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Abstract 

This paper presents an extended three-dimensional (3D) exact rebinning formula in the Fourier space that 

leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of 

unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, 

this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an 

approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically 

simulated 3D PET data for the solution of the truncation problem, i.e. the estimation of the missing portions 

in the oblique projection data, before the application of algorithms that require complete projection data 

such as some rebinning methods (FOREX) or 3D reconstruction algorithms (3DRP or direct Fourier 

methods). By taking advantage of all the 3D data statistics, the iterative FOREPROJ reprojection provides 

a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics non-oblique 

data. It significantly improves the quality of the external reconstructed slices without loss of spatial 

resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial 

interpolations, but will require clinical studies with more realistic measured data in order to decide on its 

pertinence. 
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INTRODUCTION 

Following the development in the late eighties of a new generation of multi-ring scanners, the field of 

application of positron emission tomography (PET) was extended to three- dimensional (3D) medical 

imaging, which led to the now widespread utilization of volume PET scanners. In this context arose the 

problematics of 3D data acquisition and reconstruction [1]-[7]. Many techniques and algorithms have been 

implemented to take advantage of the redundancy of 3D PET data, among which the so-called rebinning 

algorithms [8]-[15].  

These rebinning algorithms can be used to rearrange the set of 3D data acquired by the PET scanner into a 

stack of two-dimensional (2D) sinograms that correspond to the transaxial slices. In the (realistic) case of 

noisy data acquisition, this processing increases the statistics and thus the signal to noise ratio (SNR) in the 

reconstructed slices compared with that obtained after simple 2D slice by slice acquisition. Moreover, these 

rebinning algorithms are much less time-consuming than other methods which exploit the redundancy of 

3D projections (fully 3D algorithms), such as the classical 3D filtered back projection (3DRP) method [4, 

17]. The simplest way to increase the signal to noise ratio using rebinning techniques is either to assign each 
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oblique line of response (LOR) between two detectors in coincidence to the transaxial plane lying midway 

axially between these two detectors (single-slice rebinning, SSRB) [6,8,10,16] or to let each oblique LOR 

contribute to all the transverse planes it intersects (multi-slice rebinning, MSRB) [9,10]. However, SSRB 

provides poor results when the distribution to be reconstructed is not localized near the axis of the scanner, 

whereas MSRB becomes less stable as the 3D data grow noisy [14,17,18]. In the mid-nineties, innovative 

rebinning algorithms based on an analytical factorization method in the 3D Fourier space were proposed 

[11]-[15], namely the Fourier rebinning (FORE) [11] and the exact Fourier rebinning (FOREX) [12],[14] 

algorithms. FORE shows good accuracy as well as stability in the presence of noise [19]. In addition, it 

allows a significant speed-up in the reconstruction, hence providing a reliable alternative to fully 3D 

reconstruction. However, the approximation it involves is no longer valid at wide angles, making it 

unsuitable for large aperture scanners. 

Besides the purpose of computing 2D rebinned projection data with improved SNR, the general frame of 

rebinning can also be used to synthesize the projection data that cannot be measured with the usual 

cylindrical PET scanners, i.e. to solve the data truncation problem in 3D PET. This kind of rebinning can 

be regarded as an alternative to the classical forward-projection step. This procedure has been proposed as 

a pre-processing step (FOREPROJ) before using an exact rebinning algorithm (FOREX) that requires axial 

invariance in the 3D projection data [14]. 

The estimation of unmeasured oblique projection data is also necessary for analytical 3D reconstruction 

algorithms such as 3DRP or direct Fourier methods (DFM). Recently, in both the MRI [20]-[22] and the 

PET literature [23],[24], the results that have been published regarding gridding interpolation have renewed 

the interest of these DFM, thus increasing the need for fast and accurate methods  providing complete 3D 

projection data sets.     

The aim of this paper was to start from the results of Defrise et al. [12], especially the analytical formula 

(FOREX), and to derive an extended relation in the 3D Fourier space that would allow the estimation of any 

set of oblique projections from any other one. This led to a new reprojection method for estimating missing 

data that takes into account the whole set of projections measured by the scanner and thus allows a better 

handling of the data statistics. Furthermore, approximating the new 3D analytical formula to the first order, 

we obtained an extended FORE equation that enabled us to derive an approximate reprojection algorithm 

as an alternative to the trivial ‘reverse’ FORE method.  

The validation study proposed in this paper was performed on simulated PET data. It aimed at testing 

whether these two new rebinning algorithms can be regarded as suitable alternatives to the ‘classical’ 

rebinning methods used for the completion of 3D PET data. These methods together with the new proposed 

rebinning algorithms were used as a pre-processing step before an exact 2D rebinning using FOREX. Then, 

the 2D rebinned sinograms were reconstructed and the resulting slices compared.  

 

AN EXTENDED REPROJECTION FORMULA 

A. Analytical Development 

Let us start (Figure 1) with the expression of the weighted1 line integral between two detectors of a 

distribution f (x,y,z) of radioactive activity: 

            (1) 

 

                                                 
1 The LOR data are assumed to be weighted by a factor ²tan  1  . 
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where  represents the tangent of the angle . A set of projections with constant   is called a segment. We 

only consider positive values of   as: 

 

            (2) 

 
Fig. 1.  Geometry of a PET scanner. Left: longitudinal section  showing the axial variables z and . 

Right: transaxial view. The standard sinogram variables s and  parameterize the straight line AB. 

 

The 2D data corresponding to a couple (z, ) is called a sinogram. The variable , which increases 

proportionally with the axial distance | zA – zB | between the two detector rings in coincidence, is called the 

ring difference and is sampled from  0 to  N, the maximum ring difference. The sinograms gathered in the 

segment corresponding to  0  = 0 are called transverse sinograms; the others are called oblique. 

In order to be complete (axially invariant), a segment must gather all the projections in the range2 (see Figure 

2): 

 

            (3) 

 
Fig. 2.  The problem of the missing projections in the set of measured data: only segment 0 ( = tan = 0) is axially invariant. 

Here,  N =  atan(N) is the aperture of the scanner, with  N the maximum ring difference. 

                                                 
2 Actually, the range should be 22   .  2/  sRLz    , but for simplicity we consider the maximum range that is independent of s. 
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Due to the acquisition geometry (the finite length of the scanner), the projections are effectively recorded 

in the range3 : 

 

            (4) 

 

When a set of projections p(s, , z, )  is axially invariant, its 3D Fourier transform with respect to its first 

three variables writes : 

 

            (5) 

 

The FOREPROJ formula [12, 14], which can be derived from (5), gives us a means to express a set of 

oblique projections in terms of the transverse ones in the 3D Fourier space: 

 

 

 

            (6) 

 

Let us rewrite (6) for two values of the ring difference, 1 and 2. One has: 

 

 

 

 

 

 

            (7) 

 

Assuming that 1 >  2, we can then state that: 

 

            (8) 

 

where: 

 

            (9) 

 

and: 

            (10) 

 

 

 

B. Zero And First Order Approximation 

Since the ring difference  is generally rather low for the usual clinical PET scanners, let us consider the 

                                                 
3 The range should be 22   .  2/  sRLz   , but we consider the minimum range that is independent of s. 
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‘high frequency’ case and make the assumption that 1 and 2 are negligible, comparatively with  1 and 

 2. If we denote  =  / , where  can be either 1 or 2 , and  stands for either 1 or 2 , we can rewrite 

the frequency scaling  and the phase shift  in terms of their Taylor expansion. 

A zeroth order approximation gives us: 

 

            (11) 

   

And after the inverse 3D Fourier transform, one finds: 

 

            (12) 

 

which can be seen as an SSRB approximation that establishes an equivalence between the sinograms (z, ), 

  [0,  N].  

The first order approximation leads to: 

 

            (13) 

 

 

            (14) 

 

and equation (8) becomes: 

 

            (15) 

 

 

Noting P the 2D Fourier transform of p with respect to its first two variables, we can simplify (15) by taking 

its 1D inverse Fourier transform with respect to z. One obtains: 

            (16) 

 

 

This formulation can be seen as an extension of the FORE approximation that relates the 2D Fourier 

transforms of two sets of oblique projections. Setting 2 = 0, we find the classical FORE formulation [11] 

that links the 2D Fourier transform of an oblique set of projections with the 2D transform of the transverse 

ones: 
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z2 = z1 + z.  

 

The axial shift z follows easily from Figure 3: 

             

(18) 

 

 
Fig. 3.  Geometrical interpretation with the frequency-distance principle. S is a virtual source that 

contributes to the couple ( , k ) in both sinograms ( z 1 ,  1 ) and ( z 2 ,  2 ). 

 

DERIVED ALGORITHMS FOR THE ESTIMATION OF OBLIQUE DATA 

A. Exact Algorithm 

Let us consider a set of 3D data p(s, , z, ) measured by a PET scanner. These data are recorded as a set of 

2D sinograms (s[-R, R], [0, 2[), where each sinogram is indexed by two parameters: 

 

            (19) 

 

where R is the radius and L the length of the scanner. As stated in section II, only the transverse projections 

are complete (axially invariant). For   > 0, a part of the data is missing, which corresponds to: 

 

            (20) 

 

In the implementation of certain algorithms (FOREX, 3DRP), it is essential to first estimate these missing 

projections in order to merge them with the original and reconstruct segments that are axially invariant. 

In [12, 14], the use of FOREPROJ (6) was proposed to estimate the oblique data on the basis of the set of 

transverse projections p (s, , z, 0). 

From equation (8), we can derive another method that will be called in what follows ‘iterative FOREPROJ’: 

- The projections p (s, , z, 0) being complete, (8) enables us to compute (as with FOREPROJ) the 

projections with   = 1. 

- This estimation of p (s, , z,  1) is merged on the range |z| > L/2 - 1.R with the data acquired by the 

scanner (the data actually acquired by the scanner remain unchanged). This provides us with a complete set 

of projections p (s, , z, 1).   

- Equation (8) gives us two different estimations of p (s, , z, 2), based on our two axially invariant 
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segments (0 and 1), which are averaged. 

- The estimation of p (s, , z, 2) is merged on the range  |z| > L/2 - 2.R with the acquired data and the 

process goes on iteratively until the missing data in the segment corresponding to   = N are estimated from 

segments [0 ...  N-1].  

These two exact methods imply 1D linear interpolation while performing the frequency scaling from 1 to 

2. Radial zero-padding can be achieved in order to minimize the effect of the interpolations [14]; however, 

since our goal is to compare these two FOREPROJ algorithms, we did not use zero-padding. 

 

B. Approximate Algorithm  

As the implementation of the first order approximation (16)-(17) no longer requires the axial invariance of 

the data (no Fourier transform in the axial direction), there are roughly two ways of exploiting this 

approximation for the estimation of missing oblique projections: 

- A straightforward implementation of equation (17) yields a method that computes the oblique data 

p (s, , z,  ),   [1  N] from the transverse ones. Let us name this method ‘reverse FORE’. 

- Equation (16) provides an  alternative that we will call in what follows ‘extended FORE’: for each 

missing oblique sinogram (z, ), such that |z| > L/2 - .R,  P(, k, z, ) can be approximated by P(, k, z+z, 

’), with z = k(’ - )/, for ’  [0 N]. Provided that every (z+z, ’) sinogram has been recorded, this 

yields up to N+1 different estimations that can be averaged to compute p (s, , z, ). 

As equations (16) and (17) are both ‘high frequency’ approximations, their validity vanishes when the first 

order approximation is no longer acceptable [12]. In this case, the first order approximation is replaced with 

the zeroth order approximation SSRB (12) for which the axial shift z vanishes.  

 

MATERIALS AND METHODS 

We tested the above algorithms on simulated data. The chosen phantom (Figure 4) is constituted of 45 

ellipsoids situated by groups of 9 in the transaxial planes corresponding to z  =  -61.6, -30.8, 0, 30.8, and 

61.6 (mm). Their axial half-axis is 12 mm. In each transaxial plane their centers are located at (x, y) = (-150, 

0, 150)  (-150, 0, 150). Their transaxial half-axes are 50 mm. Their activity is fixed to 1 over a 0 background 

activity. 

 
Fig. 4.  The chosen phantom is constituted of 45 ellipsoids of half-axes (50 mm, 50 mm, 12 mm). 

Here are displayed the (x,y) and the (y,z) views. 
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The projections were analytically simulated [26], assuming no attenuation and equidistant parallel 

projections, for the HIREZ scanner, which is approximated as a 39-ring scan with an aperture of 8.6°. The 

maximum index difference between two detectors in coincidence for a recorded LOR is 31, and the span 

(axial compression) is 3, which leads to a -sampling of n  = 0.0151 n, n = 0...N (N=10). The axial field of 

view (FOV) is 161.8 mm and the transaxial FOV radius is 321.6 mm. 

Besides the noiseless simulation, Poisson noise was introduced into the data [26] in order to study the 

behavior of the algorithms under conditions of noisy acquisition. The total of the simulated net trues was 25 

Mcounts. The noisy data were normalized so that the total recorded activity was the same as for the noiseless 

projections. In these two sets of projections, there are missing oblique data, as the software only simulates 

the data really acquired by the scanner. In order to judge the quality of the four methods in estimating these 

missing oblique data, we analytically computed the whole set of complete oblique projections that we call 

in what follows ‘exact data’.   

The initial sampling of the 2D sinograms for the HIREZ scan is 312  312. These sinograms were re-

sampled to 128  128, in order to carry out the FFTs, which leads to a pixel size of 5 mm  5 mm. The axial 

(z) sampling was conserved: the transverse projections are constituted of 77 slices, which corresponds to a 

slice thickness of 2.075 mm. Zero-padding was achieved in the axial direction in order to bring the number 

of samples to 128. 

 

RESULTS 

The oblique projections corresponding to   = 1 , 2 , ..., N were estimated for both the noiseless and noisy 

data, using the four methods described in section III. These estimated oblique projections were compared 

with exact oblique projections for two values of the ring difference (3 and 10). Figures 5 and 6 show, in 

logarithmic scale, the histograms of the pixel difference between the exact sinograms and the sinograms 

estimated (before merging) from both noiseless (top) and noisy (bottom) projection data, using the four 

rebinning methods tested. 

    

Fig. 5.  Histogram of the difference (normalized to the data 

maximum) between the exact sinograms and the sinograms 

estimated from (top) noiseless and (bottom) noisy data. 

Comparison between reverse FORE (dashed) and extended 

FORE (solid). Left: Ring difference: 3. Right: Ring 

difference: 10. 
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After the estimation stage, the calculated projections were merged on the range |z| > L/2 - R with the 

simulated ones, the latter being unchanged. The completed data were then used to run the FOREX algorithm, 

which rebins the oblique data into transverse sinograms. The rebinned 2D transverse sinograms were 

processed using a 2D-FBP algorithm to reconstruct the 2D images. When processing the noisy data, the 

frequency cut-off of the ramp filter was fixed to 60% of the Nyquist frequency. 

The next two figures intend to exhibit the intrinsic influence of each method on the spatial resolution: 

Figures 7 and 8 show radial and axial line profiles through the object reconstructed from noiseless data. 

 

 
Fig. 7. Radial line profiles (y=0 mm, z=61.6 mm) through the object reconstructed from noiseless data. The dashed curves 

correspond to the exact line profile through the object. The completion was achieved using: Top left: reverse FORE. Top right: 

extended FORE. Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

 

 

Fig. 6.  Histogram of the difference (normalized to the data 

maximum) between the exact sinograms and the sinograms 

estimated from (top) noiseless and (bottom) noisy data. 

Comparison between FOREPROJ (dashed) and iterative 

FOREPROJ (solid). Left: Ring difference: 3. Right: Ring 

difference: 10. 
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Fig. 8. Axial line profiles (x=0 mm, y=150 mm) through the object reconstructed from noiseless data. The dashed curves 

correspond to the exact line profile through the object. The completion was achieved using: Top left: reverse FORE. Top right: 

extended FORE. Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

 

Figures 9 and 10 illustrate the noise performance of the four methods by comparing the relative standard 

deviation in the reconstructed ellipsoids (normalized to the mean pixel value in the ellipsoid). Figure 9 

corresponds to the two approximate methods and Figure 10 to the two exact ones.  

 

   
 

 

Figures 11 to 14 are proposed to give an insight into the reconstructed images when working with noiseless 

data (Figs. 11-12) and noisy projection data (25 million total trues simulated, Figs. 13-14). Figures 11 and 

13 show the reconstruction of an ‘external’ slice ( z = -61.6 mm), these slices being the more affected by 

Fig. 9.  Standard deviation calculated in the reconstructed 

ellipsoids (normalized to the mean pixel value in the ellipsoid) 

after completion using (triangles) reverse FORE and (stars) 

extended FORE. Top: ellipsoids situated on the scanner axis 

(x=0 mm, y=0 mm). Bottom: ellipsoids situated off-axis (x=150 

mm, y=150 mm). 

Fig. 10.  Standard deviation calculated in the reconstructed 

ellipsoids (normalized to the mean pixel value in the 

ellipsoid) after completion using (triangles) FOREPROJ and 

(stars) iterative FOREPROJ. Top: ellipsoids situated on the 

scanner axis (x=0 mm, y=0 mm). Bottom: ellipsoids situated 

off-axis (x=150 mm, y=150 mm). 
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the errors committed during the missing data estimation. As for Figures 12 and 14, they allow an axial 

appreciation of the reconstructed object by showing the (y,z) views corresponding to x = 0 mm. These (y,z) 

views are not isotropic as they are simply extracted from the stack of 2D (x,y) views (with a voxel size of 5 

mm  5 mm  2.075 mm). On Figures 13 and 14, the contour lines at 20 % of the slice maximum 

superimposed on the grey scale images give an idea of the contrast in the reconstructed object. On each 

figure, from top left to bottom right, the four images refer to the object reconstructed with missing 

projections estimated using, respectively, reverse FORE, extended FORE, FOREPROJ, and iterative 

FOREPROJ. 

Finally, Table 1 illustrates the computational cost of each method for the considered case: HIREZ scanner 

with 11 values of , and a (s, , z) sampling of 128  128  128 (after re-sampling in the s and  variables, 

and zero-padding in the z direction). These times do not include the FOREX rebinning nor the 2D 

reconstruction. 

 

DISCUSSION 

 It appears clearly from Figure 5 that, from both noiseless and noisy projection data, extended FORE allows 

a better estimation of the oblique sinograms than reverse FORE. The difference between the two methods 

does not depend on the ring difference, which is understandable since the statistics that are exploited to 

estimate a segment is always the same (the non-oblique data when using reverse FORE, and the whole 3D 

data when using extended FORE). 

For what concerns the two exact methods, Figure 6 shows that, when working with noiseless data and 

compared with FOREPROJ, iterative FOREPROJ does not  substantially damage the quality of the 

estimated projections when  increases. When working with noisy data, it appears that the exploitation of 

an increasing amount of data statistics enables an improvement in the quality of the estimations. This 

improvement becomes clearer when the ring difference increases. 

It has to be noted that, after processing the sinograms, the pixels with a negative value are set to zero. This 

explains in part that the pixels initially having a 0 value are generally well estimated, leading to a pike in 

the histograms for the 0% difference. 

Figures 7 and 8 give an idea of the accuracy of the different methods while working with noiseless data. 

The radial line profiles show that the exploitation of the approximate methods leads to large radial artifacts 

in the external slices, i.e. an under-estimation of the activity near the axis and an over-estimation at the radial 

FOV border. The axial profiles exhibit axial smoothing due to the interpolations, as well as a loss of axial 

resolution for the ellipsoids situated in the planes z = +/- 61.6 mm. The use of extended FORE, although it 

seems to reinforce the radial artifact on the axis, allows better radial and axial accuracy in the external slices 

Concerning the two exact algorithms, the iterative implementation of FOREPROJ clearly preserves the 

quality of the radial profile through the reconstructed slice, as well as the spatial resolution along the axial 

direction z that was achieved using classical FOREPROJ. 

As expectable, the main advantage of the two proposed algorithms (i.e. a better handling of the data 

statistics) should lead to an improvement in the SNR in the reconstructed object when working with noisy 

low-statistics data. This is reflected in Figures 9 and 10, which show the relative standard deviation in the 

reconstructed ellipsoids (in percent of the mean pixel value in the ellipsoid). Figure 9 shows that the use of 

the extended FORE algorithm allows SNR improvement near the scanner axis. This improvement gradually 

increases when approaching the axial FOV border (60-65% standard deviation with reverse FORE versus 

45-50% with extended FORE). 
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Fig. 11.  (x,y) views of the object reconstructed with noiseless 

data. The slice corresponds to z = -61.6 mm. The missing data 

are estimated using: 

Top left: reverse FORE. Top right: extended FORE. 

Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

Fig. 12.  (y,z) views of the object reconstructed with noiseless 

data. The slice corresponds to x = 0 mm. The missing data are 

estimated using: 

Top left: reverse FORE. Top right: extended FORE. 

Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

Fig. 13.  (x,y) views of the object reconstructed with noisy data 

(25 Mkps). The slice corresponds to z = -61.6 mm. The missing 

data are estimated using: 

Top left: reverse FORE. Top right: extended FORE. 

Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

The contour at 20% of the slice maximum is superimposed. 

Fig. 14.  (y,z) views of the object reconstructed with noisy 

data (25 Mkps). The slice corresponds to x = 0 mm. The 

missing data are estimated using: 

Top left: reverse FORE. Top right: extended FORE. 

Bottom left: FOREPROJ. Bottom right: iterative FOREPROJ. 

The contour at 20% of the slice maximum is superimposed. 
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TABLE I 

REPRESENTATIVE COMPUTATIONAL COSTS 

 
 

 

Figure 10 shows that the iterative implementation of FOREPROJ allows significant SNR improvement over 

the whole radial FOV. This improvement gradually increases when reaching the scanner edge, where the 

quality of the estimated oblique data becomes determinant. 

The four figures presenting reconstructed slices allow a more qualitative assessment of the tested methods. 

The noiseless slices confirm the presence of large radial and angular artifacts in the external slices of the 

object pre-processed with the approximate rebinning algorithms. It appears, however, that extended FORE 

enables a better recovery of the object contours, except along the scanner axis. Concerning the two 

FOREPROJ methods, they do not cause evident artifacts and lead to similar reconstructions with noiseless 

data. As for Figures 13 and 14, they clearly illustrate the results previously deduced from Figs. 9-10 

concerning the enhanced SNR on the axial FOV border.  

Finally, Table I shows the gain in computation time that can be achieved when using approximate 

algorithms: there is about a factor of 4-7 when passing from FORPROJ to reverse FORE or from iterative 

FOREPROJ to extended FORE. 

 

CONCLUSIONS 

From the analytical FOREX formula of Defrise et al., we derived an iterative reprojection algorithm 

(iterative FOREPROJ) whose main advantage is better handling of the data statistics, compared with the 

classical FOREPROJ method. In first approximation, this leads to an approximate method that can be seen 

as an extended FORE reprojection technique. 

After numerical simulation on the HIREZ scanner, the iterative FOREPROJ scheme provided a clear 

improvement in the quality of the estimated oblique data, compared with classical FOREPROJ. Iterative 

FOREPROJ allowed better recovery and an SNR rise in the external slices of the reconstructed object. The 

propagation of the systematic interpolation errors along with the iterations does not seem to have a harmful 

influence on the spatial resolution of the reconstructed images. 

Concerning the extended FORE approximation, although it provides progressive SNR enhancement along 

the scanner axis compared with the reverse FORE implementation, the artifacts implied by the axial 

interpolation had a noticeable impact on the quality of the estimated data, probably due to the geometry of 

the phantom studied. However, this approximate method should prove its efficiency with axially smoother 

projection data and needs to undergo clinical studies with more realistic measured data in order to determine 

its pertinence. 

Last, further theoretical and clinical studies are now necessary to test the iterative FOREPROJ and the 

extended FORE algorithms as pre-processing tools to complete the 3D sinograms that are to be processed 

by fully 3D algorithms (3DRP or DFMs). 
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