be badly designed for the processing of classical 3D PET data 

acquired at low tilt angles. 

 To complement the works dedicated to the choice of an interpolation process, the present study 

investigated how the choice of specific fixed planes in the representation of the projection data of a 

cylindrical PET scanner can improve the accuracy of the interpolation procedures in the frequency space 
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that are required by direct Fourier methods. First, we present a theoretical framework for 3D direct Fourier 

methods that naturally introduces two algorithms with the property of requiring only a 1D interpolation 

instead of the complex 3D interpolation required by the direct implementation of the Fourier slice theorem. 

Using the same interpolation procedure, the resolution and noise properties of an algorithm using two 

orthogonal projection planes are compared with those of the direct computation of the Fourier slice 

theorem. Last, the reconstruction of PET data acquired in routine clinical settings is shown to illustrate and 

compare the qualities of these algorithms.  

 

2. Unified framework for direct 3D Fourier methods with an arbitrary projection plane in PET 

 

 We addressed the problem of computing an unknown activity distribution f  from its shift-invariant 

projections acquired using a cylindrical PET scanner. Let us consider a shift-invariant projection recorded 

along a direction w  on an arbitrary plane 
3u  passing through the origin (figure 1). Consider an 

orthonormal basis ),uO,u 21(  of the plane 
3u such that 321 uuu  , where  denotes the usual cross 

product. ),u,u(O,u 321  is an orthonormal basis of the 3D space.  

 

Figure 1.   Illustration of the projection of an unknown 3D radioactive distribution f (x) onto a projection plane u3
. 

 

 

We denote ][ 321   u  uuU , the matrix of the linear application that maps the canonical basis ),e,e(O,e 321  

into ),u,u(O,u 321 . Denoting  (.)t  the transpose, the projection computed at the point  3 uy , whose 

coordinates are  )0,,( 21 yyt  in the basis ),u,u(O,u 321 , is 

 
R

w tw)dtf(Uy),y(yp 21 .                                                                        (1) 

Let us take the 2D Fourier transform wp̂  of wp , 
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Denoting ,t),y(yz t
21 , we have Azz  w  uutwy  u  uutwUy  ][][ 21321 , where A is the matrix: 

][ 21   w  uuA .                                                                                        (3) 

Let us proceed to the change of variable Az),x,x(xx t  321 . The Jacobian of this transformation is 

  ).w u( u
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As z.ξy.ξ  and αdxdzdydt  , equation (2) leads to  
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Thus one obtains a closed-form formula for the general reconstruction problem using an arbitrary 

projection plane: 

  ξ)A(f α ,ξξp t
w

1
21

ˆ ˆ  ,                                                                             (6) 

where  is the Jacobian defined by equation (4). This formula makes it possible to compute the 3D Fourier 

transform of the unknown radioactive distribution f ˆ  from the 2D Fourier transform of the projections 

wp̂  along a direction w  onto a plane 
3u  passing through the origin. 

 

3. Deriving reconstruction algorithms 

 

Having described a general framework for Fourier-based reconstruction methods using arbitrary projection 

planes, we turned our attention to some choices of projection planes that are likely to simplify the 

interpolation procedure required by equation (6) to compute the radioactive distribution f ˆ  from the 

projection data wp̂ . The manner by which the original projection data from a usual cylindrical PET scanner 

were re-sampled into the specific projection planes is described in the next paragraph, together with other 

numerical issues. Recalling that θ),θ,θ(w t sinsincoscoscos  , where   and   are the Euler angles, 

we now derive different reconstruction schemes from equation (6).  

 

3.1. One-plane method: projection on a single transaxial plane 

 

Let us choose the transaxial plane ),,( 21 xxO  to collect the projection data. Thus 

),,(),,( 321321 eeeuuu   and equation (3) leads to 
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The Jacobian defined in (4) is θ/|/|wα sin11 3  (for [2/0[ ,πθ ), so that 
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Thus equations (7) and (8) lead to the final reconstruction formula for the one-plane method:  

   θ))/ξ (ξ,,ξ(ξf 
θ

  ,ξξpw tansincosˆ
sin

1ˆ 212121  .                                                (9) 

The reconstruction process corresponding to equation (9) was first proposed in [39] for 3D PET. However, 

because of the 1/sin factor that tends to explode at low tilt angles, the one-plane method is badly designed 

for the processing of 3D data acquired with classical PET scanners and may be of interest only in the case 

of large aperture scanners providing 3D projections with high tilt angles. Thus, this method will not be 

considered further. 

 

3.2. Two-plane method: projection on two orthogonal planes 

 

Let us choose the coronal and sagittal planes ),,( 32 xxO  and ),,( 31 xxO  to collect the projection data, 

depending on the value of  . For a given projection characterized by w , the plane that is chosen to process 

these projection data is the one onto which the norm of the projection of w  is the smallest. In other words, 

the plane ),,( 32 xxO  is used if 
4
π  or 

4
3   ; otherwise, the plane ),,( 31 xxO  is used to process the 

projection data. Using the plane ),,( 32 xxO , we have ),e,e(e),u,u(u 132321  , so that  
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The Jacobian is |θ/||/|wα coscos11 1  , and 
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Thus we obtain, using equation (6), 

  ),ξθ,ξ
ξ

  ξ(f
| θ|

  ,ξξpw 21
2

121 tan
cos

tanˆ
coscos
1ˆ





  .                                                  (12)                  

Let us now use the plane ),,( 31 xxO  so that ),,(  ),,( 231321 eeeuuu  : 
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The Jacobian is |θ/||/|wα sincos11 2 , and  
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Thus equation (6) gives: 

  )θ ,ξ
ξ

  
ξ

 ,(ξf
| θ|

,ξξpw 2
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121 tan
sintan

ˆ
sincos
1ˆ


 .                                             (15)

Depending on the value of  , equations (12) and (15) can be used as a reconstruction algorithm to build up 

f


. 

 

3.3. FST method: direct use of the Fourier slice theorem 

 

To use the Fourier slice theorem as a reconstruction scheme, one has to consider w  as the plane where the 

projection data are processed. Thus wu 3 , and we can choose the unitary vectors  

θ),,θ,θ(u t cossinsincossin1   and ),,(u t 0cossin2  , so that wuu  21 .  

Then the Jacobian defined in (4) is 11  /|w.w|α , and AAt 1  as A  is an unitary matrix exchanging the 

two bases. Hence the general equation (6) leads to the classical reconstruction formula corresponding to the 

3D Fourier slice theorem:   )ˆˆ 21 (Aξf,ξξpw  , that is: 

   θ)ξ,ξθ, ξξθ(ξf ,ξξpw coscossinsinsinsincosˆˆ 1212121   .                             (16) 

 

4. Numerical implementation 

 

Some points regarding the numerical implementation of the two-plane method need to be detailed: 

 

The geometric characteristics of the scanner are the following: L is the axial FOV, R the radial FOV, and 

max = tanmax the tangent of the scanner aperture max. The axial range where oblique projections are defined 

(if they are not recorded, they have to be completed) is L + 2.R.max. 

Let us note Nsl the number of transversal slices. The intrinsic axial sampling distance of the scanner is thus 

ax = L / Nsl. Let us define a new axial range L’ and a new number of axial samples Nax as follows (figure 

2):  

Nax is the smaller power of 2 such that: 

L’ / Nax  = L  / Nsl = ax in order to preserve the intrinsic axial sampling distance in the recorded projections. 

L’  L + 2.R.max in order to take into account the missing oblique projections. 

 

Let us note Nrad the number of radial samples in the sinograms (if needed, a re-sampling is performed in 

order to bring the number of samples to a power of 2).  
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The object is reconstructed on (x1,x2,x3)  [-R, R]  [-R, R]  [-L’/2, L’/2] with Nrad samples in the x1 and 

x2 directions and Nax samples in the x3 direction. 

 

The projections acquired in the cylindrical PET geometry are first rearranged in the two-plane geometry. 

The size LSLZ and the number of samples NSNZ in the two projection planes 1=(O,x2,x3) and 

2=(O,x1,x3) are as follows: 

LS = 4.R 

NS = 2.Nrad  

LZ = L’ 

NZ = Nax  

Along the transverse direction, the size of the projection planes is twice that of the original 3D projection 

data, in order to gather the projections up to either 1/|cos|  2 or 1/|sin|  2. The number of samples is 

also doubled in order to preserve the frequency range. 

 

For a given direction w=(,), let us note p*1w the projection of the object on 1 with coordinates (S1, Z1)  

and p*2w the projection on 2 with coordinates (S2, Z2). Depending on , p*1w(S1,Z1) or p*2w(S2,Z2), is 

computed from p(s,,x3,) using bi-linear interpolations in the s and z directions: 

for ||  /4 or || > 3/4   p*1w(S1,Z1)  =  p(S1.cos, , Z1+S1.sin.tan, ) ,           (17) 

for /4 < ||  3/4     p*2w(S2,Z2)  =  p(S2.sin, , -Z1+S2.cos.tan, ).            (18) 

 

Using these specifications, the frequency steps in the object Fourier space will be: 1 = 2 = 1/(2R) , 3 

= 1/L’. In the 2D Fourier transform of the projections, the frequency steps will be: S = 1/(4R) , Z = 

1/L’. 

Remembering equations (13) and (15): 

  ), ξθ, ξ
ξ

  ξ(f
| θ|

,ξξp ZS
Z

SZSw tan
cos

tanˆ
coscos
1ˆ1 




            

  )θ, ξ
ξ

  
ξ

 , (ξf
| θ|

,ξξp Z
ZS

SZSw tan
sintan

ˆ
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1ˆ2 

 , 

it appears that, in the frequency domain, the samples of the 2D projection grid corresponding to S = 2n.S 

= n.1 = n.y will fall exactly on the 3D object grid along two directions (2 and 3 for 1, 1 and 3 

for 2). 

 
Figure 2. Explanatory diagram for the computation of the axial sampling Nax. 
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The flow chart (figure 3) shows 2D (1, 2) slices of the object 3D Fourier space (3 = 0). It illustrates, for 

each of the two projection planes, the position of the 2D grid points in the 3D space () and the 

corresponding points of the 3D grid that will be estimated ().  

 

 
 

Figure 3. Flowchart of the image reconstruction steps. 
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The points corresponding to (1,2)  [-1 1]  [-2 2] are processed directly (without having 

recourse to any interpolation) as they correspond to S = 0 or S = 2.S for ( = 0,  = k./4). For other 

values of (1,2), the interpolation step is performed using a 1D modified Kaiser-Bessel (MKB) kernel 

characterized with the following parameters: Bessel function order m = 0, radius of the blob a = 2.5 pixels, 

and  = 15. 

A pre-weighting of the projection data spectrum is carried out in order to compensate the non-uniformity of 

the input grid density. A post-weighting of the image spectrum is also implemented to correct the effects 

induced by the finite size of the interpolation kernel. The weighting coefficients are pre-computed and stored 

on hard disk in limited space using symmetry relations. These kernel properties and weighting procedures 

are similar to those proposed by Matej et al. for 3D-FRP reconstruction [36]. 

 

The three subsets of the object 3D Fourier space allow the reconstruction of three sub-images after inverse 

3D transform (). Each of these sub-images is post-scaled using the inverse of the convolution kernel 

involved: for the first sub-image, the grid correction is performed in the x1 direction; for the second, it is 

performed along the x2 direction; and as the third involves no convolution, it needs no correction. The three 

sub-images are finally added in order to recover the object. 

 

 

5. Performance study 

 

Simulation data as well as patient data were produced using the characteristics of the Siemens Biograph 

PET scanner, a commercial scanner comprising 24 rings of 384 crystals per ring. The fields of view are 648 

mm and 162 mm in the transaxial and axial directions, respectively. The ring radius is 412.5 mm and the 

maximum ring difference is 17. The axial compression (span) used was 7 or 1. Simulated sinograms were 

produced from known test volumes using analytical software dedicated to the computation of 3D sinograms 

from a simulated 3D distribution of radioactivity [40]. Acquisition artefacts such as Compton scattering or 

attenuation were not simulated. The times required to execute the algorithms were measured for the 

reconstruction of an unknown 3D radioactive distribution on a 12812864 grid with a span of 7, 

corresponding to clinical settings. These times included the times required to read the sinograms and write 

the results on the disk. Using a 3 GHz personal computer, the processing times were 29 and 33 seconds for 

the FST-based algorithm and the two-plane method respectively. For comparison, on the basis of the same 

3D configuration, the processing time was 2’51” for 3D filtered back-projection (3DRP) and 2’38” for 2D-

OSEM coupled with FORE rebinning. 

 

5.1. Resolution study 

 

Even if the 3D reconstruction problem is not shift-invariant when the detector is a truncated cylinder, it is 

possible to compare the resolution properties of different reconstruction algorithms by estimating a “local” 

modulation transfer function (MTF) [41]. Therefore, in a 12812864 grid, we simulated a 3D Gaussian 

distribution g, with a standard deviation of 3 mm, centered at the center of the field of view of the PET 

scanner. This distribution of radioactivity was used to simulate 3D sinograms. The reconstruction of these 

3D sinograms provided a 3D distribution of radioactivity i. The “local” MTF was computed as the ratio of 

the 3D Fourier transform of the reconstructed image i to the 3D Fourier transform of the Gaussian 
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distribution g. Figure 4 shows the transaxial and axial MTFs for the two algorithms tested. The two 

algorithms provide the same curve for the axial MTF. Concerning the transverse MTF, the FST method 

shows slightly better results. 

 
Figure 4. Transaxial (top) and axial (bottom) modulation transfer functions (MTF) at the center of the field of view for  

the usual implementation of the Fourier slice theorem and for the two-plane method. 2
2

2
1    and 3  

are the transaxial and axial spatial frequencies. 

 

 

To study line profiles on a noise-free reconstruction, a Derenzo-like phantom was simulated with 6 spheres 

with radii of 15 mm and 12 mm, 10 spheres with a radius of 9 mm and 15 spheres with a radius of 6 mm. 

The sphere to background ratio was 2. The volume was reconstructed onto a 128 x 128 x 64 grid. Figure 5 

shows lines profiles through the central transaxial slice of this Derenzo phantom obtained with the two 

algorithms for a span set to 7 and when no noise is simulated. The top profiles correspond to the x1 axis of 

the reconstructed slices, where objects with radii of 12 and 6 mm are intersected. The bottom ones 

corresponds to the x2 axis which intersects the objects with radii of 15 and 9 mm. Besides the partial volume 

effects around the smallest spheres, these profiles show that the two algorithms performed rather similarly 

for resolution recovery.  
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Figure 5. Central line profiles along the two transverse axes through the reconstructions of a  

Derenzo-like phantom simulated with a span equal to 7 and without noise. 

 

 

5.2. Noise properties 

 

Noise properties were studied by computing the 3D sinograms of a 10-cm diameter uniform cylinder, 

extending along the entire axial field of view of the scanner (so that the length of the cylinder was 155.25 

mm). Count rates in a range of 10-320 million events with a span 1 or 7 were simulated, without attenuation 

nor scatter. For the geometry of the PET and the uniform cylinder used, missing projection data existed if 

|x3| > 21 mm or if |x3| > 9 mm for a span set to 7 and 1, respectively. These missing data were estimated 

before reconstruction using the FOREPROJ algorithm [1,2].  

For each reconstruction algorithm and for each transaxial slice, the coefficient of variation (CV) was 

evaluated as the ratio between the standard deviation and the mean pixel value within the entire cylinder 

slice. Figure 6 shows the CV measured with span 1 or 7 and a total net trues simulated corresponding to 10, 

40 and 160 million events. As expected, the CV reached its minimum near the middle of the cylinder, where 

no projection data were missing. Whatever the configuration and the count rate, the CV measured was 

smaller with the two-plane algorithm than with the FST method (Table 1).  

Figure 7 shows the evolution with the count rate (10 to 320 million events) of the mean CV (+/- standard 

deviation). The average was computed over the axial region where the shift-invariance was preserved. It 

clearly appears that the two-plane method allowed significant noise reduction compared with the FST 

method. This noise reduction reaches 25.2 +/- 0.4%  for a span 1 and 17.4 +/- 0.5% for a span 7.  

Table 1 compares the mean CV achieved using the two Fourier methods as well as a 2D-OSEM (16 subsets 

and 8 iterations, as specified by SIEMENS for routine clinical studies) coupled with FORE rebinning when 

reconstructing the cylinder with a span 7 and 10, 40 and 160 million events simulated. 

Figure 8 shows the reconstructions of the previously described Derenzo-like phantom obtained with the two 

algorithms when 10, 40 and 160 million events were simulated with a span equal to 7. These images confirm 

that the signal to noise ratio was improved using the two-plane method compared with FST. 
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Last, a normal subject was injected with 5.5 MBq/kg of 18FDG to record a PET brain study in a routine 

clinical setting using a Siemens Biograph PET scanner (span 7). The acquisitions were performed 30 

minutes after injection. Three sets of projection data were recorded during 1, 3 and 10 minutes, respectively. 

This corresponded, respectively, to 20, 61 and 205 million counts (total net trues). The projections were 

processed using the FST-based algorithm and the two-plane method, after data completion using 

FOREPROJ, without correcting the attenuation artefacts (figure 9). Noise levels in the cortical tissues 

appeared less important for the slices reconstructed with the two-plane algorithm compared with those 

achieved using the FST-based algorithm. 

 

Table 1. Comparison of the mean CV (+/- standard deviation) achieved in the shift-invariance region (|x3| < 21 mm) using the FST 

method, the two-plane method, and FORE rebinning + 2D OSEM, for count rates of 10, 40 and 160 MKps and a span of 7. 

 
 

 

Figure 6. CV in the transaxial slices measured for the two 

algorithms in a cylindrical phantom with a span set to 7 

(bottom) or 1 (top). Three counting rates are evaluated: 

10, 40 and 160 Mkps. 

Figure 7. Evolution with the counting rate of the 

mean CV (+/- standard deviation) calculated in the 

axial range where the shift-invariance is achieved 

(|x3| < 9 mm for span 1, |x3| < 21 mm for span 7). 
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6. Discussion and Conclusion  

 

Recent research dedicated to improving the numerical implementation of the 3D Fourier slice theorem has 

focused on the optimization of the interpolation procedure required by the DFM. These works, especially 

in the field of magnetic resonance imaging [42-44], have improved the gridding interpolation thanks to an 

optimization of the interpolating and weighting functions. They have been applied to 3D PET successfully 

[36]. In complement to this progress, only a few works have proposed to simplify the interpolation by using 

an appropriate representation of the projection data. A first step in this direction was made by Brasse et al., 

who considered the particular case of two perpendicular planar detectors parallel to the axis of the 

tomograph [15]. These authors provided two central section formulae that are equivalent to equations (12) 

and (15) of the present paper. However, the purpose of the planogram method was to propose fast and 

accurate back- (and forward-) projection operators using projection data acquired on planar detector arrays, 

without addressing the problem of interpolation in direct Fourier methods. In fact, processing the projection 

data of a usual cylindrical PET scanner onto one or several fixed planes can also be a way to provide a 

common grid for two directions in the 2D and 3D Fourier transforms, so that only a 1D (instead of 3D) 

interpolation is necessary. In a previous paper [39], we proposed using a single fixed plane to process the 

projection data. However, this algorithm requires the undesirable computation of 2D Fourier transforms of 

very large images because of the term 1/tan() in equations (8). This explains the much longer computation 

time compared with the FST-based algorithm and the poor results of the validation study (not shown in this 

paper). Thus this method does not seem to be adapted to the geometry of routine clinical PET scanners, 

although it might be of interest in the case of large aperture scanners with projection data acquired for 

relatively high values of . 

 

As shown in the first part of the present paper, the use of arbitrary fixed planes to process the projections 

can be an interesting framework to derive different direct Fourier algorithms for the reconstruction of 3D 

PET data. All these algorithms are based on the Fourier slice theorem, but the way they can be implemented 

and the complexity of the interpolation needed in the Fourier domain vary. Our study shows that the fixed 

planes chosen in this paper to represent the projection data provide a parameterization of the Fourier slice 

theorem that requires only a 1D interpolation in the Fourier domain to compute the 3D Fourier transform of 

the radioactive distribution. This property is likely to provide more accurate interpolations in the Fourier 

domain, especially for high spatial frequencies, thus resulting in a potential decrease in the noise in the 

reconstructed volume. The validation study confirms that the use of two orthogonal fixed planes provides 

similar resolution properties and an improved signal to noise ratio compared with direct implementation of 

the Fourier slice theorem. Moreover, the processing time remains similar to that of the FST-based method. 

Globally, the use of the two-plane method leads to signal to noise ratios that are similar to those achieved 

with the FST-based algorithm with up to twice as many count rates: when averaging over the tested range 

(10-320 MKps), the ratio between the count rates that provide similar SNR is 192% for a span 1 and 160% 

for a span 7 (which corresponds respectively to a reduction of 48% and 37.5% in the acquisition time). It 

also appears from Table 1 that the two-plane method brings a better signal to noise ratio than 2D-OSEM 

reconstruction, at least when the count rate exceeds a certain threshold. These preliminary results may be of 

clinical interest, especially when count rates are low, accelerated reconstruction procedures are needed (such 

as in dynamic PET studies), or patient irradiation must be decreased. Further clinical studies associating an 

optimized gridding interpolation and the use of two orthogonal fixed planes to process the projection data 

are now necessary. They will aim at determining, for a specific pathology, whether the gain in signal to 
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noise ratio described in this paper can actually make possible the reconstruction of similar volumes with 

fewer count rates than the usual fully 3D or rebinning algorithms used in commercially available PET 

systems. 
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