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Abstract  

Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROI) 

in emission tomography. Drawn upon the works of A.K. Louis on the approximate inverse, we propose a 

dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the 

measured data without any image reconstruction. The method requires the definition of an ROI characteristic 

function that can be extracted from a co-registered morphological image. This characteristic function can 

be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution 

of the dual problem in the least squares sense (LSD characterization), and a linear extrapolation scheme is 

described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD 

and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction 

and with Huesman’s method. For this comparison, we used Monte-Carlo simulations (GATE simulation 

tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a 

large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at 

least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small 

tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in 

the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non specific 

region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance 

tradeoff. 

 

 

1. Introduction 

Emission tomography addresses the problem of reconstructing the activity map of a radio-tracer from a 

series of projections, each projection corresponding to the number of photons received by the tomograph in 

a given direction. These projections can be seen as a set of estimates of the line integrals of the activity 

through the field of view of the imaging device, so that the theoretical background and numerical tools of 

tomographic reconstruction can be used to produce an estimate of the studied object. However, due to the 

random nature of radioactive decay and to the detection process, the measured projections are affected by 

Poisson noise which propagates into the reconstructed object. When a quantitative analysis is necessary, it 

is useful to estimate the statistical uncertainty characterizing the reconstructed activity map. This is 

especially true when one wants to compare the total activity inside one or several regions of interest (ROIs) 

with other measurements performed in different regions or at a different time. The problem of estimating 

image variance in emission tomography has been extensively studied. Analytical and numerical 

approximations have been proposed, many of them focusing on a specific reconstruction algorithm. Both 
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filtered back-projection and maximum-likelihood algorithms have been studied since the late seventies in 

the field of emission tomography and many formulations have been proposed to describe the propagation 

of the uncertainty from the measured projections to the reconstructed images [1-17]. Original methods based 

on bootstrapping techniques [18-20] or intervalist prediction [21-22] have recently been proposed. The 

computation of the whole reconstructed image covariance matrix however, remains a computational 

intensive task due to the huge dimensions of the system matrix in typical acquisition settings. The difficult 

handling of the subsequent numerical errors and heavy computational burden make these calculations 

unsuitable for clinical routine. In addition, most image interpretation tasks require region of interest 

assessment rather than pixel-wise variance estimation. Various attempts have been made to design ROI-

based quantification methods in emission tomography [23-26]. However, the proposed techniques either 

rely on the analytical formulation of the tomographic inverse problem (i.e., when using the filtered back-

projection algorithm) that cannot support an accurate modelling of the emission-detection process, or they 

assume that the studied ROIs have uniform activity. A recent work relying on a local segmentation technique 

yielded promising results with µSPECT data [27], but the method also assumes that the activitiy inside each 

segmented tissue is uniform. Elsewhere, the importance of the ROI definition has already been pointed out 

[28]. 

Drawn upon the works of A.K. Louis on the approximate inverse [29-31], the present paper describes an 

original method for estimating the statistical properties of an ROI. The method starts with a dual formulation 

of the ROI estimation problem to derive the ROI activity and variance directly from the measured data 

without any image reconstruction. It requires the definition of the ROI characteristic function, which can be 

obtained from a co-registered morphological image. This characteristic function can be smoothed to adjust 

the resolution-variance tradeoff. An iterative procedure is proposed to solve the dual problem in the least 

squares sense and a linear extrapolation scheme is described to reduce the estimation bias caused by 

sampling partial volume effect. Dual characterization is compared with classical ROI estimation using pixel 

summation and with Huesman’s reference method [23] through Monte-Carlo simulations involving 2D PET 

data of a Hoffman brain phantom. 

2. Materials and methods 

2.1. Direct characterization 

Let 𝐟 ∈ ℝN denote an original activity map defined on a 2D Cartesian grid which pixels are indexed with 

the letter 𝑗 (𝑗 = 1 … N) and R a subset of that grid called region of interest (ROI). The characteristic function 

of R is noted 𝐤 and is such that 𝐤𝑗 = 1 if 𝑗 ∈ 𝑅 and 𝐤𝑗 = 0 otherwise. The total activity inside ROI R is then 

F =  𝐤T𝐟 where T stands for the matrix transpose. In emission tomography, the original activity map is 

estimated using a series of projections noted 𝐩 ∈ ℝM. This estimation requires the modeling of the emission-

detection process through a system matrix 𝐌 ∈ ℝN×M whose element 𝐌𝑖𝑗 models the probability for a 

photon (in SPECT) or photon pair (in PET) emitted from pixel 𝑗 to be measured in bin 𝑖, where M is the 

number of bins. An estimate 𝛗 of 𝐟 is obtained by solving the inverse problem 𝐌𝛗 = 𝐩. Starting from this 

estimate, an estimate Φ of the ROI activity is deduced using Φ =  𝐤T𝛗. The set of equations: 

𝐌𝛗 = 𝐩                                (1a) 

Φ =  𝐤T𝛗                               (1b) 
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will be referred to as the direct problem and the resulting solution as the direct characterization of the studied 

ROI. In practice, due to the physical properties of the radioactive decay and detection process, projection 𝐩 

is a random variable which can be written as: 

𝐩 = �̅� + 𝛎                                         (2) 

where �̅� stands for the ideal noise-free projection such that �̅� = 𝐌𝐟, and 𝛎 is a Poisson noise with 𝐸(𝛎) = 0 

and 𝑉𝑎𝑟(𝛎) = 𝐷𝑖𝑎𝑔(�̅�). While 𝐟 and �̅� remain unknown for a given reconstruction problem, it is commonly 

accepted that 𝑉𝑎𝑟(𝛎) = 𝑉𝑎𝑟(𝐩) ≈ 𝐷𝑖𝑎𝑔(𝐩) represents an acceptable approximation. An exact solution to 

the direct problem (1a) does not exist in general due to the inconsistency resulting from the Poisson noise. 

The estimated solution �̂� can be written as: 

�̂� = 𝐇𝐟 + 𝐰                                    (3) 

where 𝐇 ∈ ℝN×N is a convolution operator that is intended to be as close as possible to the identity matrix 

𝐈 but departs from it due to the non-injectivity of the tomographic problem and the modeling errors affecting 

the system matrix, and 𝐰 ∈ ℝN is the image noise resulting from the propagation of the statistical noise 

from the projections to the reconstructed image. Using (1b), the corresponding estimation Φ̂ of the ROI 

value is given by: 

Φ̂ = 𝐤T�̂� = 𝐤T𝐇𝐟 + 𝐤T𝐰                                       (4) 

The first term of equation (4) determines the estimation bias through the resolution kernel 𝐇T𝐤 (𝑏𝑖𝑎𝑠 =

|𝐸(Φ̂) − F| = |𝐤T(𝐇 − 𝐈)𝐟|). The second term determines the variance of the estimate that can be computed 

as: 

𝑉𝑎𝑟(Φ̂) = 𝐤T𝑉𝑎𝑟(𝐰)𝐤                                      (5) 

As most modern techniques employed to solve (1a) are non-linear (especially the algorithms based on 

likelihood maximization), simple and accurate expressions for 𝐇 and 𝐰 are generally not available and a 

statistical characterization of Φ̂ (in terms of resolution/bias and variance) remains difficult to establish in a 

fast and effective way. 

2.2. Huesman’s method 

In 1984, Huesman proposed a fast algorithm for the evaluation of regions of interest and statistical 

uncertainty based on the analytical solution of the tomographic problem known as filtered back-projection 

[23]. Huesman’s ROI estimate can be written as: 

Φ̂ = 𝐤T𝐁𝐂𝐀𝐩                                     (6) 

where 𝐀 ∈  ℝM×M is a diagonal matrix accounting for the attenuation correction of the measured 

projections, 𝐂 ∈  ℝM×M is the convolution matrix mapping the unfiltered projections into the filtered ones 

using the ramp filter, and 𝐁 ∈  ℝN×M is the geometrical back-projection matrix. As the formulation is 

strictly linear, the statistical uncertainty affecting Φ̂ can be approximated as: 

𝑉𝑎𝑟(Φ̂) = 𝐤T𝐁𝐂𝐀 𝑉𝑎𝑟(𝐩) (𝐁𝐂𝐀)T𝐤 ≈ 𝐤T𝐁𝐂𝐀 𝐷𝑖𝑎𝑔(𝐩) (𝐁𝐂𝐀)T𝐤                (7) 

Huesman’s analytical method has two main drawbacks. First, the attenuation correction as expressed above 

is only available in PET and not in SPECT, leading to substantial inaccuracy in SPECT. Second, it suffers 

from the inability of filtered back-projection to force the non-negativity of the reconstructed image (unlike 

most of the algebraic reconstruction schemes which satisfy this constrain by using multiplicative iterative 

corrections). An extended formulation of Huesman’s method has also been proposed [32] to compensate for 

partial volume effects. 
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2.3. Least squares dual characterization 

This sub-section is in part inspired from the works of A.K. Louis on the approximate inverse formulation 

for the solution of inverse problems [29-31]. The goal of the dual characterization is to express the ROI 

estimate as Φ =  𝛅T𝐩 where 𝛅 ∈ ℝM is called the dual characteristic function through which Φ can be 

computed in the projection space rather than in the image space as in (1b). From (1a) one deduces Φ =

𝛅T𝐩 = 𝛅T𝐌𝛗, and from (1b) Φ = 𝛅T𝐩 = 𝐤T𝛗. These two equations lead to 𝐤T𝛗 = 𝛅T𝐌𝛗, which can be 

simplified into 𝐤T = 𝛅T𝐌, or equivalently 𝐌T𝛅 = 𝐤. The set of equations: 

𝐌T𝛅 = 𝐤                                 (8a) 

Φ =  𝛅T𝐩                                  (8b) 

will be referred to as the dual problem and the resulting solution as the dual characterization of the studied 

ROI. Here, equation (8a) is independent of the projection data hence 𝛅 is a deterministic vector depending 

only on the system matrix and the studied ROI. The dual inverse problem (8a) is highly similar to the direct 

one (1a) since it involves the same system matrix 𝐌, which is known to be ill-conditioned. As a result, an 

exact solution to the dual problem does not exist in general and the estimated solution will be denoted �̂�. 

The corresponding estimate Φ̂ for the ROI value can be derived using (8b): 

Φ̂ =  �̂�T𝐩 = �̂�T(�̅� + 𝛎) = �̂�T𝐌𝐟 + �̂�T𝛎                                 (9) 

The first term of equation (9) determines the estimation bias through the resolution kernel 𝐌T�̂� (𝑏𝑖𝑎𝑠 =

|𝐸(Φ̂) − F| = |(�̂�T𝐌 − 𝐤T)𝐟|). The second term determines the variance of the estimate: 

𝑉𝑎𝑟(Φ̂) = �̂�T𝑉𝑎𝑟(𝛎)�̂� ≈ �̂�T𝐷𝑖𝑎𝑔(𝐩)�̂�                               (10) 

Let us stress here the difference between direct and dual characterization. In both cases, the ROI estimates 

given by equations (4) and (9) can be written as: 

Φ̂ = 𝐡T𝐟 + ω                               (11) 

where 𝐡 ∈ ℝN is the resolution kernel and ω is the noise. Direct characterization of the ROI is performed 

using classical iterative non linear algorithms for which 𝐡 and ω remain unknown (or at least not easily 

computable). On the contrary, the dual formulation makes it possible to estimate both 𝐡 = 𝐌T�̂� (within 

modeling errors affecting the system matrix) and ω = �̂�T𝛎. The knowledge of the noise ω leads to a simple 

and robust expression for the ROI estimate variance as given in equation (10). The relative error 𝑒 affecting 

the variance estimate: 

𝑒 =
Δ 𝑉𝑎𝑟(Φ̂)

𝑉𝑎𝑟(Φ̂)
=  

√∑ �̂�𝑖
4 �̅�𝑖

∑ �̂�𝑖
2 �̅�𝑖

≈
1

√𝑞 𝑂(�̅�)
 

         (12) 

is expected to decrease with the count rate and with the number 𝑞 of non-null components in �̂� (i.e., the 

number of projections involved in the estimation of Φ̂). For instance, basic computations yield 𝑒 = 𝑂(3%)1 

for 𝑞 = 100 and 𝑂(�̅�) = 10 (very tiny ROI at low count rate), and 𝑒 = 𝑂(0.3%) for 𝑞 = 1000 and 𝑂(�̅�) =

100 (large ROI at high count rate). In addition, the knowledge of the resolution kernel 𝐡 = 𝐌T�̂� can help 

manage the bias-variance tradeoff as will be discussed thereafter. Since the solution of the dual problem 

may have negative components, (8a) cannot be solved like the direct problem using maximum-likelihood 

algorithms involving multiplicative corrections and will have to be solved with a descent method. Let us 

consider the following objective function: 

                                                           
1 Where 𝑂 stands for “order of magnitude”. 
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𝐽(𝛅) =  ‖𝐌T𝛅 − 𝐤‖
2

+  β ‖𝛅‖2                            (13) 

which minimal argument �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛅∈ℝM

{ 𝐽(𝛅) } corresponds to the least-squares solution of (8a) with a 

Tikhonov regularization. The first term is a matching term between 𝐌T�̂� and 𝐤 whose minimization results 

in the minimization of the estimation bias on Φ̂. The second term is a penalty whose roughness is determined 

by the scalar parameter β and whose minimization results in the minimization of 𝑉𝑎𝑟(Φ̂). Yet, these two 

terms are computed in different spaces and their relative order of magnitude is hard to evaluate. Although 

optimization techniques have been developed to tune the Tikhonov parameter 𝛽 [33-34], a less time-

consuming and more intuitive manner to handle the bias-variance tradeoff is to use the following objective 

function: 

𝐽(𝛅) =  ‖𝐌T𝛅 − �̆�α‖
2
                              (14) 

where �̆�α is a smoothed characteristic function of the ROI: 

�̆�α = 𝐤 ∗ 𝐆α                              (15) 

with ∗ standing for the 2D convolution operator, and 𝐆α for the 2D Gaussian kernel of full-width at half-

maximum (FWHM) α pixels2. When the regularization parameters (β and α) tend to zero, both equations 

(13) and (14) tend to the natural least squares objective function 𝐽(𝛅) =  ‖𝐌T𝛅 − 𝐤‖
2
. However, unlike the 

Tikhonov method, the regularization parameter α has a clear physical and numerical interpretation and can 

be used to tune the regularization roughness in terms of smoothing distance. The impact of the smoothing 

on the ROI characterization can be assessed in terms of resolution kernel. Indeed, the solution of the dual 

problem �̂� is built so that 𝐌T�̂� is as close as possible to �̆�α and the smoothed characteristic function �̆�α 

may thus be viewed as the target resolution kernel for the ROI estimate. We propose to minimize the 

objective function using the following iterative procedure: 

■ Initialize �̂�0 to: 

∀𝑖, {
 �̂�𝑖

0 = 1  𝑖𝑓  {∃𝑗 ∈ 𝑅 | 𝐌𝑖𝑗 > 0}

�̂�𝑖
0 = 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                     (16) 

then normalize it so that: 

∑ (𝐌T�̂�0)
𝑗𝑗 =  ∑ �̆�α,𝑗𝑗                               (17) 

■ At each iteration n, do: 

▪ Compute the descent direction 𝛄𝑛 using an approximate Newton method: 

 𝛄𝑛 ≈ −∇𝐽(𝛅𝑛) (∇2𝐽(𝛅𝑛))
−1

                                (18) 

As the inverse of the Hessian matrix ∇2𝐽(𝛅𝑛) is hard to compute due to the huge dimensions of the system, 

the following approximation is used: 

∀𝑖, 𝛄𝑖
𝑛 = −[∇𝐽(𝛅𝑛)]𝑖 / [∇2𝐽(𝛅𝑛)]𝑖𝑖                     (19) 

i.e., only the diagonal elements of the Hessian matrix are taken into account. Basic computations show that 

this descent direction is equivalent to: 

∀𝑖, 𝛄𝑖
𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝛾∈ℝ
{ 𝐽(�̂�1

𝑛 , … , �̂�𝑖−1
𝑛  , �̂�𝑖

𝑛 + 𝛾 , �̂�𝑖+1
𝑛  , … , �̂�N

𝑛 ) }                  (20) 

The reason why this approximate Newton descent direction is employed instead of a classical gradient  𝛄𝑛 =

−∇𝐽(𝛅𝑛) is that the gradient results in a very slow convergence rate when the components of the system 

                                                           
2 Obviously, when working with 3D data, ∗ stands for the 3D convolution operator and 𝐆α for a 3D Gaussian kernel. 
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matrix 𝐌 exhibit large amplitude variations, which is the case when attenuation correction is taken into 

account. 

▪ Project 𝛄𝑛 onto the hyperplane ∑ (𝐌T𝛄𝑛)
𝑗𝑗 = 0 so as to preserve the normalization throughout the 

iterations. 

▪ Compute 𝜀̆ as: 

𝜀̆ =  𝑎𝑟𝑔𝑚𝑖𝑛
𝜀∈ℝ

{ 𝐽(𝛅𝑛 +  𝜀 𝛄𝑛) }                           (21) 

The minimization here is straightforward since 𝐽 is quadratic in 𝜀. 

▪ Update �̂�𝑛 according to: 

�̂�𝑛+1 =  �̂�𝑛 +  𝜀̆ 𝛄𝑛                              (22) 

▪ Proceed to the next iteration. 

At each iteration n, equations (8b) and (10) give the current estimate of the ROI activity and associated 

variance:  

Φ̂𝑛 =  �̂�𝑛T
𝐩                               (23) 

𝑉𝑎𝑟(Φ̂𝑛) ≈ �̂�𝑛T
𝐷𝑖𝑎𝑔(𝐩) �̂�𝑛                               (24) 

In the following, this least squares dual characterization will be abbreviated as LSD characterization. 

2.4. LSD characterization with linear extrapolation 

During the iterative process described in sub-section 2.3 one can compute what will be referred to as the 

overlap coefficient: 

𝜌𝑛 =
𝐤T 𝐌T �̂�𝑛

𝐤T 𝐤
 

                       (25) 

Ideally, when solving the unregularized least squares problem (i.e., when α is set to 0), this coefficient 

should tend toward 1. In practice, due the inconsistency of the dual problem, 𝜌𝑛 will reach a plateau value 

depending on both 𝐌 and 𝐤. Let us denote 𝐴𝑟𝑜𝑖 the mean activity in the considered ROI and 𝐴𝑏𝑘𝑔 the mean 

activity in the ROI background. In the neighborhood of the studied ROI, the original activity map can be 

decomposed as: 

𝐟 ≈ 𝐴𝑟𝑜𝑖𝐤 + 𝐴𝑏𝑘𝑔(𝐢 − 𝐤)                       (26) 

where 𝐢 is a vector with all components equal to 1. Using equation (9), one can write the expectation of Φ̂𝑛 

as: 

𝐸(Φ̂𝑛) =  𝐟T 𝐌T �̂�𝑛 ≈ 𝐴𝑟𝑜𝑖  𝐤T 𝐌T�̂�𝑛  + 𝐴𝑏𝑘𝑔( 𝐢T −  𝐤T) 𝐌T�̂�𝑛                (27) 

Noting 𝑆 = 𝐤T𝐤 = 𝐢T𝐤  the number of pixels in the ROI, and noticing that  𝐢T𝐌T�̂�𝑛 =  𝐢T𝐤 (due to the 

normalization of �̂�𝑛 throughout the iterative process), one has: 

𝐸(Φ̂𝑛) ≈ 𝑆 𝐴𝑟𝑜𝑖  𝜌𝑛 +  𝑆 𝐴𝑏𝑘𝑔 − 𝑆 𝐴𝑏𝑘𝑔 𝜌𝑛 = 𝑆 𝐴𝑏𝑘𝑔 + 𝑆 (𝐴𝑟𝑜𝑖 − 𝐴𝑏𝑘𝑔) 𝜌𝑛                (28) 

If the ROI and background activities are sufficiently uniform, 𝐸(Φ̂𝑛) is approximately linear in 𝜌𝑛 and 

𝐸(Φ̂𝑛) tends toward the true ROI value F = 𝑆 𝐴𝑟𝑜𝑖 when 𝜌𝑛 tends toward 1. Let us consider the series 

{𝜌𝑛, Φ̂𝑛} and {𝜌𝑛, 𝑆𝑡𝑑(Φ̂𝑛)}, with 𝑆𝑡𝑑(Φ̂𝑛) the square root of 𝑉𝑎𝑟(Φ̂𝑛). When 𝜌𝑛 reaches its plateau 

value, Φ̂𝑛 also reaches a plateau and the subsequent iterations do not improve the estimate Φ̂𝑛 in terms of 

bias. However, ‖�̂�𝑛‖ keeps on increasing with the iterations which leads (via equation (24)) to a monotonic 

rise in 𝑆𝑡𝑑(Φ̂𝑛), i.e., in the variance of the estimate. Choosing the optimal value of 𝜌𝑛 at which to stop the 
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iterative process would require knowing the expected bias in order to compare it with the current variance 

and evaluate the bias-variance tradeoff, which is not the case in practice. An alternative strategy consists in 

stopping empirically the iterative process when the convergence of 𝜌𝑛 becomes slow and extrapolating the 

values of Φ̂ and 𝑆𝑡𝑑(Φ̂) for 𝜌 = 1 using a linear regression. Let us denote [𝜌𝑛𝑚𝑖𝑛   𝜌𝑛𝑚𝑎𝑥] the relevant range 

of 𝜌 values, with 𝑛𝑚𝑖𝑛 ≥ 1 (in practice the first iterations are discarded since they are not representative of 

the general trend) and 𝑛𝑚𝑎𝑥 corresponding to the iteration index at which the iterative process is stopped. 

A subset of k 𝜌 values evenly distributed in the relevant range is chosen: 

{𝜌𝑛1 = 𝜌𝑛𝑚𝑖𝑛  ;  𝜌𝑛2  ; … ; 𝜌𝑛k−1  ;  𝜌𝑛k = 𝜌𝑛𝑚𝑎𝑥}, corresponding to k ROI estimates {Φ̂𝑛1  ; … ;  Φ̂𝑛k} and k 

variance estimates {𝑆𝑡𝑑(Φ̂𝑛1) ; … ;  𝑆𝑡𝑑(Φ̂𝑛k)}. A linear regression is then performed on the two series 

{𝜌𝑛𝑡  , Φ̂𝑛𝑡} and {𝜌𝑛𝑡  , 𝑆𝑡𝑑(Φ̂𝑛𝑡)} with 𝑡 = 1 … k: 

Φ ≈ 𝐴(𝜌𝑛1  ; … ;  𝜌𝑛k  ;  Φ̂𝑛1  ; … ;  Φ̂𝑛k) 𝜌 +  𝐵(𝜌𝑛1  ; … ; 𝜌𝑛k  ;  Φ̂𝑛1  ; … ;  Φ̂𝑛k)           (29a) 

where 𝐴 and 𝐵 are the first and zero order coefficients of the linear regression respectively, 

𝑆𝑡𝑑(Φ) ≈ 𝐶 (𝜌𝑛1; … ; 𝜌𝑛k; 𝑆𝑡𝑑(Φ̂𝑛1); … ; 𝑆𝑡𝑑(Φ̂𝑛k)) 𝜌 + 𝐷 (𝜌𝑛1; … ; 𝜌𝑛k; 𝑆𝑡𝑑(Φ̂𝑛1); … ; 𝑆𝑡𝑑(Φ̂𝑛k)) 

             (29b) 

where 𝐶 and 𝐷 are the first and zero order coefficients of the linear regression respectively. For illustrative 

purposes, Figure 1 shows an example for the regression Φ≈ 𝐴𝜌 + 𝐵. We denote LSD-ex the LSD 

characterization obtained when extrapolating the two linear regressions for the value 𝜌 = 1: 

Φ̂ex = 𝐴(𝜌𝑛1 ; … ;  𝜌𝑛k  ;  Φ̂𝑛1  ; … ;  Φ̂𝑛k) + 𝐵(𝜌𝑛1  ; … ; 𝜌𝑛k  ;  Φ̂𝑛1  ; … ;  Φ̂𝑛k)                             (30a) 

𝑆𝑡𝑑(Φ̂ex) = 𝐶 (𝜌𝑛1; … ; 𝜌𝑛k; 𝑆𝑡𝑑(Φ̂𝑛1); … ; 𝑆𝑡𝑑(Φ̂𝑛k)) + 𝐷 (𝜌𝑛1; … ; 𝜌𝑛k; 𝑆𝑡𝑑(Φ̂𝑛1); … ; 𝑆𝑡𝑑(Φ̂𝑛k)) 

                    (30b) 

 

 

Figure 1. Example of a linear regression over a series {𝜌𝑛𝑡  , Φ̂𝑛𝑡}, 𝑡 = 1 … k. 
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2.5. Monte-Carlo validation 

We studied a Hoffman brain phantom. Figure 2 shows the 2D activity and density maps and the ROIs used 

in our study. Table 1 gives the relative uptakes and attenuation coefficients of the different tissues. Three 

uniform hot spots of various sizes and uptakes mimicking tumors were included inside the cerebral 

parenchyma and corresponded to ROI 1 to 3. A fourth non-uniform ROI was defined inside the frontal lobe, 

with boundaries not correlated with anatomical region borders. Regions 1 to 3 were relatively small ROI 

with high contrast with respect to the background and were typical of clinical situations when one wants to 

estimate the statistical properties of a hot tumor, whereas region 4 was a large ROI with no particular contrast 

with respect to its neighborhood and was representative of a non specific area serving as a reference for ROI 

uptake comparison (for instance in dopaminergic neuroimaging where an occipital ROI is used to assess the 

striatal uptake through the calculation of the binding potential [35]). From a statistical point of view, the 

estimation errors regarding ROI 1 to 3 will mainly be caused by bias due to partial volume effects. In ROI 

4, the bias is expected to be small and the estimation error will mainly reflect the estimate variability. 

 

 

Figure 2. Hoffman brain phantom. From left to right are displayed 

the activity map, the density map, and the ROI subdivision. 

 

 

Table 1. Phantom composition. 

Tissue Relative uptake Attenuation 

Bone 

Gray matter 

0 

1 

0.15 cm-1 

0.1 cm-1 

White matter 0.5 0.1 cm-1 

Cerebrospinal fluid 0.2 0.1 cm-1 

ROI 1 1.5 0.1 cm-1 

ROI 2 2 0.1 cm-1 

ROI 3 3 0.1 cm-1 

 

The projection data were produced using the GATE (Geant4 Application in Emission Tomography) 

platform [36-37]. The numerical Hoffman phantom we used was an axially invariant 3D phantom whose 

2D activity and density maps are displayed in Figure 2 and defined on a 128×128 grid with a pixel size of 

2 mm. The data were simulated using the specifications of the GEMINI GXL PET scanner (Philips 

Healthcare) [38]. Positron range and non-collinearity were not modeled. A 3D data set was produced 

corresponding to a total activity of 80 MBq (18FDG) and an acquisition time of 10 minutes. The simulated 

prompts, estimated scatter [39], and estimated random [40] were stored. The 29 transaxial sinograms of 
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each data set (prompts, scatter and random) were then summed and re-sampled to produce three high-

statistics 2D 128×128 sinograms. The prompts 2D sinogram included about 10 million counts, the scatter 

2.4 million counts, and the random 1.8 million counts. These 2D sinograms were considered as noise-free 

[41], i.e., as the exact distributions of the prompts, scatter and random. Let us note respectively �̅�, �̅� and �̅� 

these three distributions. The distribution of the trues (i.e., the corrected projections) was computed as 𝐭̅ =

�̅� − �̅� − �̅�. Realistic noisy data sets were simulated using the following method: 

■ Choose a count rate C. 

■ Scale the exact distributions using the appropriate scaling factors 𝜇 and 𝜂:  

𝐭̿ = 𝜇𝐭 ̅  ;    �̿� = 𝜇�̅�   ;    �̿� = 𝜂𝜇�̅�                        (31) 

where 𝜇 is such that 𝐭 ̿includes C counts, and 𝜂 accounts for the quadratic variation of the number of random 

counts with the count rate. 

■ Simulate the noisy measured prompts 𝐩 as: 

𝐩 = Π(𝐭)̿ + Π(�̿�) + Π(�̿�)                  (32) 

where Π stands for the Poisson noise operator (modeled using Knuth’s algorithm [42]). 

■ Simulate the estimated random �̂� as: 

�̂� = Π(�̿�)                        (33) 

■ Simulate the estimated scatter �̂� as: 

�̂� = Π(�̿�) ∗ 𝐆2                        (34) 

where the convolution with a 2D Gaussian kernel of FWHM 2 pixels accounts for the smooth nature of the 

estimated scatter. 

Three count rates were considered: 50,000 counts, 200,000 counts, and 800,000 counts. For each count rate, 

1000 realistic replicates of the measured prompts 𝐩, estimated scatter �̂�, and estimated random �̂�, were 

generated. The system matrix 𝐌 employed for the reconstructions and ROI estimations was built using a 

uniformly distributed pixel activity model and corrected for attenuation and normalization using the 

appropriate correction factors. The images were reconstructed on a 128×128 grid with a pixel size of 2 mm. 

The following methods were evaluated for the task of ROI characterization: 

■ Maximum-likelihood expectation-maximization (MLEM) [43-44] was run on 400 replicates for each 

count rate, using the measured prompts 𝐩. The estimated random �̂� and scatter �̂� were taken into account by 

adding them to the projections of the current image estimate at each iteration, according to the ordinary 

Poisson model proposed by Politte and Snyder [45]. The total number of iterations was 100 for the 50,000 

count sinograms, 150 for the 200,000 count sinograms, and 200 for the 800,000 count sinograms. These 

values were set empirically so as to ensure sufficient convergence of the algorithm. At each iteration, the 

ROI estimates were deduced by pixel summation. The bias was computed as the absolute difference between 

the mean of the current estimates (over the 400 replicates) and the true ROI value. The variability was 

computed as the standard deviation of the current estimates (over the 400 replicates). 

■ Huesman’s method was run on the 1000 replicates for each count rate. Here, the system matrix was a 

simple geometric projector and the projections were corrected for attenuation and normalization. The ROI 

estimates were produced using equation (6) as: 

Φ̂ = 𝐤T𝐁𝐂𝐀𝐩 − 𝐤T𝐁𝐂𝐀�̂� − 𝐤T𝐁𝐂𝐀�̂�                       (35) 

The bias was computed as the absolute difference between the mean of the estimates (over the 1000 

replicates) and the true ROI value. The variability was computed as the standard deviation of the estimates 



Physics in Medicine and Biology 2013, 58(12): 4175-4194 

10 
 

(over the 1000 replicates). As this has already been investigated elsewhere, the agreement between the true 

variance and the estimated variance provided by equation (7) was not studied. 

■ LSD characterization. The iterative process described in section 2.3 was run on the 1000 replicates for 

each count rate. The total number of iterations was 100 for the 50,000 count sinograms, 150 for the 200,000 

count sinograms, and 200 for the 800,000 count sinograms. These values are identical to those chosen for 

MLEM: the computation time of an iteration step of MLEM being very similar to that of an iteration step 

of LSD, the same total number of iterations was used for both algorithms so that their performance can be 

compared on the basis of identical computational costs. The ROI activity was computed using equations 

(23): 

Φ̂𝑛 =  �̂�𝑛T
(𝐩 − �̂�  −  �̂�)                             (36) 

The LSD method does not require the correction of the projections prior to the ROI characterization, thus 

avoiding the need to set negative projection values to zero (as is sometimes done before MLEM 

reconstruction). The ROI variability was then computed using equations (24): 

𝑆𝑡𝑑(Φ̂𝑛) = √𝑉𝑎𝑟(Φ̂𝑛) ≈ √�̂�𝑛T
𝐷𝑖𝑎𝑔(𝐩 + �̂�) �̂�𝑛                   (37) 

where the variance of the scatter was assumed to be negligible. As discussed above, for ROI 1 to 3, as the 

goal was to minimize the bias, LSD characterization was performed with non smoothed ROI characteristic 

functions, i.e., α = 0 in equation (15). In ROI 4, as the main error source is expected to be the variance, 

LSD characterization was performed with three smoothing levels, corresponding to α = 0, α = 2 and α =

4 pixels. In addition, LSD characterization was also run using a classical gradient minimization to justify 

the choice of the descent direction employed in the recipe described in section 2.3. 

■ LSD-ex characterization. This method was only applied to ROI 1 to 3 and used the 1000 noisy replicates 

for each count rate. The total number of iterations was set to 𝑛𝑚𝑎𝑥 = 40. The subset of 𝜌 values included 

k = 15 points: {𝑛1 … 𝑛15} ={4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 21, 25, 30, 35, 40}. The corresponding range of 

𝜌 values was [0.58 0.91] for ROI 1, [0.48 0.87] for ROI 2, and [0.34 0.77] for ROI 3. The bias was computed 

as the absolute difference between the mean of the estimates Φ̂ex (over the 1000 replicates) and the true 

ROI value. The variability was computed as the standard deviation of the estimates Φ̂ex (over the 1000 

replicates). The variance estimates given by equation (30b) were computed and assessed through their 95% 

confidence interval (CI95%) over the 1000 replicates. 

The reason why MLEM was run on a restricted subset (400 replicates) of the whole simulated data set (1000 

replicates) is that MLEM reconstruction is highly time-consuming. For Huesman’s method, 𝐤T𝐁𝐂𝐀 was 

pre-computed and stored for a given ROI then applied to the 1000 noisy replicates. Similarly, for LSD, the 

successive values of the dual characteristic function �̂�𝑛 (n = 1…200) were pre-computed and stored for a 

given ROI then applied to the 1000 noisy replicates, which significantly quickened the ROI estimation and 

allowed to process the 1000 replicates within a reasonable computation time. To each bias and variance 

computation corresponded a root mean square (RMS) error value according to 𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 =

 √𝑏𝑖𝑎𝑠2 +  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒. In the result section, these three figures of merit (bias, standard deviation and RMS 

error) are normalized and expressed in percent of the true ROI value. 
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3. Results 

Figure 3 shows the intrinsic convergence properties of LSD characterization. The iterative process was 

performed with α = 0. Figure 3A/D, 3B/E and 3C/F correspond to ROI 1 to 3 respectively. Figure 3A, 3B 

and 3C show the evolution of the objective function defined in equation (14) with the iteration number and 

figure 3D, 3E and 3F represent the evolution of the overlap coefficient defined in equation (25) with the 

iteration number. The solid curves correspond to the use of the approximate Newton descent described in 

section 2.3, the dotted curves correspond to the classical gradient. Figures 4 to 6 compare the four estimation 

methods and correspond respectively to the 50,000 count, 200,000 count, and 800,000 count simulations. 

In each figure, ROIs 1 to 4 are shown from left to right. For each of the four ROIs, row A shows the 

estimation bias, row B displays the associated standard deviation, and row C displays the resulting RMS 

error. The thick dotted curves correspond to the results of MLEM, the thin solid curves to the results of LSD 

given by equation (36), the gray dashed lines to the results of Huesman’s method given by equation (35), 

and the crosses to the results of LSD-ex given by equation (30a). The thick solid curves labeled “2” and “4” 

refer to the results of LSD using respectively α = 2 and α = 4 pixels. The thin dotted curves indicate the 

95% confidence interval of the LSD variability estimate provided by equation (37). Table 2 shows the 

adequacy between the variability of the LSD estimates at iteration 100 (obtained using the noisy replicates) 

and the predicted value of that variability computed using equation (37). Last, tables 3 and 4 summarize the 

performances of LSD-ex. Table 3 compares the LSD-ex estimates with the optimal MLEM estimates 

(MLEM-opt, corresponding to the iteration number for which the RMS error reaches its minimum) in terms 

of bias, standard deviation, and RMS error. Table 4 shows the adequacy between the variability of the LSD-

ex estimates (obtained using the noisy replicates) and the predicted value of that variability computed using 

equation (30b). 

 

 

Figure  3. Convergence properties of  LSD characterization for ROI 1 (left), ROI 2 (middle), and ROI 3 (right) 

in terms of the objective function 𝐽 (top) and the overlap coefficient 𝜌 (bottom). 

 



Physics in Medicine and Biology 2013, 58(12): 4175-4194 

12 
 

 

Figure 4. 50,000 count simulations – comparison in terms of bias, standard deviation and RMS error of the performances of LSD 

(thin solid curves), MLEM (thick dotted curves), Huesman’s method (gray dashed lines), LSD-ex (crosses), and LSD with α = 2 

and α = 4 pixels (thick solid lines labeled “2” and “4”). Row B, the thin dotted curves indicate the 95% confidence interval of the 

LSD variability estimate provided by equation (37). 
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Figure 5. Same as figure 4 for the 200,000 count simulations. 
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Figure 6. Same as figure 4 for the 800,000 count simulations. 
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Table 2. Variability of the LSD estimates at iteration 100: based on the 

noisy replicates (2nd column), and predicted using equation (37) (3rd column). 

  𝑆𝑡𝑑(Φ̂)  (%) 𝑆𝑡𝑑(Φ̂) predicted CI95% (%) Error 

 

50,000 

counts 

ROI 1 10.31 9.75  –  10.01 – 0.43 % 

ROI 2 12.48 12.06  –  12.38 – 0.26 % 

ROI 3 21.54 20.53  –  21.33 – 0.61 % 

 

200,000 

counts 

ROI 1 5.24 5.01  –  5.08 – 0.20 % 

ROI 2 6.54 6.19  –  6.27 – 0.32 % 

ROI 3 10.48 10.32  –  10.52 – 0.06 % 

 

800,000 

counts 

ROI 1 3.41 3.22  –  3.24 –  0.18 % 

ROI 2 4.08 3.92  –  3.94 – 0.15 % 

ROI 3 6.79 6.62  –  6.67 – 0.15 % 

 

Table 3. Comparison between MLEM-opt and LSD-ex estimations in terms of bias, standard deviation and RMS error. 

  50,000 counts 200,000 counts 800,000 counts 

 ROI 1 ROI 2 ROI 3 ROI 1 ROI 2 ROI 3 ROI 1 ROI 2 ROI 3 

 

Bias 

MLEM 10.9 % 12.0 % 22.9 % 9.0 % 11.0 % 18.8 % 8.5 % 9.9 % 18.5 % 

LSD-ex 5.2 % 5.0 % 8.9 % 4.8 % 5.5 % 9.2 % 4.9 % 5.5 % 8.2 % 

Difference – 5.7 % – 7 % – 14 % – 4.2 % – 5.5 % – 9.6 % – 3.6 % – 4.4 % – 10.3 % 

 

Std. 

dev. 

MLEM 8.6 % 10.4 % 18.1 % 4.8 % 5.9 % 10.2 % 3.1 % 3.9 % 6.4 % 

LSD-ex 9.9 % 12.5 % 23.8 % 5.1 % 6.5 % 11.4 % 3.3 % 4.0 % 7.5 % 

Difference + 2.3 % + 2.1 % + 5.7 % + 0.3 % + 0.6 % + 1.2 % + 0.2 % + 0.1 % + 1.1 % 

 

RMS 

error 

MLEM 13.8 % 15.9 % 29.1 % 10.3 % 12.5 % 21.5 % 9.1 % 10.6 % 19.6 % 

LSD-ex 11.2 % 13.5 % 25.4 % 7.0 % 8.5 % 14.6 % 5.9 % 6.8 % 11.1 % 

Difference – 2.6 % – 2.4 % – 3.7 % – 3.3 % – 4 % – 6.9 % – 3.2 % – 3.8 % – 8.5 % 

 

Table 4. Adequacy between the real and predicted variability of the LSD-ex estimates. 

  𝑆𝑡𝑑(Φ̂ex)  (%) 𝑆𝑡𝑑(Φ̂ex) predicted CI95% (%) Error 

 

50,000 

counts 

ROI 1 9.92 9.26  –  9.47 – 0.56 % 

ROI 2 12.50 11.71  –  12.00 – 0.65 % 

ROI 3 23.83 22.50  –  23.40 – 0.88 % 

 

200,000 

counts 

ROI 1 5.13 4.75  –  4.80 – 0.35 % 

ROI 2 6.50 6.01  –  6.08 – 0.46 % 

ROI 3 11.43 11.08  –  11.30 – 0.24 % 

 

800,000 

counts 

ROI 1 3.32 3.06  –  3.07 –  0.26 % 

ROI 2 4.01 3.80  –  3.82 – 0.19 % 

ROI 3 7.52 7.11  –  7.16 – 0.39 % 

 

 

4. Discussion 

The convergence properties of the LSD algorithm shown in Figure 3 clearly justify the use of our Newton-

like descent for the minimization of the objective function since the overlap coefficient reaches a plateau 

within an acceptable number of iterations depending on the ROI size (between 25 for the large ROI 1 and 

50 for the small ROI 3). When using the classical gradient, the convergence of the objective function is very 

slow and after 200 iterations the plateau of the overlap coefficient is far from being reached. These results 

further justify the choice of 𝑛𝑚𝑎𝑥 = 40 as a reasonable number of iterations after which to stop the iterative 
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process before performing the linear extrapolation in LSD-ex. In practice, this choice can be adapted on a 

case-by-case basis since the trend of the overlap coefficient is obviously independent of the measured data 

in general and of the count rate in particular (it only depends on the system matrix and ROI characteristic 

function). 

Comparing the 4 methods used for ROI characterization (figures 4 to 6), as expected, the bias is rather 

independent of the count level. This is strictly true for LSD, LSD-ex, and Huesman’s method since they are 

linear. For MLEM, the bias slightly increases at low count rate due to the non-linear nature of the method. 

Regarding the standard deviation, as expected, it is approximately reduced by a factor of 2 when changing 

from 50,000 counts to 200,000 counts then from 200,000 to 800,000 counts. As discussed above, the RMS 

error in ROI 1 to 3 estimates depends on the relative proportion of the bias and the variance. At high count 

rate, the RMS error is mainly influenced by the bias, whereas at low count rate the variance has a significant 

and early impact on the evolution of the RMS error. In ROI 4, the RMS error mostly results from the noise 

since the bias tends to zero as the iterations proceed. 

Huesman’s method results in estimation biases that are significantly higher than the two iterative methods 

(that is why the corresponding dashed line does not appear in ROI 4 plots for which the bias is around 5%). 

On the contrary, the variance of Huesman’s estimates remains moderate compared with MLEM and LSD. 

The resulting RMS error is significantly higher in Huesman’s method than with MLEM and LSD, whatever 

the ROI and count rate. 

The performance of MLEM and LSD are rather similar in terms of bias, variance and RMS error. Likely 

due to the appropriate definition of the descent direction employed for the minimization of the objective 

function, the convergence of LSD is faster than that of MLEM (figures 4 to 6, rows A), yielding a faster 

bias decrease. For a given iteration, the variance of the LSD estimates is always slightly higher than that of 

the MLEM estimates, due to the higher convergence rate (figures 4 to 6, rows B). As confirmed by table 2, 

the LSD variance estimates are fairly accurate since the error after 100 iterations is always below 1%. They 

also prove to be highly robust as confirmed by the narrow confidence intervals. The resulting RMS errors 

are comparable for LSD and MLEM and follow roughly the same trends whatever the studied ROI and 

count level (figures 4 to 6, rows C). For the three small tumor ROIs, it appears that the RMS error is always 

significantly lower with LSD than with MLEM. Regarding the non-specific large ROI, the RMS error is 

lower with MLEM, but the difference between the two methods remains small and weakly significant from 

a practical point of view. 

In ROI 4, the minimum RMS error is reached early in the iterative process and the subsequent RMS error 

rise follows the trend of the variance increase. For this kind of ROI with large size and low contrast, a 

regularized estimation is hence desirable to avoid a large increase in variance. As described in section 2.3, 

the regularization can be performed by smoothing the characteristic function of the ROI with an adjustable 

convolution kernel. Figure 7 shows the effect of regularization on the convergence properties of the LSD 

algorithm applied to ROI 4. The top row displays the characteristic function �̆�α which, as discussed in 

section 2.3, can be interpreted as the target resolution kernel for LSD characterization. The second row 

shows the exact object smoothed using the corresponding Gaussian filter 𝐆α. It clearly appears that the 

filtering definitely alters the intrinsic resolution of the small tumor ROIs due to their high contrast. In ROI 

4, the smoothing and the related loss of resolution are not expected to significantly bias the ROI estimate. 

The third row displays line profiles through the target resolution kernel �̆�α (dotted) and through the 

resolution kernel 𝐌T�̂� (solid) at iteration 100. Whereas the match between the two is perfect for α = 4 and 

almost perfect for α = 2, the solution of the unregularized dual problem fails in perfectly matching 𝐌T�̂� 

with �̆�α. The bottom row shows the convergence of the objective function throughout the iterations and 
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illustrates that the roughness of the regularization strongly influences the speed and quality of the 

convergence. These observations explain the results shown in figures 4 to 6 for ROI 4. In terms of bias, the 

regularization does not yield a significant degradation of the ROI estimates (almost 0% at convergence for 

α = 0, about 0.2% for α = 2 and less than 0.7% for α = 4). In terms of variance, the use of α = 2 

significantly reduces the variance compared to α = 0, yet the variance still follows a slow monotonic 

increase while the iterations proceed. Choosing α = 4 yields a further reduction along with a fast and 

sustainable stabilization of the variance (a plateau is reached within about 30 iterations). As a consequence, 

the strongly regularized LSD algorithm produces the most accurate and stable ROI estimate in terms of 

RMS error. So far, the adjustment of parameter α has been performed intuitively, based on basic a priori 

knowledge regarding the considered problem such as the size of the ROI, its expected contrast with respect 

to the background, the SNR in the recorded projections. Further work has to be undertaken in order to design 

an automated procedure for the optimization of parameter α. 

 

 

Figure 7. Unregularized LSD (α = 0, left column) and regularized LSD with α = 2 (middle column) and α = 4 (right column). 

Top row: ROI 4 characteristic function �̆�α. Second row: phantom smoothed using 𝐆α. Third row: line profiles through �̆�α 

(dotted) and 𝐌T�̂� (solid) at iteration 100. Bottom row: convergence of the objective function 𝐽. 
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In the small tumor ROIs, LSD-ex characterization was also used to study to what extent it could reduce the 

bias and RMS error. It appears from Figures 4 to 6 and table 3 that the bias was lowered compared with 

LSD and MLEM due to the compensation of sampling-induced partial volume effects. The residual bias 

affecting LSD-ex estimates is mainly due to the re-sampling of the projection data and to the modeling 

errors affecting the system matrix which does not account for the detector response function. When 

compared with the optimal MLEM estimate (MLEM-opt) in term of RMS error, the LSD-ex estimate 

reduces the bias from 4% to 14% (depending on the ROI and count level). The variance of the LSD-ex 

estimate is similar to that of the LSD estimate around 100 iterations (except for the smallest ROI for which 

the variance is slightly higher, likely due to a wider range of 𝜌 values over which the extrapolation is 

performed, producing a higher variability in the linear regression). The resulting reduction in terms of RMS 

error with comparison to MLEM-opt ranged from 2.5% to 8.5%. Furthermore, table 4 shows that the LSD-

ex estimate variance predicted using equation (30b) is highly robust and accurate since the associated 95% 

confidence interval is always narrow and close to the true LSD-ex estimate variance (the variance is mostly 

under-estimated with an error always below 1%). Yet, before the LSD-ex method can be widely used, an 

automatic criterion for the definition of the series to be extrapolated will have to be designed, so that the 

procedure could be fully user-independent. 

Regarding the computational requirements of the compared algorithms, the LSD characterization of one 

ROI requires approximately the same time as that needed by an MLEM iterative reconstruction followed by 

pixel summation. When several ROIs are studied, the LSD algorithm has to be run for each ROI. Yet, when 

performing successive characterizations of the same ROI (as in dynamic imaging), the dual characteristic 

function has only to be estimated once. 

As a summary, one can list the advantages of dual ROI characterization versus classical direct ROI 

quantification: 

■ No need for image reconstruction. 

■ A similar computational complexity. 

■ A higher convergence speed allowed by the Newton-like descent. 

■ A linear expression of the ROI value enabling a straightforward estimation of the ROI variance. 

■ An intuitive handling of the regularization of the inverse problem using a smoothed version of the ROI 

characteristic function. The resulting estimation bias is directly interpretable in terms of resolution loss. 

■ An innovative extrapolation scheme allowing a significant reduction in the estimation bias induced by 

sampling partial volume effects. When LSD-ex is applied to the ill-posed unregularized least squares 

problem, the iterative process can be suitably stopped very early in the iterations (based on the knowledge 

of the overlap coefficient), hence limiting the estimate variance increase without requiring any stopping 

criterion. 

■ Performances at least as good as those of optimal direct quantification (in terms of RMS error). 

■ An inverse problem that is independent of the measured data. When ROI estimation is required on 

successive recordings of the same object, the dual problem needs only to be solved once. This should be 

particularly helpful in the frame of dynamic imaging. 

5. Conclusion 

This paper presents an original method for region of interest characterization in emission tomography 

relying on a dual formulation of the ROI estimation problem inspired by the works of A. K. Louis on the 

approximate inverse. The dual formulation yields estimations for the ROI activity and variance directly from 

the measured data without any image reconstruction. It requires the definition of an ROI characteristic 
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function that can be derived from a co-registered morphological image. When this characteristic function is 

properly smoothed, it acts as a target resolution kernel for the characterization, and makes it possible to 

intuitively tune the resolution-variance tradeoff. The dual problem is solved in the least squares sense (LSD 

characterization) by means of an iterative descent method. At each iteration, an LSD estimate is produced 

while having a precise knowledge of the current resolution kernel (within system modelling errors) and 

estimate variance. Furthermore, a linear extrapolation scheme is described to reduce the estimation bias 

(LSD-ex). Both LSD and LSD-ex were compared with classical ROI estimation using pixel summation after 

MLEM image reconstruction and with Huesman’s reference method through Monte-Carlo simulations. We 

found that the performances of LSD characterization are at least as good as those of the classical methods 

in terms of RMS error. The convergence of LSD is faster than that of direct MLEM estimation and the LSD 

variance estimates is highly robust and accurate. For three small tumor ROIs, LSD-ex allows a reduction in 

the estimation bias of up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with 

the optimal MLEM estimation. For a large non specific region, LSD using appropriate smoothing made it 

possible to intuitively tune the resolution-variance tradeoff. 
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