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Abstract 

Most of the regularized iterative reconstruction schemes employed in emission tomography (such as 

penalized maximum-likelihood, PML) usually require the adjustment of a scalar parameter  that 

determines the strength of the a-priori information regarding the studied object. Empirical selection of 

 remains hazardous since its optimal value depends on the morphological structure of the reconstructed 

image and the data signal to noise ratio (SNR), which explains partly the scarce utilization of penalized 

reconstruction in clinical routine. In this paper, we derive a simple optimization criterion for  that relies 

on a statistical description of the noise propagation when iteratively updating the image estimate and on 

a surrogate algebraic formulation holding for both PML and expectation-maximization-smooth (EMS) 

iterative reconstruction. When incorporated into each iteration step, the statistic-algebraic tuning 

optimization (SATO) yields two new optimized regularized iterative methods: SATO-PML and SATO-

EMS. These methods are compared with classical MLEM reconstruction followed by optimal Gaussian 

post-filtering (ML-opt) through Monte-Carlo experiments involving the Hoffman brain phantom and 

the Shepp-Logan phantom. It is shown that, whatever the studied object and the count rate, SATO-PML 

and SATO-EMS are convergent in terms of  and produce images with bias, variance and contrast 

properties that are at least as good as those of the ML-opt images. The two proposed algorithms are also 

evaluated using realistic PET data from a Hoffman phantom produced using the GATE platform in order 

to demonstrate the feasibility of our SATO scheme with actual data. 
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INTRODUCTION 

Emission tomography seeks to extract qualitative and quantitative information on radioactive tracer 

distribution from its projection record. Numerous image reconstruction methods have been proposed in 

the last few decades to perform this task, either based on analytical or iterative approaches. Since the 

reference publications of Shepp & Vardi [1] and Lange & Carson [2], iterative algorithms based on 

likelihood maximization have increasingly gained in popularity, in both the research field and routine 

clinical practice. Besides their ability to efficiently model the photon emission and detection phenomena 

inside the reconstruction process, most iterative techniques can account for the statistical properties of 

the recorded data [3]. However, a considerable number of papers on the maximum-likelihood 

expectation-maximization (MLEM) algorithm have clearly shown that, despite its asymptotically 

unbiased character, unregularized MLEM inevitably leads to an undesirable increase in the estimate 

variance while the iterations proceed, thereby leading to degradation in the produced image (in terms of 

the signal to noise ratio among others) [4-8]. The noise propagation remains complex from a theoretical 
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point of view [6-7], whereas its effects on the reconstructed images degrade qualitative interpretation in 

a clinical context. In order to propose smooth images suitable for clinical purpose, some regularization 

has to be introduced into the ML approach. The most natural regularization method consists of either 

arbitrarily stopping the iterative process at an early stage or a linear low-pass filtering of the object 

estimate [9]  a post-filtering option using a convolution kernel with adjustable size is therefore 

available on most of the commercial SPECT or PET reconstruction software suites. These two methods, 

albeit commonly employed, remain broadly empirical. Some statistical stopping criteria for MLEM 

reconstruction relying on feasibility or cross-validation have been proposed in the early nineties [10-

14]. The expectation-maximization-smooth (EMS) approach performs the low-pass filtering in between 

each iteration step [15-17]. Although there is no proof of convergence, this algorithm always appears to 

converge in practice, and the image characteristics are very similar to those of post-filtered ML images 

(provided that the optimal filters are selected in both cases) [16]. Known as penalized maximum-

likelihood (PML), the second main type of regularization method relies on Bayesian reconstruction 

using maximum a-posteriori estimators [18-21]. A simplified approach allowing an iterative 

implementation of PML estimation was developed by Green [22], and various energy functions have 

been proposed to model the a-priori information regarding the reconstructed image [23-28]. However, 

although the resolution and noise properties of the PML algorithm have been widely studied and well 

established [29-32], its exploitation in routine practice remains uncommon in part due to the lack of 

consensus on how to optimally fix the tuning parameter (usually noted ) determining the strength of 

the roughness penalty [23]. The same drawback holds for the EMS technique, in which the optimal size 

of the filter depends on the studied object and the data statistics. A decade ago, several papers have been 

written about computing  such that a known and approximately uniform resolution is obtained in the 

reconstructed image [33-34]. In the present article, which is based on a statistical description of the noise 

propagation at each iteration, we propose a simple criterion allowing to adjust the tuning parameter (, 

filter size) of a regularized algorithm with particular applications to PML and EMS. Tuning optimization 

is achieved at each iteration throughout the reconstruction process using a surrogate algebraic 

formulation holding for the two studied algorithms. Our methodology is evaluated through Monte-Carlo 

simulations using the Hoffman brain phantom and the Shepp-Logan phantom and two levels of counting 

statistics. The performances of the two new regularized algorithms with tuning optimization are 

compared with those of classical MLEM reconstruction followed by optimal Gaussian post-filtering in 

terms of bias, variance, root-mean-square error, and contrast1. Last, reconstructed slices of a Hoffman 

phantom PET acquisition generated using the GATE platform are displayed in order to provide insight 

into the potential efficiency of our algorithms when working with actual data. 

 

MATERIALS AND METHODS 

A. Classical regularized iterative reconstruction 

Let  𝐩 be the projections recorded by the acquisition device (𝐩𝑖 stands for the number of photons 

registered in bin i) and 𝐱 the activity distribution to be estimated (𝐱𝑗 stands for the activity inside image 

pixel j). We denote with 𝐀 the system matrix whose component 𝐀𝑖𝑗 accounts for the probability for a 

photon emitted from pixel j to be recorded into bin i. Ideally the system matrix is intended to perfectly 

model the emission/detection process, including side-effects such as auto-attenuation, Compton 

                                                           
1 Obviously, the problem of regularization optimization is highly complex and should ideally be defined in terms of the clinical 

task that is to be achieved. For a first and global evaluation, the studied figures of merit have been chosen for their convenience 

and universality. 
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scattering, and detector response function. For a given reconstruction task, the objective function 

𝑂(𝐱; 𝐩) of an image 𝐱 is defined as its conditional probability given the record 𝐩. Using Bayes rule, a 

linear Poisson model, and the monotonicity of the logarithm, finding the image that maximizes the 

objective function is equivalent to finding the maximal argument of: 

𝐿𝑜𝑔𝑂(𝐱; 𝐩) =  ∑  [𝐩𝑖 log(𝐪𝑖)  − 𝐪𝑖 −  log (𝐩𝑖!)]𝑖  +  log(𝑃(𝐱))  −  log(𝑃(𝐩))        (1) 

where 𝐪 = 𝐀𝐱 and 𝑃(𝐱) is the intrinsic probability of image 𝐱 and called the prior. The first term in the 

right-hand side is log(𝑃(𝐩|𝐱)) and called the log-likelihood. It ensures the adequacy between the 

recorded data and the reconstructed image. The second term can be viewed as a regularization term to 

reinforce the injectivity of the reconstruction problem 𝐩 = 𝐀𝐱, which is known to be ill-conditioned. 

The third term is a constant for a given reconstruction problem, it has no impact on the maximization 

process and is thus omitted in all the subsequent computations. When no a priori assumption is made 

regarding the activity distribution, the prior is set to constant and the produced estimate �̅� corresponds 

to the unregularized maximum-likelihood (ML) estimate: 

�̅� =  𝑎𝑟𝑔𝑚𝑎𝑥
𝐱∈ℝN

 { ∑  [𝐩𝑖 log(𝐪𝑖)  −  𝐪𝑖]𝑖  }             (2) 

The ML estimate is classically built using the iterative expectation-maximization (EM) algorithm whose 

nth iterate can be written as (where 𝑓𝑀𝐿 stands for the ML updating function): 

𝐱𝑗
𝑛 =  [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗 =   𝐱𝑗

𝑛−1  
1

∑ 𝐀𝑖𝑗𝑖
 ∑ 𝐀𝑖𝑗  𝐩𝑖/𝐪𝑖

𝑛−1
𝑖                   (3) 

The MLEM algorithm is known to provide an asymptotically unbiased estimator of the true activity 

distribution. However, achieving the low-bias estimate requires a large number of iteration steps, which 

inevitably increases the estimate variance and results in highly noisy images. In practice, no simple and 

effective bias-variance tradeoff can be globally established since the convergence properties of MLEM 

strongly depend on the studied object and the count level. Besides, stopping the iterative process at an 

early stage remains unsafe because the spatial resolution can be very position-dependent at low iteration 

numbers. In order to reduce noise propagation, regularized methods have been proposed that consist of 

adding some a priori knowledge regarding the smoothness of the studied object. In the PML algorithm, 

the prior2 is usually expressed using a Gibbs energy function penalizing the likelihood [18-20]: 

𝑃(𝐱) =  
1

𝑍
 𝑒−𝛽𝑈(𝐱)               (4) 

where Z is a normalization constant, 𝛽 a tuning parameter, and U the energy function. One choice for U 

which is also the most commonly employed is based on the quadratic penalty: 

𝑈(𝐱) =  
1

4
 ∑ ∑ 𝑤𝑘(𝐱𝑗 −  𝐱𝑘)

2
𝑘∈𝑁𝑗𝑗               (5) 

with Nj denoting the neighborhood of pixel j and 𝑤 a normalized weighting function. In this paper, we 

only consider clique sizes of 8 with 𝑤𝑘 ∝ 1 for “direct” nearest neighbors and 𝑤𝑘 ∝ 1/√2 for 

“diagonal” next-nearest neighbors. The PML estimate �̅�  is defined as: 

�̅� =  𝑎𝑟𝑔𝑚𝑎𝑥
𝐱∈ℝN

 { ∑  [𝐩𝑖 log(𝐪𝑖)  −  𝐪𝑖 −  𝛽𝑈(𝐱)]𝑖  }           (6) 

                                                           
2 Throughout this manuscript, the term “prior” will be used in the sense of “penalty” in the context of PML reconstruction, 

albeit the employed priors imply heuristic considerations rather than objective a-priori knowledge. 
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Using an EM scheme and the one-step-late (OSL) approach [22], the MAP estimate is built iteratively 

following: 

𝐱𝑗
𝑛 = [𝑓𝑀𝐴𝑃

𝛽 (𝐱𝑛−1)]
𝑗

=  
𝐱𝑗

𝑛−1

∑ 𝐀𝑖𝑗𝑖  + 𝛽𝜕𝑗𝑈(𝐱𝑛−1) 
 ∑ 𝐀𝑖𝑗

𝐩𝑖

𝐪𝑖
𝑛−1𝑖  =  

1

1 + 𝛽 
∑ 𝑤𝑘𝑘∈𝑁𝑗

(𝐱𝑗
𝑛−1−𝐱𝑘

𝑛−1)

∑ 𝐀𝑖𝑗𝑖

 [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗      (7) 

where 𝑓𝑀𝐴𝑃
𝛽

 stands for the PML updating function with tuning parameter 𝛽. Another classical 

regularization technique involves a low-pass filtering of the estimator, either after the iterative process 

or in between each iteration step. In the EMS technique, the ML estimator is convolved after each 

iteration using a Gaussian kernel [15-17]. The EMS estimate �̅�  is generated iteratively according to:  

𝐱𝑗
𝑛 = [𝑓𝐸𝑀𝑆

𝛽 (𝐱𝑛−1)]
𝑗

=  [𝑓𝑀𝐿(𝐱𝑛−1)  ∗  𝐺𝛽]
𝑗
            (8) 

where ∗ stands for the convolution operator and 𝐺𝛽 is a centered Gaussian kernel with a full width at 

half maximum (FWHM) of  pixels. 𝑓𝐸𝑀𝑆
𝛽

 stands for the EMS updating function with tuning parameter 

 3. The ability of the two aforementioned methods (PML and EMS) to significantly reduce noise in the 

reconstructed slices while preserving sufficient resolution depends on the selection of the tuning 

parameter  which controls the strength of the a priori information concerning the reconstructed object. 

With regard to PML restoration, in [23] Herbert and Leahy observed that the optimal value of  varies 

with both the object shape and structure and the signal to noise ratio (SNR) in the recorded data. 

Contrariwise, when studying the same image with the same SNR, the optimal  value remains the same 

whatever the realization of the noise. These considerations also hold for EMS reconstruction. Based on 

the statistical properties of the iterative reconstruction process and a surrogate algebraic formulation, we 

propose in the following section a simple criterion for optimizing the tuning parameter value throughout 

the iterations. 

B. Statistic-algebraic tuning optimization 

Our goal here is to develop a procedure to optimize the choice of the tuning parameter  at each iteration. 

The optimal  value (denoted 𝛽𝑜𝑝𝑡 in the sequel) would naturally be the value which allows an optimal 

noise control while allowing efficient reconstruction of the useful signal. For a given regularized 

algorithm REG (REG = PML or EMS) with tuning parameter  and a given iteration index n, we define 

the correction 𝛅,𝑛 as the difference between the updated image obtained using the regularized algorithm 

and the updated image obtained using the ML updating function: 

𝛅𝑗
,𝑛

=  [𝑓𝑅𝐸𝐺
𝛽 (𝐱𝑛−1) − 𝑓𝑀𝐿(𝐱𝑛−1)]

𝑗
=   [𝑓𝑅𝐸𝐺

𝛽 (𝐱𝑛−1)]
𝑗

 −  𝐱𝑗
𝑛−1 1

∑ 𝐀𝑖𝑗𝑖
 ∑ 𝐀𝑖𝑗 𝐩𝑖/𝐪𝑖

𝑛−1
𝑖        (9) 

Let us denote with ℎ the exact ML updating function: 

[ℎ(𝐱𝑛−1)]𝑗 =   𝐱𝑗
𝑛−1 1

∑ 𝐀𝑖𝑗𝑖
 ∑ 𝐀𝑖𝑗  �̂�𝑖/𝐪𝑖

𝑛−1
𝑖           (10) 

where �̂� are the exact (noise-free) projections of the object. We define the ideal correction 𝐝𝑛 at iteration 

n as: 

                                                           
3 Although the tuning parameters of MAP and EMS have different interpretations and dimensions, the authors chose to name 

them with the same letter  in order to simplify the notations throughout the article. 
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𝐝𝑗
𝑛 =  [ℎ(𝐱𝑛−1) − 𝑓𝑀𝐿(𝐱𝑛−1)]𝑗 = 𝐱𝑗

𝑛−1 1

∑ 𝐀𝑖𝑗𝑖
 ∑ 𝐀𝑖𝑗(�̂�𝑖 − 𝐩𝑖)/𝐪𝑖

𝑛−1
𝑖        (11) 

The aim of this section is to describe a statistic-algebraic approach in which, at each iteration, the optimal 

value of  is defined as that providing an adequacy between the correction 𝛅,𝑛 and the ideal correction 

𝐝𝑛. From a Bayesian point of view, 𝛅,𝑛 is a constant since the recorded projections 𝐩 are constant for 

a given reconstruction task. Besides, 𝐝𝑛 is a random variable whose statistical properties follow from 

the uncertainty about the exact projections �̂�. Since 𝐸(�̂� − 𝐩) = 0 and 𝑉𝑎𝑟(�̂� − 𝐩) ≈ 𝐷𝑖𝑎𝑔(�̂�) ≈

𝐷𝑖𝑎𝑔(𝐩), the ideal correction has a null mean and a variance: 

𝐕𝑛 ≜ 𝐶𝑜𝑣(𝐝𝑛)   ;    𝛔𝑗
𝑛 ≜ 𝐕𝑗𝑗

𝑛 = 𝑉𝑎𝑟(𝐝𝑗
𝑛) ≈ (𝐱𝑗

𝑛−1)
2

 
1

(∑ 𝐀𝑖𝑗𝑖 )
2  ∑ 𝐀𝑖𝑗

2   𝐩𝑖/𝐪𝑖
𝑛−12

𝑖          (12) 

We define the objective function 𝐽𝑛(𝛽) as the mean square error between the correction 𝛅,𝑛 and the 

ideal correction 𝐝𝑛 at iteration n: 

𝐽𝑛(𝛽) = 𝐸 {‖𝛅,𝑛 − 𝐝𝑛‖
2

}            (13) 

A purely statistical optimization of the tuning parameter would consist in finding at each iteration 𝛽𝑜𝑝𝑡 

such that: 

𝛽𝑜𝑝𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽 ∈ ℝ+

 { 𝐽𝑛(𝛽) }                  (14) 

However, solving (14) using (12) leads trivially to: 

𝛽𝑜𝑝𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽 ∈ ℝ+

 { ‖𝛅,𝑛‖
2

+ 𝑇𝑟(𝐕𝑛)} =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽 ∈ ℝ+

 { ‖𝛅,𝑛‖
2

} = 0          (15) 

since 𝛅0,𝑛 = 0. In order to avoid this drawback that arises from a purely statistical formulation of the 

optimization problem, we propose to resort to a statistic-algebraic formulation based on the definition 

of a surrogate of the ideal correction 𝐝 denoted �̆� associated with a surrogate objective function 𝐽. The 

surrogate �̆� is a constant vector built using the statistical properties of 𝐝. Various definitions of �̆� may 

be considered and the authors have tested some of them, which led them to select empirically the 

following. The surrogate ideal correction �̆� is built such that for each of its components: 

∀𝑗, �̆�𝑗
𝑛2

= 𝐸(𝐝𝑗
𝑛2

) = 𝑉𝑎𝑟(𝐝𝑗
𝑛) = 𝐕𝑗𝑗

𝑛  ;   𝑖. 𝑒. ,   �̆�𝑗 ≜ ±𝛔𝑗
𝑛        (16) 

The associated surrogate objective function is then: 

𝐽𝑛(𝛽) = ‖𝛅,𝑛 − �̆�𝑛‖
2
                (17) 

The optimal value of the regularization parameter 𝛽𝑜𝑝𝑡 is now defined as: 

𝛽𝑜𝑝𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽 ∈ ℝ+

 { 𝐽𝑛(𝛽) }            (18) 

It follows from (16) that: 

𝛽𝑜𝑝𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝛽 ∈ ℝ+

 { ‖𝛅,𝑛‖
2

+ 𝑇𝑟(𝐕𝑛) − 2 �̆�𝑛T
𝛅,𝑛}               (19) 
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where T denotes the matrix transpose. Equation (19) is very close to equation (15) due to the definition 

of �̆�. However, 𝐽𝑛(𝛽) includes a third term that will allow for a non-trivial solution of the optimization 

problem. As the goal is to minimize 𝐽𝑛(𝛽), the sign of the components of �̆�𝑛 in equation (16) will be 

chosen so that, before the optimization process, this third term (and hence 𝐽𝑛(𝛽)) is minimal which 

implies that: 

∀𝑗, �̆�𝑗 ≜ 𝑠𝑖𝑔𝑛 (𝛅𝑗
,𝑛

) 𝛔𝑗
𝑛            (20) 

where 𝛔𝑗
𝑛 is estimated using equation (12). The surrogate �̆�𝑛 is a vector having the same order of 

magnitude as the ideal correction 𝐝𝑛 for every dimension of the image hyperspace. The sign of each 

component of �̆�𝑛 is arbitrarily chosen so as to fit with the sign of the corresponding component of the 

current correction 𝛅,𝑛, which roughly implies that the correction brought by the regularized algorithm 

is implicitly considered to be a “good” correction. The situation at iteration n is illustrated on Figure 1. 

Let us denote 𝛄,𝑛 the projection of �̆�𝑛 on 𝛅,𝑛: 

𝛄,𝑛 =  𝛅,𝑛 �̆�𝑛T
 𝛅,𝑛 / ‖𝛅,𝑛‖

2
             (21) 

Resolving equation (18) could be achieved using any classical minimization method such as the steepest 

descent or conjugate gradient. However, the solution becomes straightforward if we consider a particular 

class of corrections. We define a collinear correction as a correction such that 𝛅1,𝑛 and 𝛅2,𝑛 are 

collinear whatever (1,2) ∈  ℝ∗+2, i.e., there exists some 𝜆 such that 𝛅1,𝑛 =  𝜆𝛅2,𝑛. As PML and 

EMS produce fairly collinear corrections in first approximation (see Appendix A), we will rely on this 

property to solve equation (18). Based on basic geometric considerations, for a collinear correction, the 

optimal value 𝛽𝑜𝑝𝑡  is such that: 

 𝛄𝛽𝑜𝑝𝑡,𝑛 =  𝛅𝛽𝑜𝑝𝑡,𝑛             (22) 

Defining the scaling factor κ,𝑛 as: 

κ,𝑛 = ‖𝛄,𝑛‖ / ‖𝛅,𝑛‖ =  �̆�𝑛T
 𝛅,𝑛 / ‖𝛅,𝑛‖

2
          (23) 

it results that: 

κ𝛽𝑜𝑝𝑡,𝑛 = 1              (24) 

 

Figure 1. Situation at iteration n, 

displaying the distribution of the 

ideal correction 𝐝𝑛 (gray level curves 

and standard deviation 𝛔𝑛), its 

surrogate �̆�𝑛, the current correction 

𝛅,𝑛, and 𝛄,𝑛. 
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From a qualitative point of view, equation (24) means that if κ,𝑛 > 1 the regularization is too weak and 

the correction has to be increased by increasing . Contrariwise, if κ,𝑛 < 1,  has to be diminished. 

Equation (24) will be referred to as the statistic-algebraic tuning optimization (SATO) criterion.  This 

criterion can be used to design SATO-PML and SATO-EMS algorithms which are conceived to 

progressively fulfill the SATO criterion throughout the iterations. In practice, the general recipe for the 

implementation of these two algorithms is the following: 

  Initialize arbitrarily the image estimate 𝐱0, for instance, using a non-filtered back-projection. 

  Initialize  arbitrarily. 

  Start the iterative process. At each iteration 𝑛 > 1, do the following: 

  Compute �̆�𝑛 using (12) and (20). 

  Compute 𝐱𝑛 using (7) or (8), 𝛅𝛽,𝑛 using (9), and  κ,𝑛 using (21) and (23). 

  Modify  in order to force κ,𝑛 toward 1 using (see Appendix B for details): 

 

SATO-PML: 𝛽𝑛𝑒𝑤 =  κ,𝑛 𝛽𝑜𝑙𝑑            (25) 

SATO-EMS: 𝛽𝑛𝑒𝑤 = 𝛽𝑜𝑙𝑑  / √1 −  
1

4
(𝛽𝑜𝑙𝑑)2 ln(κ,𝑛)/ln(2)      (26) 

  Proceed to the next iteration. 

C. Experimental assessment 

The experimental assessment of our SATO methodology relied on numerical simulations and physical 

phantom acquisitions. In order to evaluate to what extent our technique overcomes the aforementioned 

drawbacks of classical regularized iterative reconstruction, we tested it using two numerical phantoms 

and two levels of counting statistics. The two studied phantoms were the Hoffman brain phantom and 

the Shepp-Logan phantom (Figure 2). In these two phantoms, a hot spot was included standing for a 

hyperactive tumor. Table I summarizes the quantitative specifications of the two phantoms. The 

performances of SATO-PML and SATO-EMS were compared with those provided by classical MLEM 

reconstruction followed by Gaussian post-filtering (denoted ML-filter). The objects were defined and 

reconstructed over a 128128 grid. The projections were simulated using 64 projection angles over 180° 

(128 bins per projection angle). The system matrix used to simulate and reconstruct the data was based 

on a uniformly distributed pixel activity model and did not model the attenuation, scatter, and detector 

response. The two levels of counting statistics considered were 100,000 events on average (low count 

rate) and 1 million events on average (high count rate). The Poisson noise was added to the noisy 

replicates of the projections using Knuth’s algorithm [35]. 

 

 
 

Figure 2. The two studied numerical phantoms (A: Hoffman. B: Shepp-Logan). 
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TABLE I. QUANTITATIVE SPECIFICATIONS OF THE TWO STUDIED PHANTOMS 

 

 Tumor size (pixels) Tumor/neighborhood contrast 

 

ROI 1/ROI 2 contrast 

Hoffman brain phantom 57 50 % 150 % 

Shepp-Logan phantom 37 150 % 50 % 

 

 

For each pair {phantom, count level}, the modus operandi was the following: 

  Simulate 50 noisy realizations of the phantom projections. 

  Reconstruct each realization with SATO-PML, SATO-EMS and MLEM. The total number of 

iterations was 150 for the low count rate sinograms and 300 for the high count rate sinograms. For the 

SATO algorithms, the first image estimate 𝐱0 was initialized using an unfiltered back-projection, and  

was randomly initialized inside the interval [10-5 10-1] for SATO-PML and inside the interval [0.5 2.5] 

for SATO-EMS. 

  Post-filter the MLEM estimate with Gaussian kernels of FWHM ranging from 0.5 to 5 pixels by steps 

of 0.05. Based on the computation of the root mean square (RMS) error between the filtered estimate 

and the exact object, define the optimal ML-filter estimate as that with the lower RMS error. This 

optimal estimate is denoted ML-opt. 

  For each of the reconstructed objects, compute the following characteristics: 

- RMS error between the reconstructed image and the exact object. 

- Image mean coefficient of variation (CV), expressed in percent: 

CV =  √∑ 𝑉𝑎𝑟(�̅�𝑗)𝑗  / ∑ 𝐸(�̅�𝑗)2
𝑗           (27) 

- Tumor to neighborhood contrast, expressed in percent of the exact value given in Table I: 

Tumor contrast =  
(mean tumor activity − mean neighborhood activity) / mean neighborhood activity

exact contrast value
 

                 (28) 

- ROI 1 to ROI 2 contrast (gray to white matter contrast for the Hoffman phantom), expressed 

in percent of the exact value given in Table I: 

ROI contrast =  
(mean ROI 1 activity − mean ROI 2 activity) / mean ROI 2 activity

exact contrast value
      

                 (29) 

The three described methods were finally used to reconstruct two slices of a Hoffman brain phantom 

produced using the GATE (Geant4 Application in Emission Tomography) platform [36]. The numerical 

Hoffman phantom employed was an axially invariant 3D phantom whose 2D slice was similar to that 

described above (except that it contained three hot spots) and defined on a 128×128 grid with a pixel 

size of 2 mm. The data were simulated using the specifications of the GEMINI GXL PET scanner 

(Philips Healthcare) [37]. Positron range and non-collinearity were not modeled. Two 3D data sets were 

produced: a first with a total activity of 40 MBq (18FDG) and an acquisition time of 3 minutes, and a 

second with a total activity of 80 MBq (18FDG) and an acquisition time of 12 minutes. The scatter and 

random annihilations were corrected using the scatter and random estimations provided by the software 

[38-39]. For each of the two 3D data sets, the 25 (among 29) central transaxial sinograms were summed 

in order to produce two high-statistics 2D sinograms gathering about 1.3 million and 10 million prompts 
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(total net trues). The system matrix employed for the reconstructions was built using a uniformly 

distributed pixel activity model and corrected for attenuation and normalization using the appropriate 

correction factors provided by the software. The images were reconstructed on a 128×128 grid with a 

pixel size of 2 mm. The total number of iterations was 200 for the SATO algorithms and 400 for MLEM. 

The MLEM estimate was post-convoluted with Gaussian kernels of FWHM 2.5, 3 and 3.5 pixels for the 

1.3 million count sinogram and 2, 2.5 and 3 pixels for the 10 million count sinogram. The SATO-PML 

algorithm was implemented using two priors: the quadratic prior described in equations (4-5), and a 

median prior defined by the energy function [26]: 

𝑈(𝐱) =  
1

2
 ∑ ∑ 𝑤𝑘  |𝐱𝑗 −  𝐦𝑘|𝑘∈𝑁𝑗𝑗            (30) 

where 𝐦𝑘 stands for the median pixel value in the neighborhood 𝑁𝑘 of pixel k, and with 𝑤 the same 

weighting function as that used in equation (5). 

 

RESULTS 

Figure 3 shows the results of the numerical experiment corresponding to the Hoffman brain phantom 

with low count rate data.  Figures 4, 5 and 6 are designed similarly and are respectively related to the 

Hoffman phantom with high count rate, the Shepp-Logan phantom with low count rate and the Shepp-

Logan phantom with high count rate. Each of these four figures is composed of four subplots. Subplot 

A illustrates the convergence properties of SATO-PML (top row) and SATO-EMS (bottom row). From 

left to right are the change with iteration of scaling factor , the tuning parameter , and the RMS error 

between the estimates and the exact object. Each figure of subplot A shows the 95% confidence interval 

of the corresponding variable, defined as the mean value +/ 1.96 times the standard deviation over the 

50 realizations. Subplot B displays the tradeoff curves for ML-filter, SATO-PML and SATO-EMS (the 

tradeoff curves for ML-filter were obtained by varying the size of the post-smoothing kernel as 

explained above). The bias-variance tradeoff (where the bias is defined as the RMS error of the mean 

estimate), the RMS error-variance tradeoff, and the two contrast-variance tradeoffs (tumor then ROI 

contrasts) are displayed from top left to bottom right. Subplot C proposes reconstructed images. The 

results for ML-opt, SATO-PML and SATO-EMS are shown from left to right. The top row shows a 

representative reconstruction for each method. The middle and last rows correspond respectively to the 

mean and standard deviation of the pixel values. Last, subplot D displays profiles through the dotted 

lines shown on Figure 2. The mean profile of the pixel values is shown on top and below is the profile 

of the standard deviation of the pixel values. Table II (resp. Table III) summarizes the relative 

performances of SATO-PML (resp. SATO-EMS) compared with ML-opt in terms of bias, variance (via 

the CV), RMS error, and contrast (tumor and ROI), for the four numerical experiments. Significant 

improvement or worsening (over 5% in absolute value) is highlighted using respectively light or dark 

gray cell shading.  

Figures 7 shows the results for the GATE Hoffman phantom study (A: 1.3 million count sinogram and 

B: 10 million count sinogram). The top images are the reconstructions obtained using MLEM followed 

by Gaussian post-filtering of FWHM 2.5, 3 and 3.5 pixels (A) and 2, 2.5 and 3 pixels (B). The bottom 

images are the reconstructions produced by (from left to right) SATO-PML with the quadratic prior, 

SATO-PML with the median prior, and SATO-EMS. The curves show the convergence of the tuning 

parameter  for (left to right) SATO-PML with the quadratic prior, SATO-PML with the median prior, 

and SATO-EMS. 
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Figure 3. Results for the Hoffman phantom at low count rate. A: convergence. Evolution with the iteration of (from left 

to right): scaling factor , tuning parameter , and RMS error between the estimate and the exact object (top row: 

SATO-PML; bottom row: SATO-EMS). B: tradeoff curves. Top left to bottom right: bias-variance, RMS error-

variance, and contrast-variance (tumor then ROI). C: reconstructed images. Left to right: ML-opt, SATO-PML and 

SATO-EMS. Top to bottom: example, mean, and standard deviation. D: profiles through the lines displayed on Figure 

2. Left: mean. Right: standard deviation. 



IEEE Transactions on Nuclear Science 2013, 60(1): 144-157 

11 
 

 
Figure 4. Results for the Hoffman phantom at high count rate. A: convergence. Evolution with the iteration of (from 

left to right): scaling factor , tuning parameter , and RMS error between the estimate and the exact object (top row: 

SATO-PML; bottom row: SATO-EMS). B: tradeoff curves. Top left to bottom right: bias-variance, RMS error-

variance, and contrast-variance (tumor then ROI). C: reconstructed images. Left to right: ML-opt, SATO-PML and 

SATO-EMS. Top to bottom: example, mean, and standard deviation. D: profiles through the lines displayed on Figure 

2. Left: mean. Right: standard deviation. 
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Figure 5. Results for the Shepp-Logan phantom at low count rate. A: convergence. Evolution with the iteration of (from 

left to right): scaling factor , tuning parameter , and RMS error between the estimate and the exact object (top row: 

SATO-PML; bottom row: SATO-EMS). B: tradeoff curves. Top left to bottom right: bias-variance, RMS error-

variance, and contrast-variance (tumor then ROI). C: reconstructed images. Left to right: ML-opt, SATO-PML and 

SATO-EMS. Top to bottom: example, mean, and standard deviation. D: profiles through the lines displayed on Figure 

2. Left: mean. Right: standard deviation. 
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Figure 6. Results for the Shepp-Logan phantom at high count rate. A: convergence. Evolution with the iteration of 

(from left to right): scaling factor , tuning parameter , and RMS error between the estimate and the exact object (top 

row: SATO-PML; bottom row: SATO-EMS). B: tradeoff curves. Top left to bottom right: bias-variance, RMS error-

variance, and contrast-variance (tumor then ROI). C: reconstructed images. Left to right: ML-opt, SATO-PML and 

SATO-EMS. Top to bottom: example, mean, and standard deviation. D: profiles through the lines displayed on Figure 

2. Left: mean. Right: standard deviation. 
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TABLE II. RELATIVE PERFORMANCES OF SATO-PML WITH RESPECT TO ML-OPT. CELLS COLORED IN LIGHT GRAY AND DARK 

GRAY RESPECTIVELY REFER TO A SIGNIFICANT IMPROVEMENT AND WORSENING (SIGNIFICANCE THRESHOLD: 5%). 

 Low count rate High count rate 

Hoffman Shepp-Logan Hoffman Shepp-Logan 

Bias - 6 % - 21.5 % + 0.5 % - 20 % 

Variance (CV) - 8 % + 15.5 % - 27.5 % - 8.5 % 

Mean RMS error - 6 % - 9.5 % - 3.5 % - 15.5 % 

Mean tumor contrast - 10 % + 7 % - 11.5 % + 1 % 

Mean ROI contrast + 7 % + 7.5 % - 4 % + 5.5 % 

 

 

TABLE III. RELATIVE PERFORMANCES OF SATO-EMS WITH RESPECT TO ML-OPT. CELLS COLORED IN LIGHT GRAY AND DARK 

GRAY RESPECTIVELY REFER TO A SIGNIFICANT IMPROVEMENT AND WORSENING (SIGNIFICANCE THRESHOLD: 5%). 

 Low count rate High count rate 

Hoffman Shepp-Logan Hoffman Shepp-Logan 

Bias + 0.5 % - 11 % + 7 % - 9.5 % 

Variance (CV) - 11 % + 3 % - 25 % - 16 % 

Mean RMS error - 2 % - 7 % + 1 % - 11 % 

Mean tumor contrast + 3 % + 17.5 % - 2.5 % + 5 % 

Mean ROI contrast + 1.5 % + 6 % - 3 % + 5.5 % 

 

 

Figure 7. GATE Hoffman phantom study. A: 1.3 million count sinogram. B: 10 million count sinogram. 

Top images: reconstruction using MLEM with Gaussian post-filtering of FWHM 2.5, 3, and 3.5 pixels (A) and 2, 2.5, and 3 

pixels (B). Bottom images, from left to right: reconstruction using SATO-PML with the quadratic prior, SATO-PML with the 

median prior, and SATO-EMS. Curves, from left to right: convergence of the tuning parameter for SATO-PML with the 

quadratic prior, SATO-PML with the median prior, and SATO-EMS. 
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DISCUSSION 

The following discussion regarding the numerical experiments proceeds from the observation of Figures 

3 to 6, as well as Tables II and III. It appears from Figures 3 to 6 (subplots A) that our two methods are 

globally convergent since the scaling factor  reaches the optimal value of 1 (corresponding to the SATO 

criterion) during the iterative process. Whatever the random initialization of , the plateau is reached 

after 100 to 150 iterations depending on the data statistics, the convergence rate being rather independent 

of the studied object and the initial value of . The convergence of  toward 1 implies the stabilization 

of the tuning parameter at its optimal value, which is weakly dependent on the noise realization 

according to the relatively small amplitude of the 95% confidence interval for  at convergence. 

Furthermore, our results confirm that the convergence of  ensures the stabilization of the RMS error 

which reaches a plateau (and does not further explode as in MLEM reconstruction). The stabilization of 

the RMS error and its small dispersion at convergence clearly demonstrate the regularized and robust 

nature of the two SATO algorithms. The RMS error at convergence is quite similar for the two 

algorithms, SATO-PML providing slightly lower convergence errors than SATO-EMS whatever the 

experiment. The summary provided in Tables II and III shows that from a global point of view SATO-

PML and SATO-EMS allow a significant improvement in the image quality compared with ML-opt, be 

it in terms of bias, variance, RMS error, or contrast. The significant worsening appears to be scarce and 

isolated (no significant worsening exceeds 10 to 15 %) and is clearly balanced by significant 

improvements regarding the other figures of merit. The bias-variance tradeoff curves displayed on 

Figures 3 to 6 (subplot B) show that the points corresponding to SATO-PML and SATO-EMS are 

always located below the tradeoff curve of ML-filter, which means that the two proposed methods allow 

a reduction in either the bias or the variance compared with ML-filter in general and ML-opt in 

particular. The study of the variance-RMS error and variance-contrast plots reveals that the results of 

SATO-PML and SATO-EMS in terms of RMS error and contrast are always equivalent or significantly 

better than those of ML-filter for a similar variance level. The dispersion of the figures of merit 

(characterized using their 95% confidence interval) is highly similar for the three methods, thus 

demonstrating an equivalent robustness. 

When the images are examined in detail (Figures 3 to 6, subplots C), it appears that SATO-PML provides 

images with a slightly noisier texture but moderately more accurate compared with SATO-EMS. This 

is also apparent on the mean line profiles (Figures 3 to 6, subplots D) where SATO-PML provides a 

better recovery of the object silhouette, especially at low count rates. According to the standard deviation 

images and profiles, the local variance of the SATO-PML estimate is almost uniform and globally 

similar to that of the ML-opt estimate. As for the SATO-EMS images, they prove to be significantly 

less noisy than the ML-opt images while preserving equivalent resolution characteristics as appreciable 

on the mean profiles. Their local variance is dependent on the local mean (the high activity regions 

having higher variance than the low activity ones), while remaining globally similar or lower than that 

of the ML-opt images. 

The properties of the SATO-PML and SATO-EMS estimates discussed above on the basis of the Monte-

Carlo experiments are fairly well reflected through the GATE phantom study. The three ML-filter 

estimates proposed in Figure 7 for each count level give an insight into which would probably be the 

optimal one (ML-opt, top middle image), roughly corresponding to a kernel FWHM of 3 pixels (A) and 

2.5 pixel (B). As expected, the SATO-PML reconstructions (bottom left images) and the SATO-EMS 

reconstructions (bottom right images) show resolution properties qualitatively similar to those of ML-

opt. The SATO-PML estimates based on a median prior (bottom middle images) are there to attest that 

our statistic-algebraic optimization criterion can virtually be applied to any kind of regularized iterative 

scheme using a tuning parameter to modulate the strength of the penalization. Indeed, the SATO-PML 

estimates obtained using a median prior exhibit the classical image texture of a reconstruction using an 
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edge-preserving feature, their noise and resolution characteristics remaining very close to those of the 

ML-opt estimates. The convergence curves displayed at the bottom show that the tuning parameter 

effectively converges when working with actual data. The middle curves corresponding to SATO-PML 

with a median prior exhibit a slight instability of  during its convergence toward its optimal value. This 

behavior is likely due to the form of the prior (equation 24) whose first derivative is non-continuous, 

hence leading to abrupt modifications in the direction of the correction 𝛅,𝑛 while the iterations proceed. 

The experiment using the GATE phantom was also intended to demonstrate the feasibility of our 

optimization technique when working with actual data associated with an imperfectly modeled system 

matrix, unlike the Gibbs parameter selection method proposed by Hebert and Leahy in [23] and based 

on an adequacy criterion between the recorded projections and the estimate projections. Indeed, as the 

authors point out in their discussion, significant modeling errors in the system matrix are susceptible to 

alter the validity of their criterion and induce the convergence of the PML estimate toward the noisy 

ML estimate (see [23] section VI for details).  

Before concluding, one word has to be said regarding the differential performances of the two SATO 

methods. SATO-PML performs better in terms of bias reduction, leading to noisier but more accurate 

images, while SATO-EMS performs better in terms of variance reduction, leading to smoother images. 

As further discussed in the appendix, this is likely due to the manner in which the two algorithms 

evaluate their correction 𝛅,𝑛 (equations (31) and (35)). Equation (35) shows that the EMS correction is 

to some extent rather homogenous over the image and proportional to the pixel non-uniformity. This 

explains the tendency of SATO-EMS to smooth the image estimates in a homogenous way. Regarding 

PML, due to the quadratic form of the prior, the correction detailed in equation (31) shows a clear non 

uniformity as it is additionally proportional to the pixel value, hence leading to a stronger correction in 

the high activity regions. The SATO-PML image estimates consequently exhibit better edge restoration 

at the cost of a slightly lower noise reduction. 

 

CONCLUSIONS 

In this paper, we have proposed a simple statistical description of the noise propagation at a given 

iteration when exploiting ML-related iterative reconstruction in emission tomography. The two 

penalized methods examined (PML and EMS) proved to bring corrections for which an approximate 

algebraic criterion can naturally be exploited in order to iteratively optimize their tuning parameter . 

We have proposed a general recipe for the practical implementation of our statistic-algebraic tuning 

optimization (SATO), with a particular application for PML (with a quadratic penalty) and EMS, 

yielding the SATO-PML and SATO-EMS algorithms. We have evaluated these two algorithms using 

Monte-Carlo simulations involving two numerical phantoms (Hoffman and Shepp-Logan) and two noise 

levels. The proposed methods were compared with classical MLEM reconstruction followed by optimal 

Gaussian post-filtering (ML-opt). Our two methods proved to be convergent in terms of  and to enable 

the stabilization of the RMS error. Their robustness was attested by the low dispersion of the tuning 

parameter and RMS error at convergence. They produced estimates with bias, variance and contrast 

properties at least as good as those of the ML-opt estimate. From a qualitative point of view, the 

generated images were fairly similar, the SATO-PML images showing moderately better resolution at 

the price of a tiny noise increment, and the SATO-EMS images being globally smoother without 

significant loss of resolution. Finally, the proposed methods and the reference one were used for the 

reconstruction of a Hoffman phantom whose projection data were produced by the GATE platform using 

the specifications of the GEMINI GXL PET scanner and two count levels. The images obtained by 

SATO-PML and SATO-EMS were visually very close to the “qualitatively” determined ML-opt image. 
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Reconstructions using SATO-PML and a median prior have also been proposed in order to provide 

insight into the potential scope of our optimization technique. 

 

APPENDIX 

A. Collinearity 

Concerning PML, the correction for a given pixel j is: 

𝛅𝑗
,𝑛

=   
1

1 + 𝛽𝚫𝑗
𝑛−1  [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗  − [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗 =  − 𝛽 𝚫𝑗

𝑛−1  
1

1 + 𝛽 𝚫𝑗
𝑛−1  [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗        (31) 

where: 

𝚫𝑗
𝑛−1 =

∑ 𝑤𝑘𝑘∈𝑁𝑗
(𝐱𝑗

𝑛−1−𝐱𝑘
𝑛−1)

∑ 𝐀𝑖𝑗𝑖
               (32) 

is the (normalized) difference between the value of pixel j and the weighted mean value of the 

neighboring pixels at iteration n–1 (due to the OSL approach). Noting that 1 +  𝛽𝚫𝑗
𝑛−1 > 0 ∀j in order 

to avoid the cancellation of the denominator in the PML updating function, we have: 

𝛽 ≪ 𝑚𝑖𝑛
𝑘

{ 
1

|𝚫𝑘
𝑛−1|

 , 𝚫𝑘
𝑛−1 < 0 }             (33) 

The sign of 𝚫𝑗
𝑛 being randomly distributed, it follows that for any pixel j: 

𝛽|𝚫𝑗
𝑛−1| ≪ 1                  (34) 

The PML correction thus writes as: 

𝛅𝑗
,𝑛

= −𝛽 𝚫𝑗
𝑛−1  𝑢±(𝛽|𝚫𝑗

𝑛−1|)  [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗          (35) 

with: 

𝑢±(𝑥) =
1

1 ± 𝑥
              (36) 

where 𝑢+ is chosen if 𝚫𝑗
𝑛−1 > 0 and 𝑢− is chosen if 𝚫𝑗

𝑛−1 < 0. As shown on Figure 8, the two functions 

𝑢±(𝑥) remain almost constant in the practical range of variation of 𝛽 (i.e., for 𝑥 ≪ 1) and are fairly well 

approximated as 𝑢±(𝑥) ≈ 1. Consequently, the PML correction can be approximated as: 

𝛅𝑗
,𝑛

≈  −𝛽 𝚫𝑗
𝑛−1 [𝑓𝑀𝐿(𝐱𝑛−1)]𝑗            (37) 

hence demonstrating its approximate collinear character. 

Regarding EMS, the correction writes for a given pixel j: 

𝛅𝑗
,𝑛

= [𝑓𝑀𝐿(𝐱𝑛−1) ∗ 𝐺𝛽 −  𝑓𝑀𝐿(𝐱𝑛−1)]
𝑗

= [𝑓𝑀𝐿(𝐱𝑗
𝑛−1) ∗ (𝐺𝛽 − 𝐼)]

𝑗
       (38) 
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with I the identity kernel function. Denoting 𝐺𝛽
∗ the normalized kernel such that 𝐺𝛽

∗(0,0) = 0 and 

𝐺𝛽
∗(𝑚, 𝑛) ∝ 𝐺𝛽(𝑚, 𝑛) for (𝑚, 𝑛) ≠ (0,0) yields: 

𝐺𝛽 = (1 − 𝜔𝛽) 𝐼 +  𝜔𝛽𝐺𝛽
∗            (39) 

where 𝜔𝛽 = 1 − 𝐺𝛽(0,0) is monotonic in 𝛽. Basic manipulation leads to: 

𝐺𝛽 = 𝐼 − 𝜔𝛽(𝐼 − 𝐺𝛽
∗)             (40) 

and hence: 

𝛅𝑗
,𝑛

= −𝜔𝛽 [𝑓𝑀𝐿(𝐱𝑗
𝑛−1) ∗ (𝐼 − 𝐺𝛽

∗)]
𝑗

= −𝜔𝛽𝚫𝑗
𝛽,𝑛

         (41) 

where 𝚫𝑗
𝛽,𝑛

= [𝑓𝑀𝐿(𝐱𝑗
𝑛−1) ∗ (𝐼 − 𝐺𝛽

∗)]
𝑗
 has the same interpretation as 𝚫𝑗

𝑛−1 in the PML case and can be 

seen as the difference between the value of pixel j and the weighted mean value of the neighboring 

pixels. In contrast to equation (32), 𝚫𝑗
𝛽,𝑛

 is here computed at iteration n (previously at iteration n-1) on 

the basis of the ML update 𝑓𝑀𝐿(𝐱𝑛−1) (previously on the basis of 𝐱𝑛−1). Provided that 𝚫𝑗
𝛽,𝑛

 is 

sufficiently stable when 𝛽 varies (which is the case when using a progressive Gaussian filtering), 

equation (41) ensures that the EMS correction is approximately collinear since for any (
1

,2): 

𝛅
𝑗

1,𝑛
≈

𝜔1

𝜔2
 𝛅

𝑗

2,𝑛
              (42) 

 

Figure 8. Plot of the functions 𝑢±(𝑥) for 𝑥 ∈ [10−4 ;  1]. Note the log-log scale. 

 

B. Update formulas for 𝜷 

Regarding SATO-PML, as the correction 𝛅,𝑛 is in first approximation proportional to 𝛽 (see eq. 31), it 

is natural to update 𝛽 by simply multiplying it by the scaling factor 𝜅𝛽,𝑛, hence equation (25). As for 

SATO-EMS, equation (41) tells us that 𝛅,𝑛 is in first approximation proportional to 𝜔𝛽. Noting 𝜎 the 

standard deviation of the Gaussian kernel, one has: 

𝜔𝛽 =  1 − 𝐺𝛽(0,0) = 1 − 𝑒𝑟𝑓2 (
1

𝜎√2
)           (43) 
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One can easily check that the function 1 − 𝑒𝑟𝑓2 (
1

𝜎√2
) is very well approximated using 𝑒𝑥𝑝 (−

1

2𝜎2). 

Introducing 𝛽 = 2 √2 ln(2) 𝜎 it comes that: 

𝛅,𝑛  ∝  𝑒𝑥𝑝(−ln(2)/𝛽2)             (44) 

Then solving 

𝑒𝑥𝑝 (−
4 ln(2)

𝛽𝑛𝑒𝑤2) =  𝜅𝛽,𝑛 𝑒𝑥𝑝 (−
4 ln(2)

𝛽𝑜𝑙𝑑2 )              (45) 

yields equation (26). 
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