Du signal physique à une image médicale exploitable

Les artefacts d'acquisition

Réponse de l'appareil d'imagerie

Modification du signal avant détection

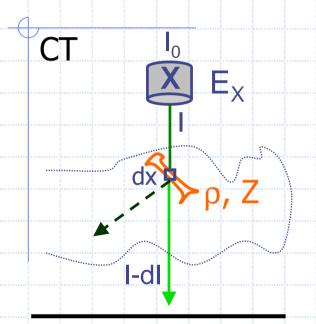
Correction des artefacts (planaire & tomographie)

UE optionnelle DFGSM : Imagerie métabolique et fonctionnelle 26 mars 2015, 14h-18h, D. Mariano-Goulart

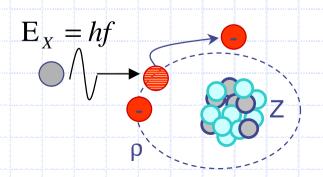
PLAN DU COURS

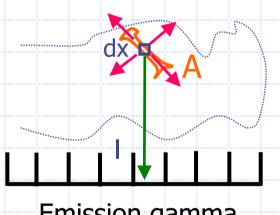
- HISTORIQUE
- TRACEURS EN IMAGERIE FONCTIONNELLE
- SIGNAL PHYSIQUE → IMAGE MEDICALE
 - Quel paramètre physique mesure-t-on?
 - Artefacts liés à la formation de l'image ?
 - Artefacts d'atténuation en imagerie d'émission
 - Corrections en imagerie planaire
 - Corrections en imagerie tomographique
- EXTRACTION DE PARAMETRES PHYSIOLOGIQUES ET DIAGNOSTIQUES
 - CINETIQUE DES TRACEURS
 - EXPLOITATION D'ACQUISITIONS
 - EXTRACTION DE PARAMETRES PHYSIOLOGIQUES A PARTIR DE MODELES PHARMACOCINETIQUES ET STATISTIQUES (GLUCOSE, IRMf, NEURO)

IMAGERIE DE TRANSMISSION & D'EMISSION

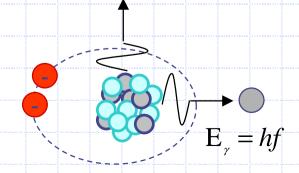


Atténuation photo-électrique

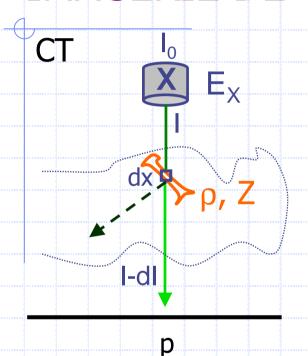




Emission gamma



SPECT



$$\mu = -\frac{dI}{dx} \quad cm^{-1} \implies I = I_0.e^{-\mu.x}$$

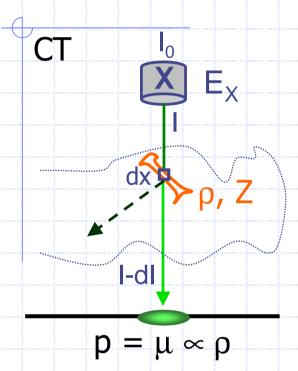
$$p = \mu = -\frac{1}{x} \ln \frac{I}{I_o}$$
 est la mesure

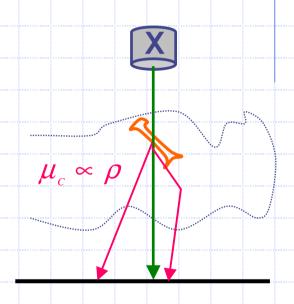
$$\mu_{\text{\tiny PE}} = k. \frac{\rho.Z^3}{E_{_X}^3}$$

$$\mu_{\rm c} = k.\rho$$

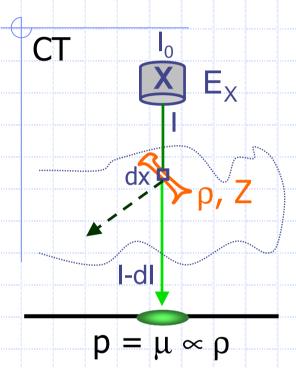
est proportionnel à ρ .Z³

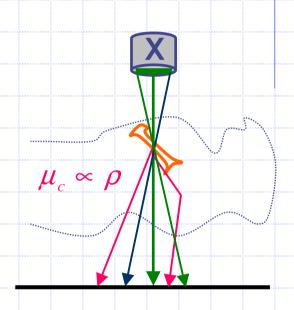
est proportionnel à ρ



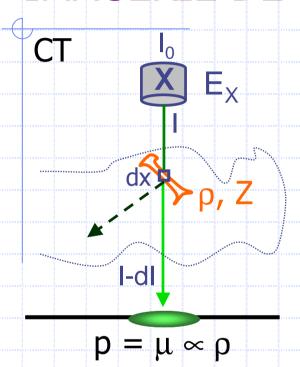


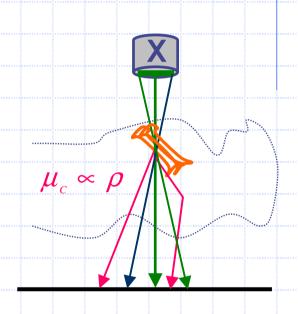
Flou de diffusé (Compton)



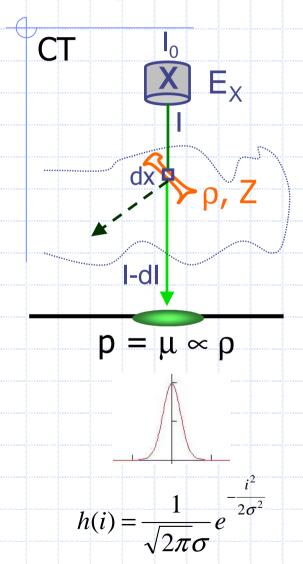


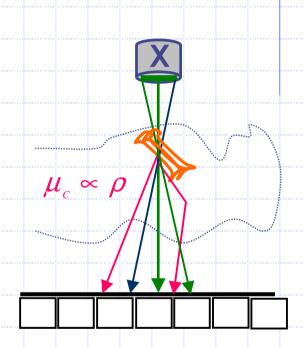
Flou de diffusé (Compton) Flou géométrique (foyer)





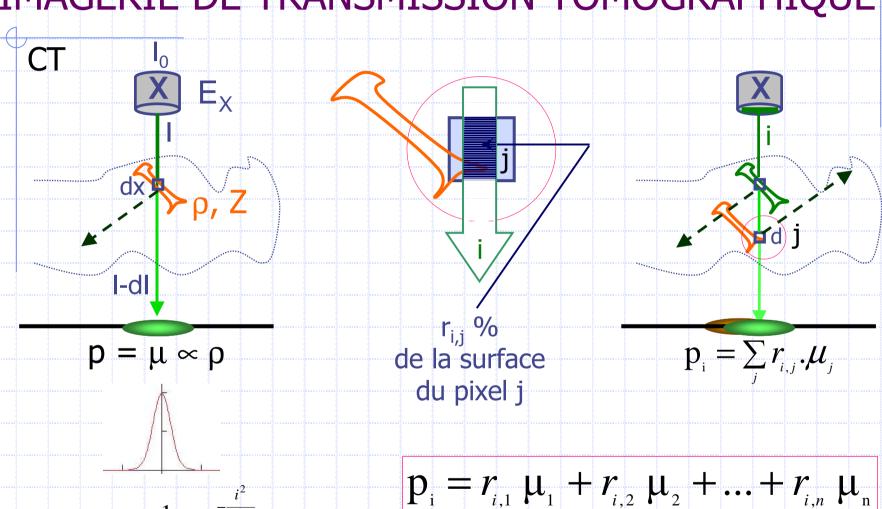
Flou de diffusé (Compton)
Flou géométrique (foyer)
Flou cinétique





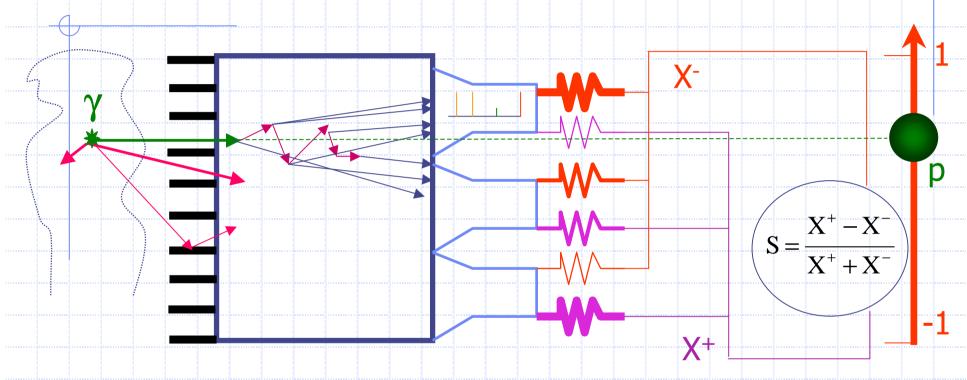
Flou de diffusé (Compton)
Flou géométrique (foyer)
Flou cinétique
Flou d'écran (pixel)

IMAGERIE DE TRANSMISSION TOMOGRAPHIQUE



$$p_{i} = r_{i,1} \mu_{1} + r_{i,2} \mu_{2} + ... + r_{i,n} \mu_{n}$$

IMAGERIE D'EMISSION



Collimateur

Réponse géométrique, Pénétration et diffusion septales

Scintillateur

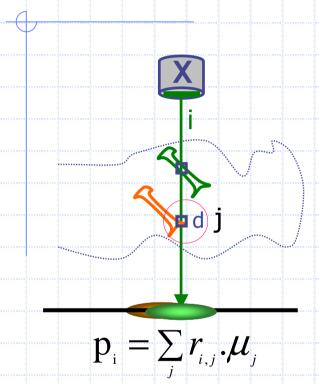
Diffusion
Compton
dans le cristal

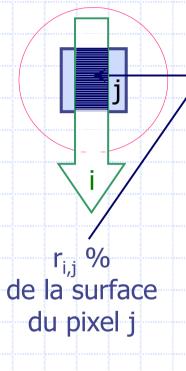
PM Localisation

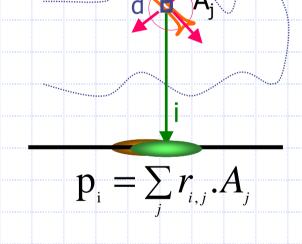
Incertitudes de localisation

réponse intrinsèque

IMAGERIE TOMOGRAPHIQUE

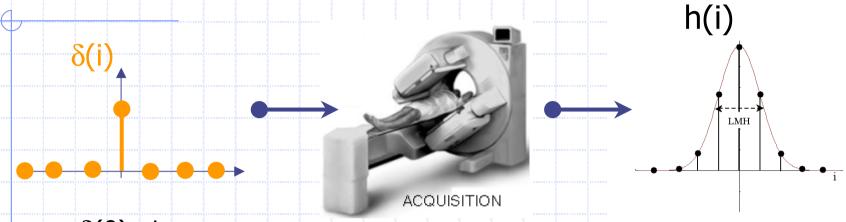






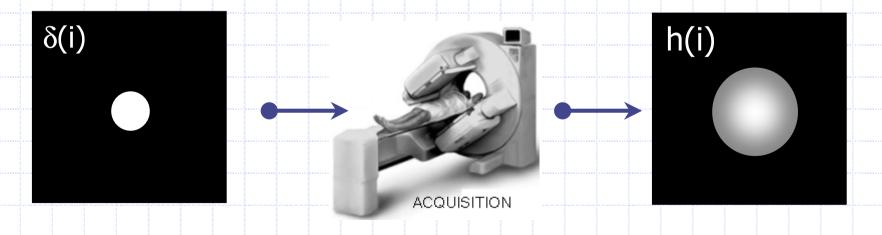
$$p_{i} = r_{i,1} \mu_{1} + r_{i,2} \mu_{2} + ... + r_{i,n} \mu_{n} p_{i} = r_{i,1} A_{1} + r_{i,2} A_{2} + ... + r_{i,n} A_{n}$$

REPONSE IMPULSIONNELLE

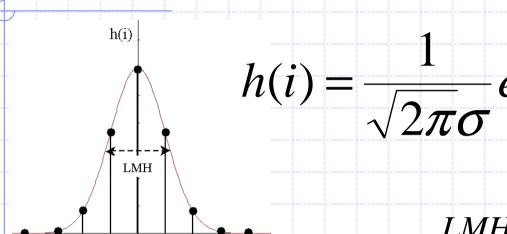


$$\delta(0)=1$$

$$\delta(k)=0 \text{ si } k \neq 0$$



LMH DE LA REPONSE IMPULSIONNELLE



Largeur à Mi-Hauteur Full Width at Half Maximum

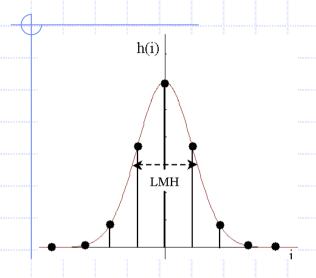
$$h(\frac{LMH}{2}) = \frac{1}{2} \frac{1}{\sqrt{2\pi}\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{\left(\frac{LMH}{2}\right)^2}{2\sigma^2}}$$

$$\Rightarrow \ln 2 = \frac{\left(\frac{LMH}{2}\right)^2}{2\sigma^2} = \frac{LMH^2}{8.\sigma^2}$$

$$\Rightarrow LMH = 2.\sigma\sqrt{2.\ln 2} \approx 2,36.\sigma$$

$$\Rightarrow LMH \approx 2,36.\sigma$$

LMH DE LA REPONSE IMPULSIONNELLE

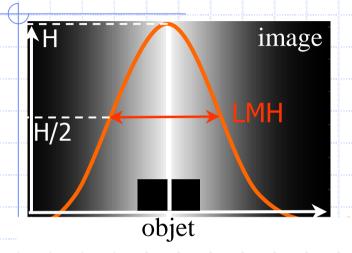


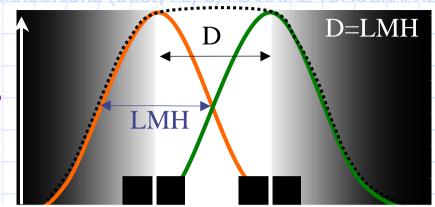
Largeur à Mi-Hauteur Full Width at Half Maximum

$$h(i) = \frac{k}{\sqrt{\pi}} e^{-k^2 \cdot i^2} = \frac{k}{\sqrt{\pi}} e^{-k^2 \cdot i^2}$$

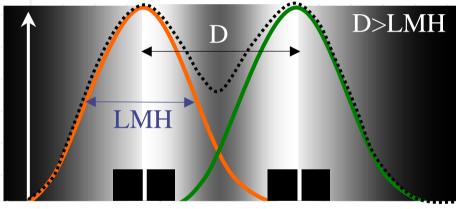
$$k = \frac{1}{\sqrt{2}\sigma} = \frac{2.\sqrt{\ln 2}}{LMH}$$

Interprétation 1

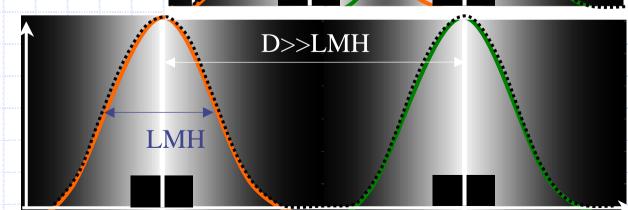




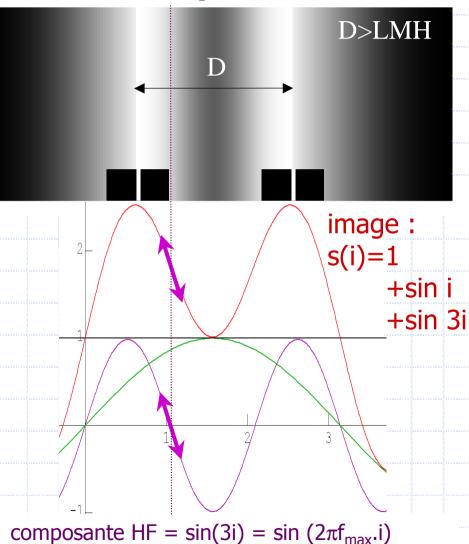
D ≤ LMH ⇒ images fusionnées



D > LMH ⇒ images indépendantes



Interprétation 2



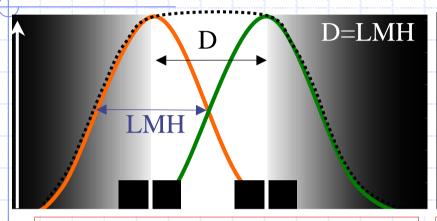
 $f_{max} = 3/2\pi = 3/tour \Leftrightarrow D_{min} = 2\pi/3 \text{ mm}$

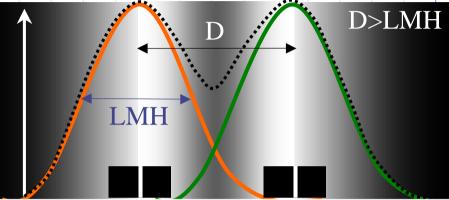
Chaque composante fréquentielle de la TF code une certaine vitesse de variation des niveaux de gris d'un pixel à l'autre :

La composante $sin(2\pi f.i)$ code pour un signal intense (ligne blanche) se répétant tous les 1/f mm.

La composante maximale (f_{max} =3/ 2π) code donc pour la variation de niveau de gris la plus rapide, soit une ligne (blanche) se répétant tous les D_{min} = 1/ f_{max} = 2π /3 mm = LMH

Interprétation





 $D \le LMH \Rightarrow images fusionnées$

f= 1/D ≥ 1/LMH La composante fréquentielle f n'est pas transmise D > LMH ⇒ images non fusionnées

f= 1/D < 1/LMH La composante fréquentielle f est transmise

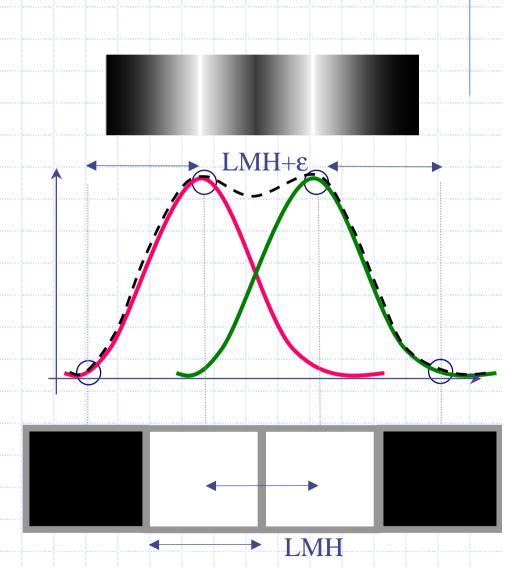
$$LMH = \frac{1}{f_{\text{max}}^{transmise}} = D_{\text{min}}^{transmise} = \text{r\'esolution} = \text{pouvoir s\'eparateur}$$

LMH $\downarrow \Rightarrow f_{max} \uparrow \Rightarrow$ variation de contraste maximale possible \uparrow

Théorème de Shannon

Si la taille du pixel est identique à la LMH, alors aucun contraste n'est produit pour des objets ponctuels distants d'un peu plus que la LMH:

Perte de résolution



Théorème de Shannon

ECHANTILLONNAGE
SANS PERTE DE
RESOLUTION

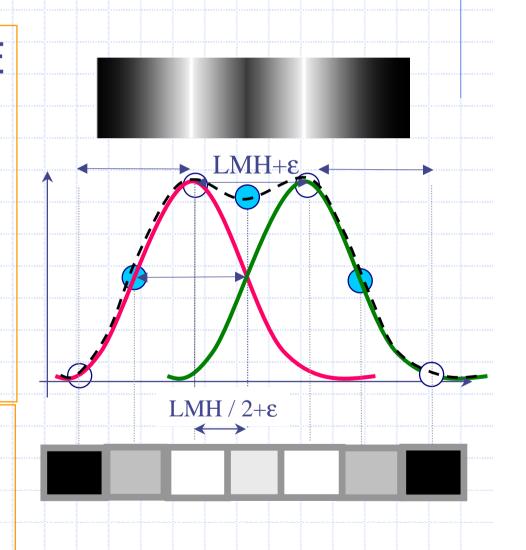
taille du pixel d

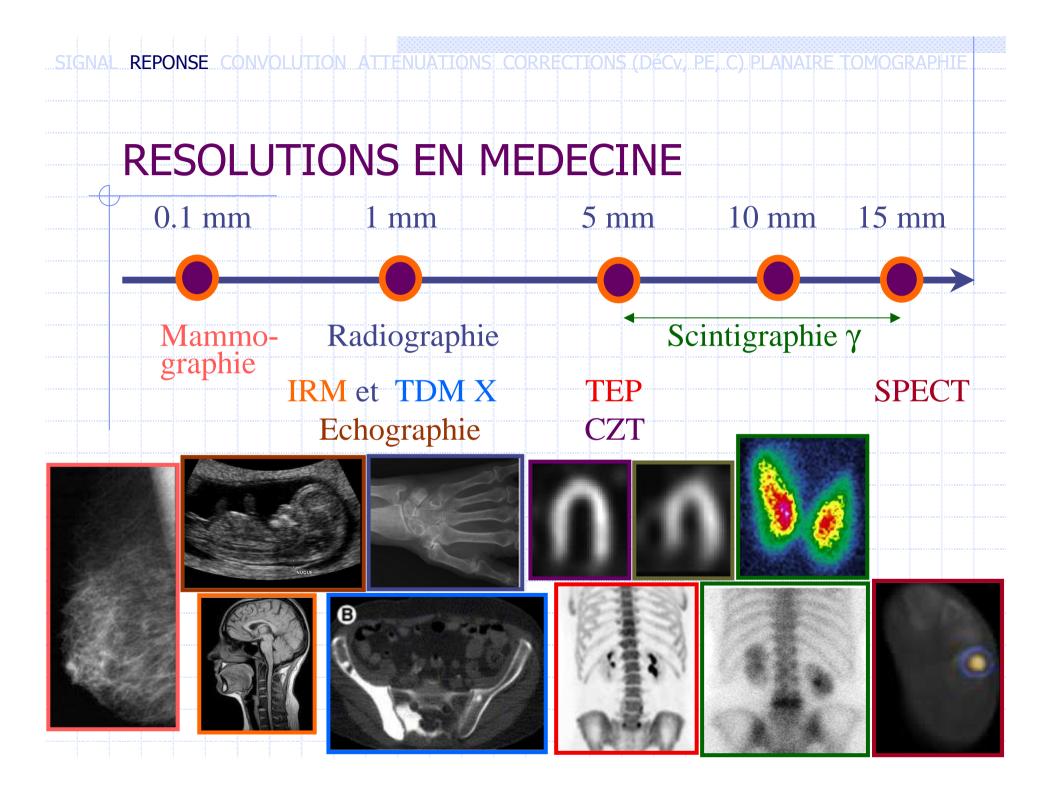
 $d \leq LMH/2$

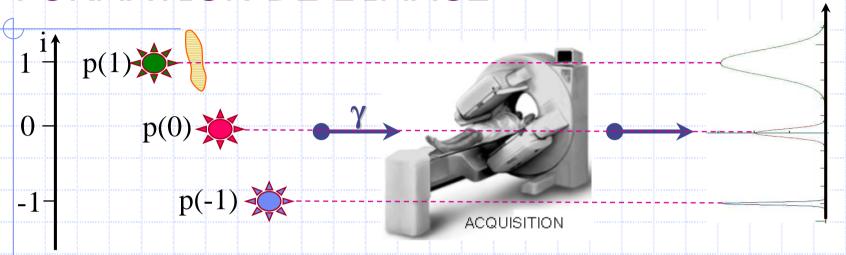
En pratique:

$$d = LMH/2$$

$$1/d=2/LMH \Leftrightarrow f_e=2.f_{max}$$

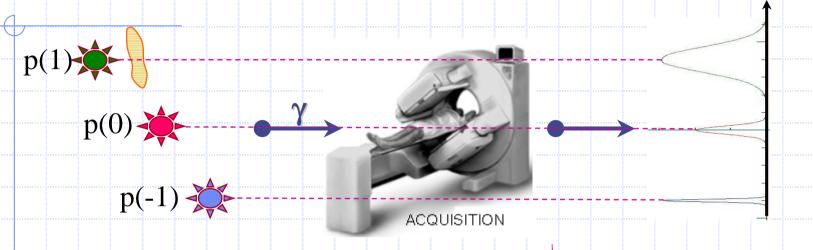






$$p(i) = \sum_{k=-\infty}^{+\infty} p(k).\delta(i-k), \text{ i fixé}$$

$$= 0 \text{ sauf si k=i où } \delta(0)=1$$



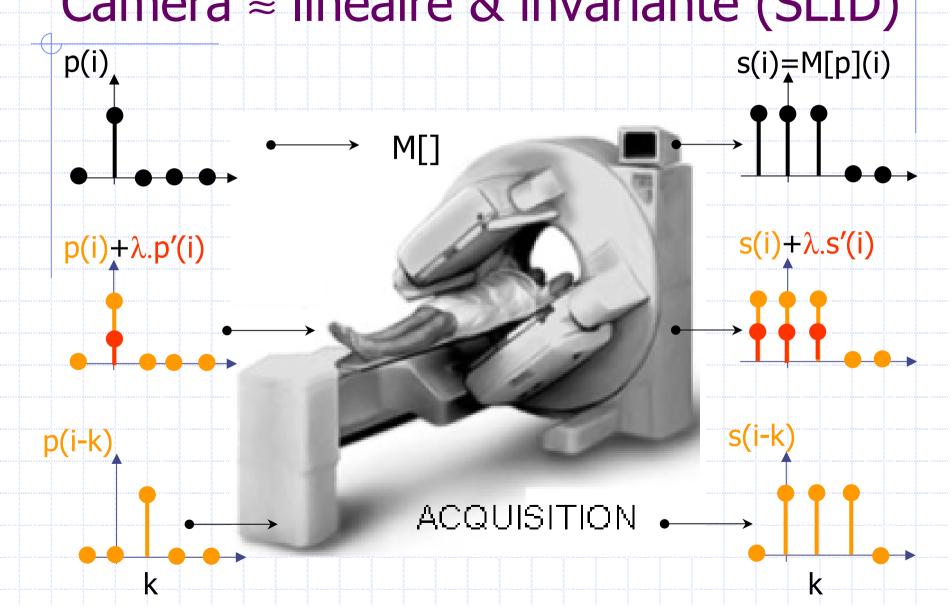
$$p(i) = \sum_{k=-\infty}^{+\infty} p(k).\delta(i-k), \quad i \text{ fixe} \qquad s(i) = M[p](i) = ?$$

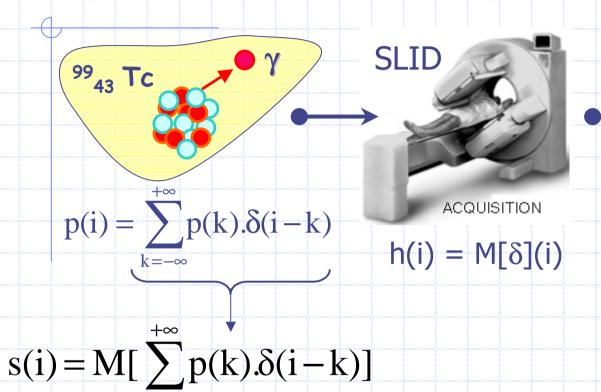
$$= 0 \text{ sauf si } k=i$$

$$\delta(0) = 1$$

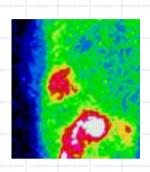
Pour déterminer s, il faut faire des hypothèses sur M, donc sur les caractéristiques de la caméra...

Caméra ≈ linéaire & invariante (SLID)

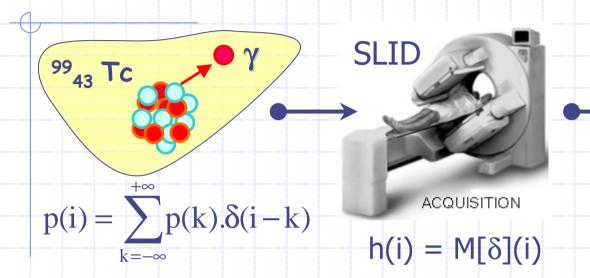


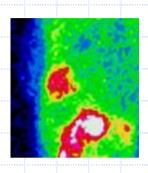


 $k=-\infty$



$$s(i) = M[p](i) = ?$$

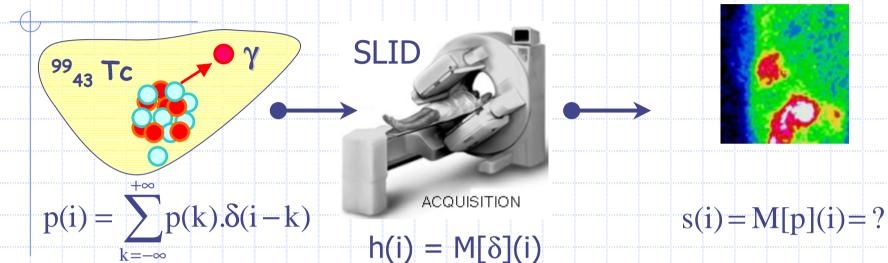




$$s(i) = M[p](i) = ?$$

$$s(i) = M\left[\sum_{k=-\infty}^{+\infty} p(k).\delta(i-k)\right] = \sum_{k=-\infty}^{+\infty} p(k).M[\delta(i-k)]$$

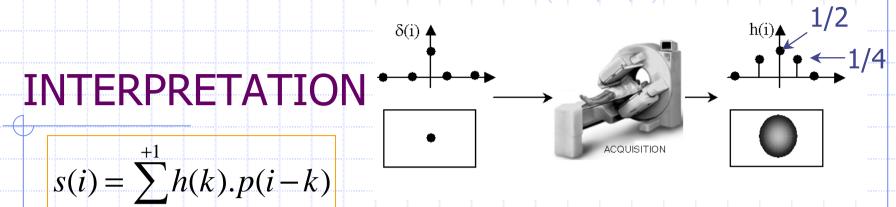
linéarité



$$s(i) = M\left[\sum_{k=-\infty}^{+\infty} p(k).\delta(i-k)\right] = \sum_{k=-\infty}^{+\infty} p(k).M\left[\delta(i-k)\right] = \sum_{k=-\infty}^{+\infty} p(k).h(i-k)$$

Invariance dans le décalage

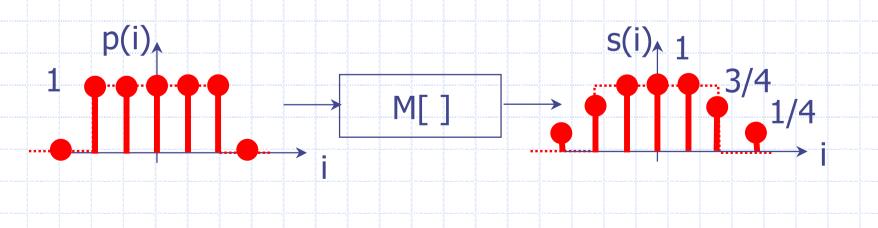
$$s(i) = \sum_{k = -\infty}^{+\infty} p(k).h(i - k) = \sum_{k = -\infty}^{+\infty} h(k).p(i - k) = (p * h)(i)$$

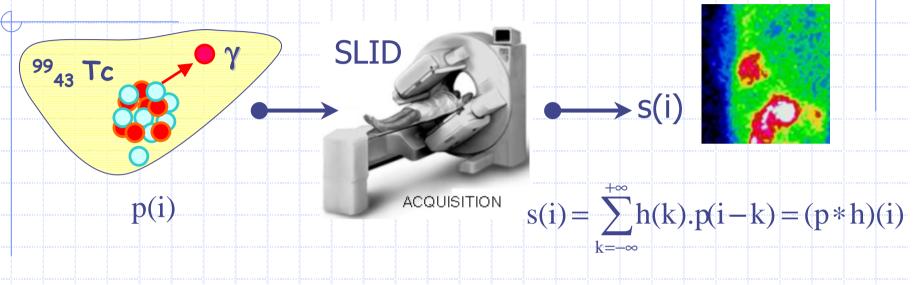


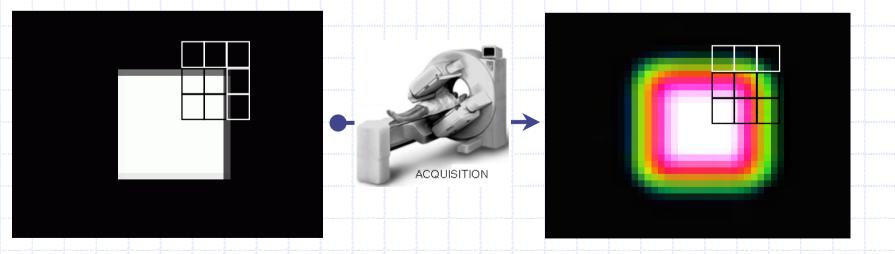
$$s(i) = h(-1).p(i+1) + h(0).p(i) + h(1).p(i-1)$$

$$s(i) = \frac{1}{4}p(i+1) + \frac{1}{2}p(i) + \frac{1}{4}p(i-1) = \frac{2 \cdot p(i) + p(i+1) + p(i-1)}{4}$$

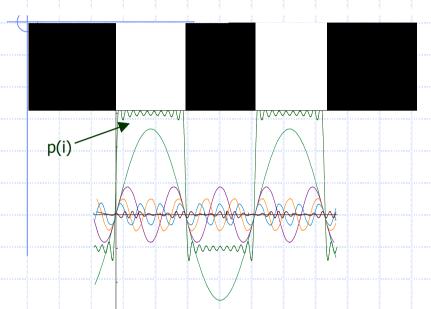
s = moyenne pondérée par h de la grandeur physique p



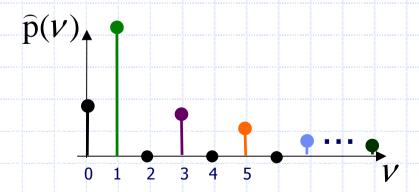




INTERPRETATION EN FREQUENCE

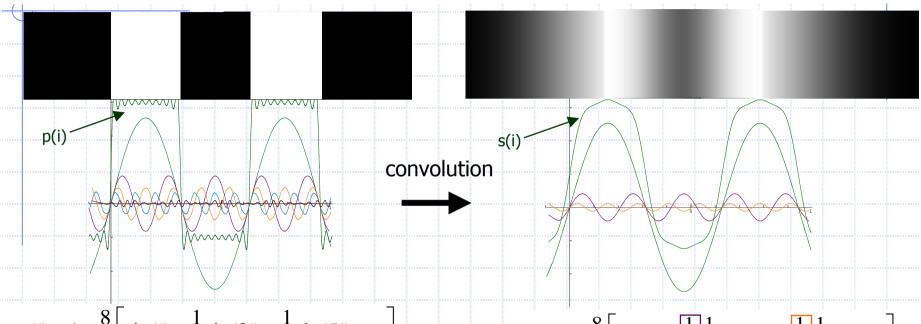


$$p(i) = 1 + \frac{8}{\pi} \left[\sin(i) + \frac{1}{3}\sin(3i) + \frac{1}{5}\sin(5i) + \dots \right]$$



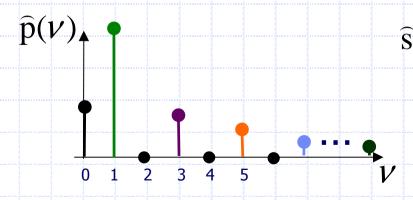
Ce graphe représentant les amplitudes $\widehat{p}(\nu)$ de chaque composante de fréquence ν est appelé spectre (ou transformée de Fourier) du signal p(i)

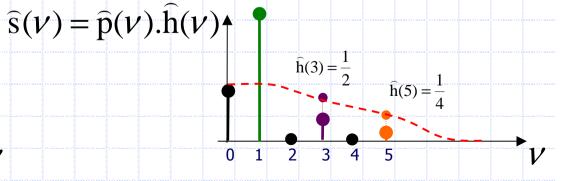
INTERPRETATION EN FREQUENCE



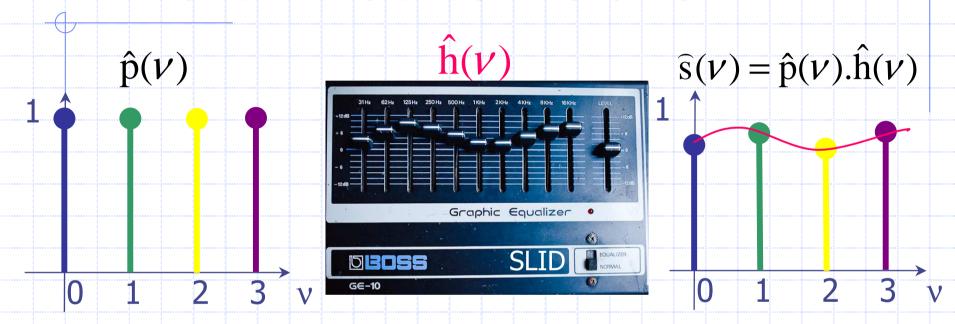
$$p(i) = 1 + \frac{8}{\pi} \left[\sin(i) + \frac{1}{3} \sin(3i) + \frac{1}{5} \sin(5i) + \dots \right]$$

$$s(i) = 1 + \frac{8}{\pi} \left[\sin(i) + \frac{1}{2} \frac{1}{3} \sin(3i) + \frac{1}{4} \frac{1}{5} \sin(5i) \right]$$





Théorème de convolution



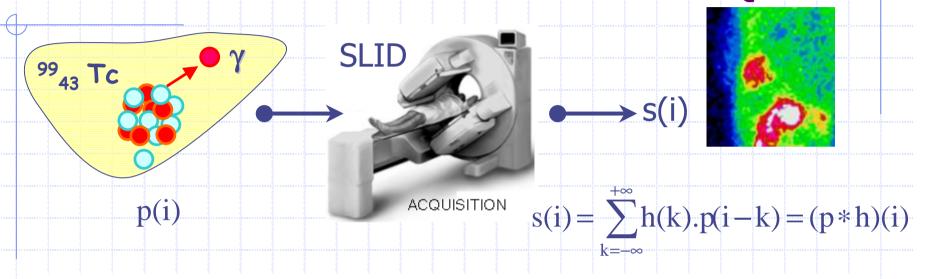
 $\hat{s}(\nu)$ = multiplication par $\hat{h}(\nu)$ de la TF de la grandeur physique $\hat{p}(\nu)$

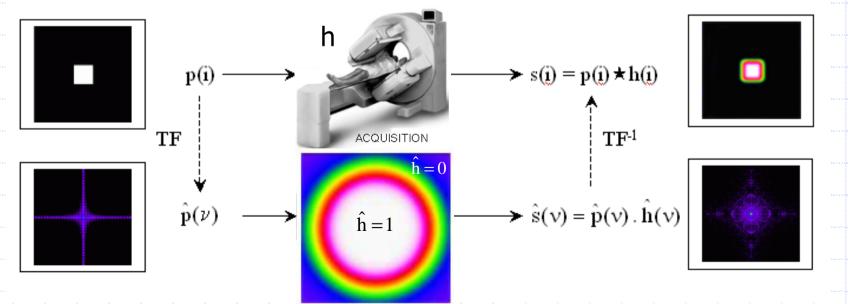
s = convolution par h de la grandeur physique p

$$s(i) = h(i) * p(i) \implies \widehat{s}(v) = \widehat{h}(v) \cdot \widehat{p}(v)$$

Introduction au traitement numérique des images médicales. D. Mariano-Goulart. *EMC.* (Elsevier Masson SAS, Paris), Radiodiagnostic - Principes et techniques d'imagerie, 35-100-A-10, 2015.

REPONSES IMPULSIONNELLES & EN FREQUENCE



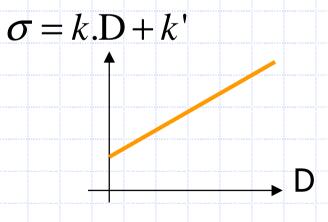


Cq 1: RESOLUTION ET DISTANCE EN SPECT

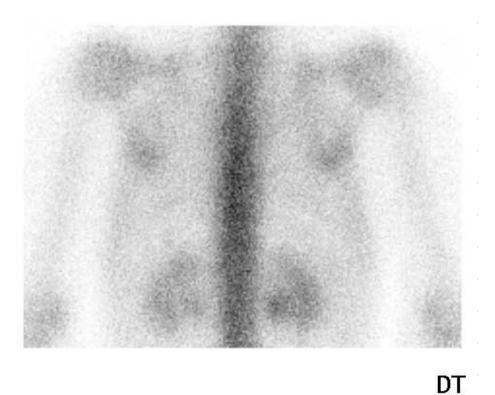
s = moyenne pondérée par h de la grandeur physique p

- plus le détecteur est proche du patient...
- plus la réponse impulsionnelle est étroite
- …et plus l'image est fidèle à l'objet!

◆Sinon: lissage = flou!



Cq 1: RESOLUTION ET DISTANCE EN SPECT



DT

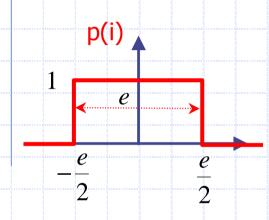
AU CONTACT

POST

A 50CM

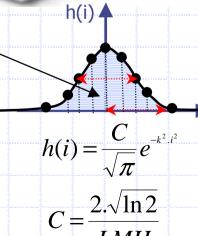
Cq2: « EFFET DE VOLUME PARTIEL »

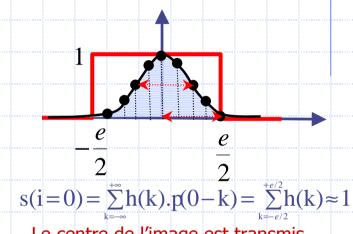
Si e/2 > LMH



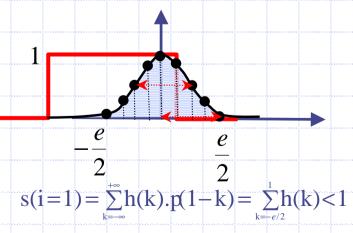
Surface =
$$\sum_{k=-\infty}^{\infty} h(k) = \frac{C}{\sqrt{\pi}} \sum_{k=-\infty}^{\infty} e^{-k^2 \cdot k^2} = 1$$

98% de l'intégrale d'une gaussienne se trouve entre ± LMH





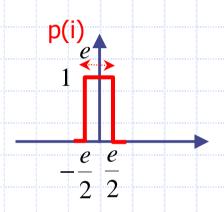
Le centre de l'image est transmis

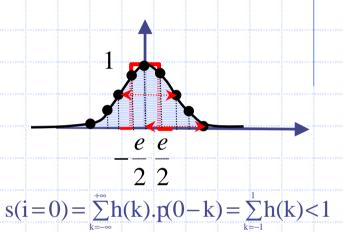


Les bords de l'image sont sous-estimés

Cq2: « EFFET DE VOLUME PARTIEL »

Si e/2 < LMH :





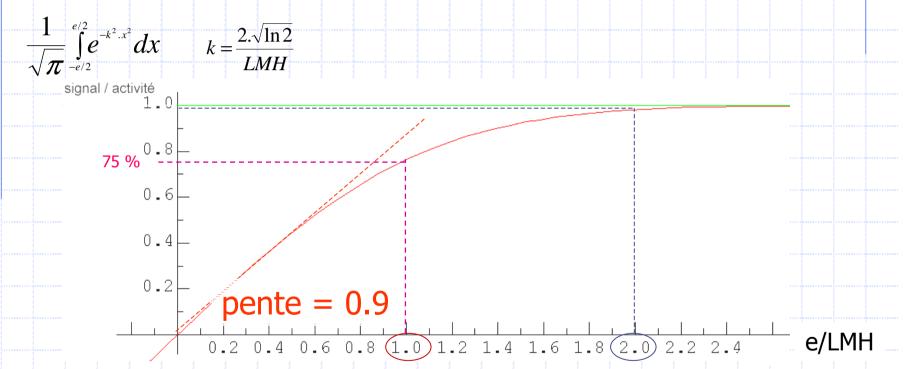
Le centre de l'image est sous-estimé

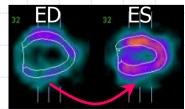
Surface=
$$\sum_{k=-\infty}^{\infty} h(k) = \frac{C}{\sqrt{\pi}} \sum_{k=-\infty}^{\infty} e^{-k^2 \cdot k^2} = 1$$

$$h(i) = \frac{C}{\sqrt{\pi}}e^{-k^2 \cdot i^2}$$

$$C = \frac{2.\sqrt{\ln 2}}{IMH}$$

Cq2: « EFFET DE VOLUME PARTIEL »





JR Galt et al. «Effects of myocardial wall thichness on SPECT quantification». IEEE TMI 1990;9

Cq2: « EFFET DE VOLUME PARTIEL »

- Activité sous-estimée si e < 2.LMH</p>
 - 75 % de l'activité est mesurée si e = LMH
 - Rappel: LMH ≈ 6 mm en TEP et 15 mm en SPECT
- Approximation linéaire possible si e < LMH</p>
 - Ajustement de seuils (SUV_{max}...)
- Pour limiter cet artefact : déconvolution.
- Artefact exploitable pour estimer des mouvements en dessous de la résolution des gamma-caméras (épaississement systolique).

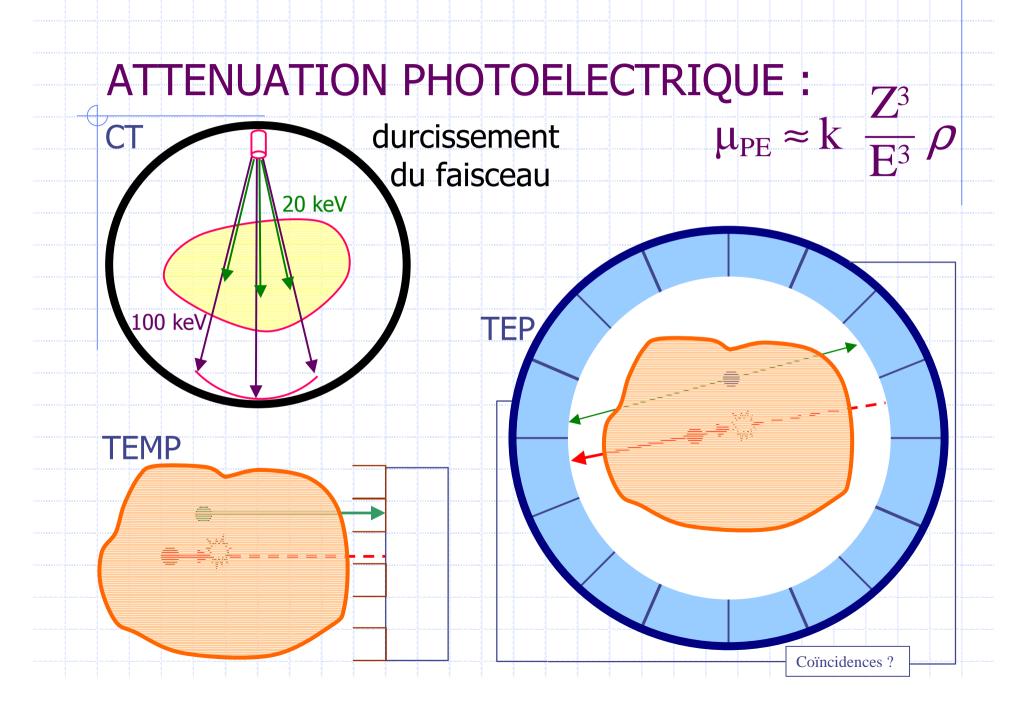
D'un signal physique à une image médicale exploitable

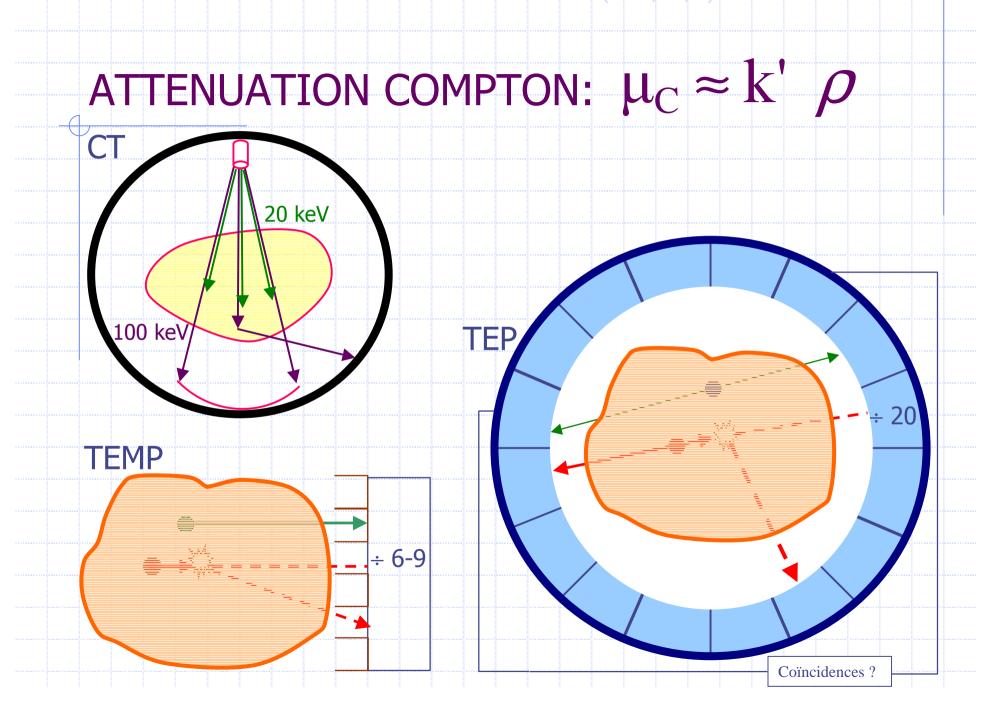
Les artefacts d'acquisition

Réponse de l'appareil d'imagerie

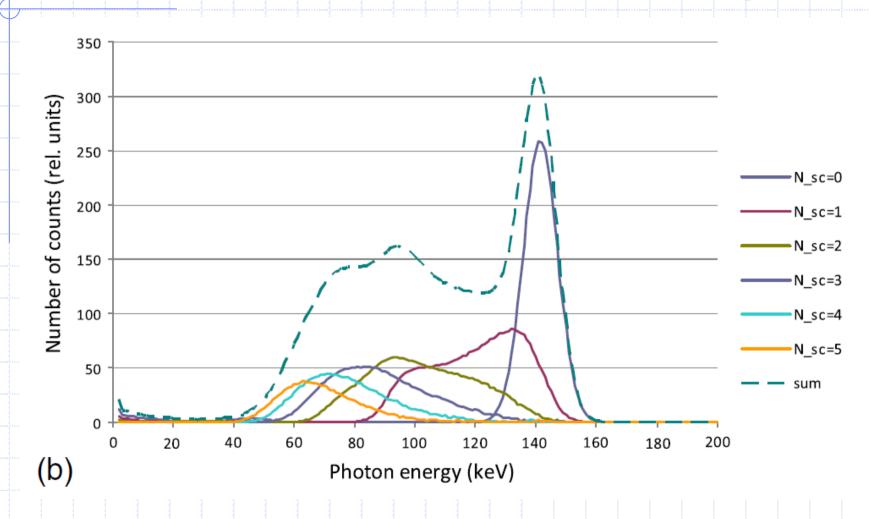
Modification du signal avant détection

Correction des artefacts (planaire & tomographie)



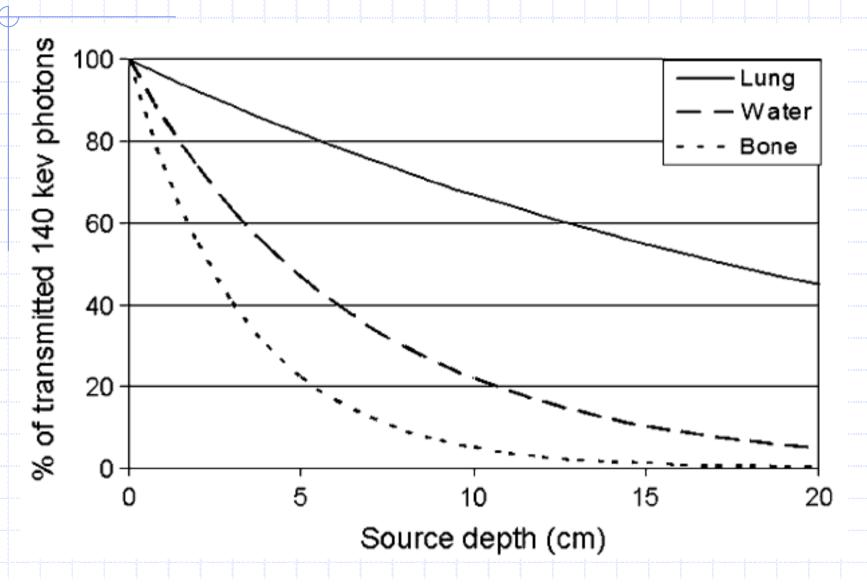


ATTENUATION COMPTON: $\mu_C \approx k' \rho$



Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85-R112

ATTENUATION A 140 keV:

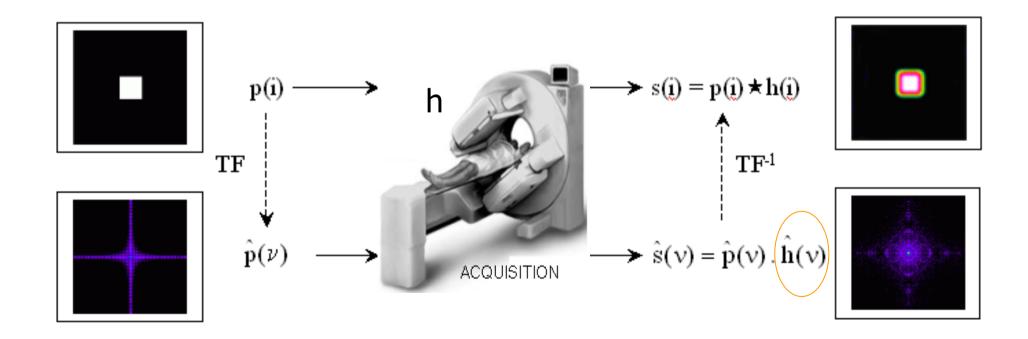


DECONVOLUTION

- …pour améliorer la résolution (LMH), donc limiter les effets de volume partiel
 - en 2D, sous hypothèse d'invariance :
 - par filtrage linéaire de Metz, Wiener,...
 - En 3D, en prenant en compte la distance au collimateur
 - par modélisation ou principe fréquence-distance
- ...pour corriger les artefacts liés à la dilution et à la recirculation du bolus radioactif
 - Application au calcul de temps de transit intra-renal en néphrographie isotopique (cf. cours de modélisation)

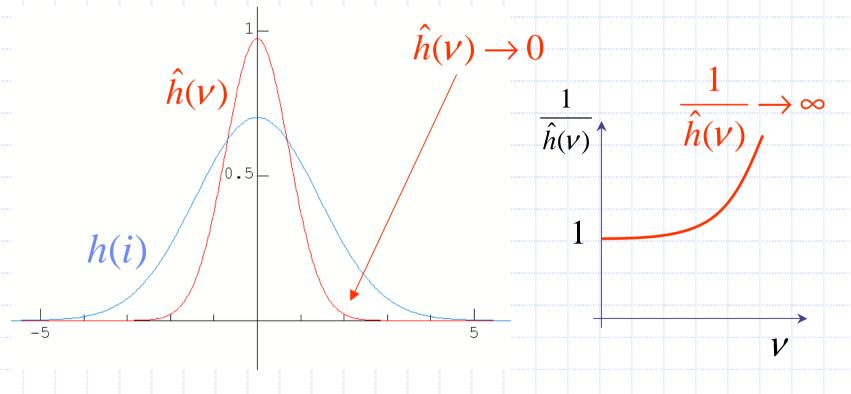
DECONVOLUTION PLANAIRE

Dans une image de projection, la distance entre la source et le détecteur où se forme l'image est inconnue. On néglige donc la dépendance en D de la réponse impulsionnelle.

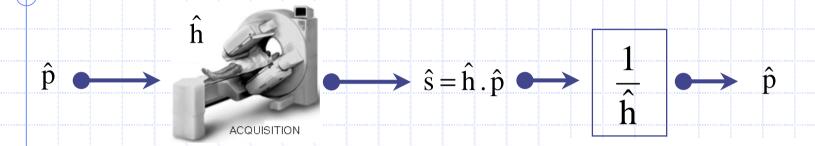


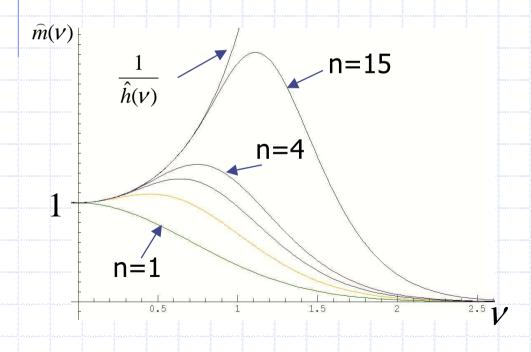
TF D'UNE GAUSSIENNE

$$h(i) = \frac{1}{\sigma}e^{-\frac{i^2}{2.\sigma^2}} \Leftrightarrow \hat{h}(v) = e^{-\frac{v^2}{2/\sigma^2}}$$



FILTRE DE DECONVOLUTION DE METZ



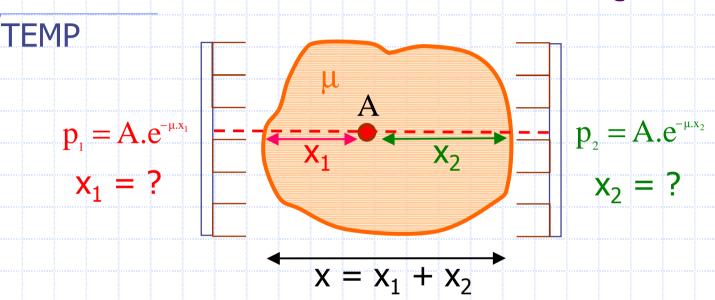


$$\hat{m}(v,v') = \frac{1 - \left[1 - \hat{h}(v,v')^2\right]'}{\hat{h}(v,v')}$$

$$n = 0.834 \cdot \ln(C) - 7.774$$

King et al. JNM 1983;24 et Metz et al. JNM 73;15

ATTENUATION PHOTOELECTRIQUE (PLANAIRE)

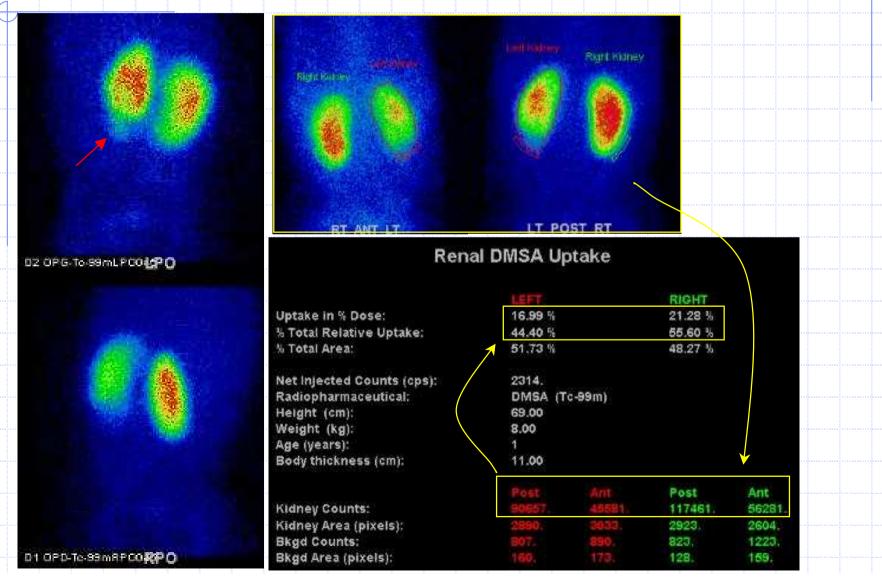


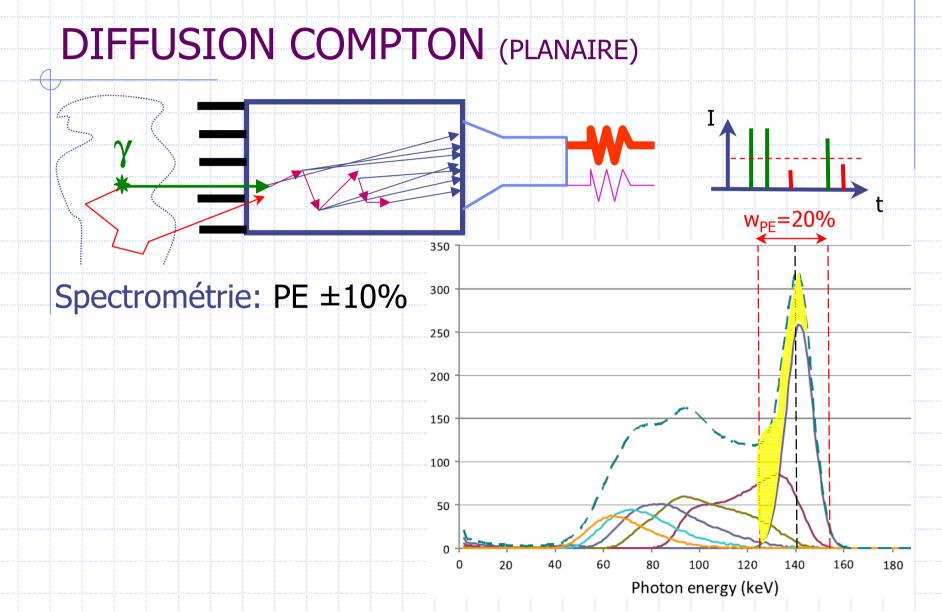
$$p_1.p_2 = A^2.e^{-\mu.x_1}.e^{-\mu.x_2} = A^2.e^{-\mu.(x_1+x_2)} = A^2.e^{-\mu.x}$$

$$A = \sqrt{p_{\scriptscriptstyle 1}.p_{\scriptscriptstyle 2}.e^{\mu.x}} = \sqrt{p_{\scriptscriptstyle 1}.p_{\scriptscriptstyle 2}}.e^{\mu.x/2} \quad \text{Moyenne géométrique}$$

Condition : milieu atténuant homogène de μ connu

ATTENUATION PHOTOELECTRIQUE (PLANAIRE)





Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85-R112

DIFFUSION COMPTON (PLANAIRE)

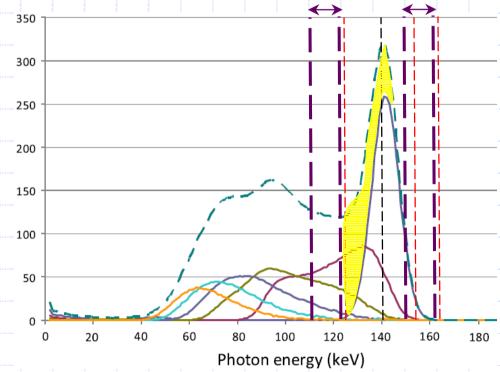
Spectrométrie: PE ±10%

Estimation des photons diffusés dans des fenêtres hors pic puis soustraction.

w_b w_h

$$C_{d} \approx \left(\frac{C_{b}}{W_{b}} + \frac{C_{h}}{W_{h}}\right) \cdot \frac{W_{PE}}{2}$$

$$C \approx C_{\text{non corrigé}} - C_d$$



Review and current status of SPECT scatter correction. BF Hutton et al. Phys. Med. Biol. 56 (2011) R85-R112

D'un signal physique à une image médicale exploitable

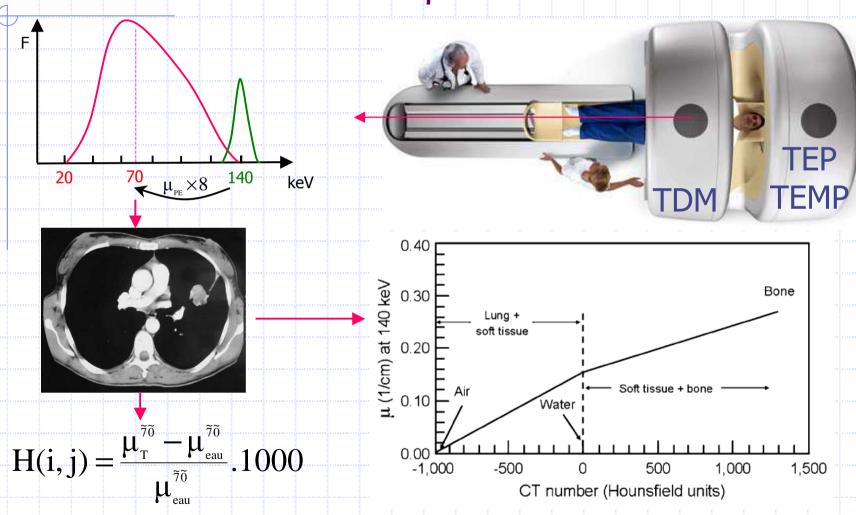
Les artefacts d'acquisition

Correction des artefacts (planaire & tomographie)

Déconvolution & atténuation en mode planaire

Déconvolution & atténuation en mode tomographique

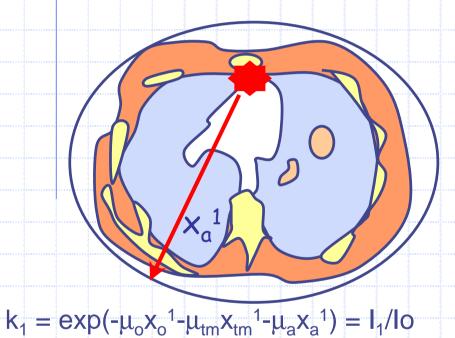
DETERMINATION DES ρ PAR CT



SPECT/CT Physical Principles and Attenuation. Correction. JA. Patton & TG Turkington. J Nucl Med Technol 2008; 36:1–10

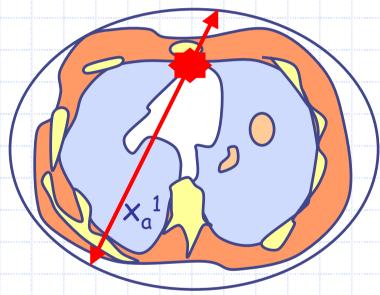
CORRECTION DE L'EFFET PHOTO-ELECTRIQUE

TEMP



La correction multiplicative nécessite la détermination des x¹ donc de reconstruire la coupe

PET
$$k_2 = \exp(-\mu_0 x_0^2 - \mu_{tm} x_{tm}^2 - \mu_a x_a^2)$$

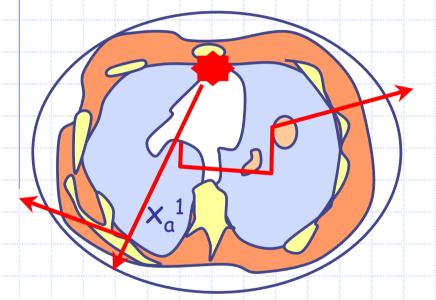


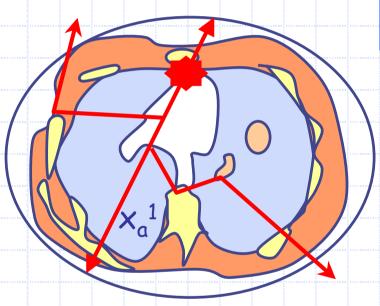
$$k_1 = \exp(-\mu_o x_o^{-1} - \mu_{tm} x_{tm}^{-1} - \mu_a x_a^{-1}) = I_1/I_0$$

Correction multiplicative avant reconstruction sur chaque LOR par $\exp(\mu_{os}x_{os} + \mu_{mou}x_{mou} + \mu_{air}x_{air})$

CORRECTION DE L'EFFET COMPTON

TEMP PET

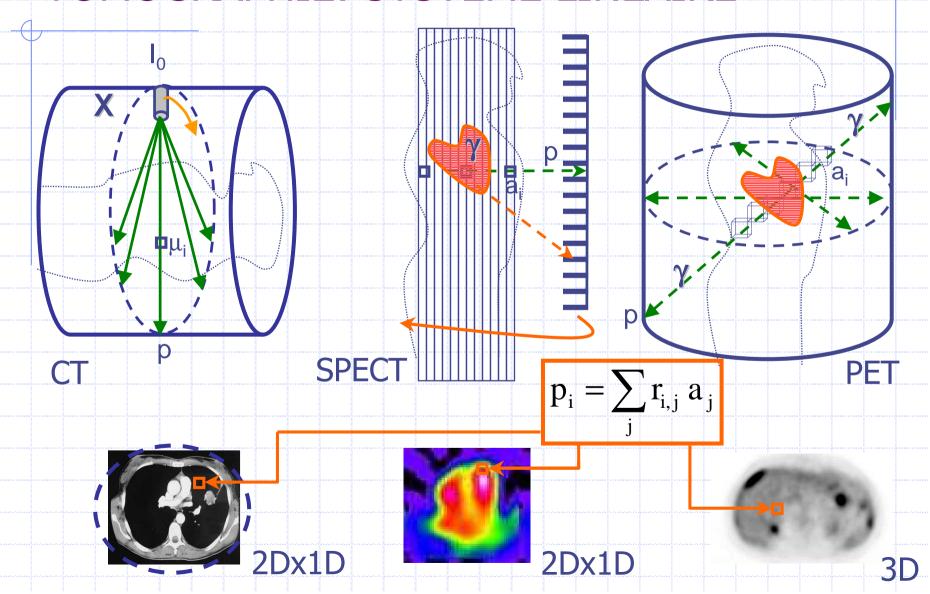




Simulation de Monte-Carlo

Dans les deux cas, la correction nécessite de reconstruire la coupe

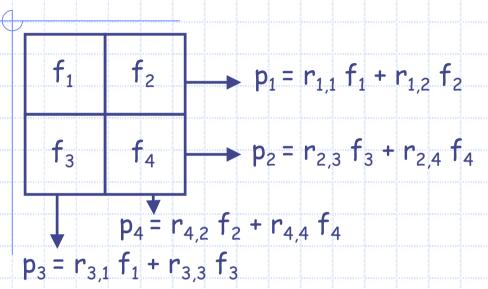
TOMOGRAPHIE: SYSTEME LINEAIRE



LIMITES DES TECHNIQUES ANALYTIQUES (RPF)

- Nécessité de données sur 180°
 - Problème important en TEP 3D.
 - L'inversion directe / RPF impossibles si données tronquées.
- Prise en compte des artefacts en SPECT et PET :
 - Dans le théorème de la coupe centrale, f(x) et non pas f(x,s,\u00f1)
 - Difficulté majeure d'introduire des facteurs du type exp(-μL_{x,s,φ})
 - Problème pour corriger les artefacts d'atténuation (photoélectrique, Compton).
 - En revanche, une déconvolution de la réponse impulsionnelle est faisable.
- Ajustement de la fréquence de coupure délicate
 - Nécessité d'un filtre passe-bas associé au filtre valeur absolue

MODELISATION ALGEBRIQUE



$$\begin{pmatrix} r_{1,1} \, r_{1,2} \, r_{1,3} \, r_{1,4} \\ r_{2,1} \, r_{2,2} \, r_{2,3} \, r_{2,4} \\ r_{3,1} \, r_{3,2} \, r_{3,3} \, r_{3,4} \\ r_{4,1} \, r_{4,2} \, r_{4,3} \, r_{4,4} \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix}$$

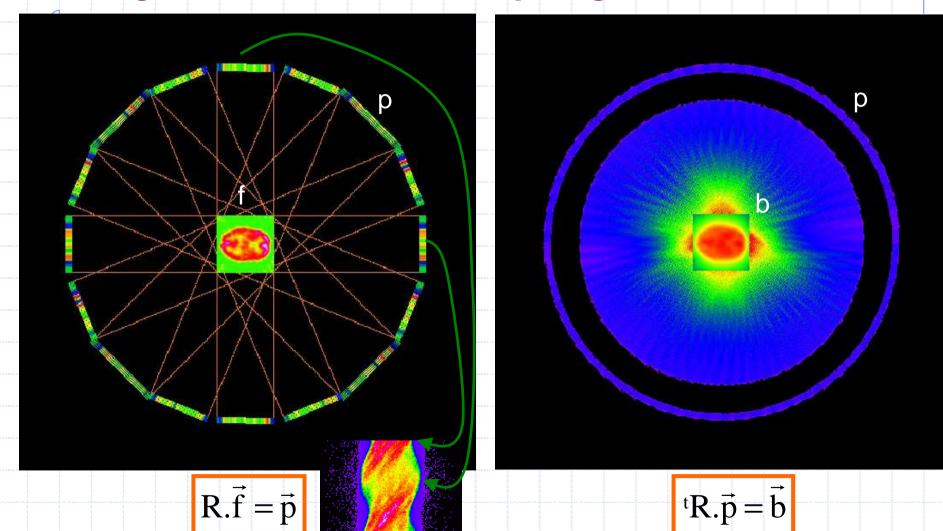
r_{i,j} = % du pixel j intersecté par la projection i

$$R.\vec{f} = \vec{p}$$

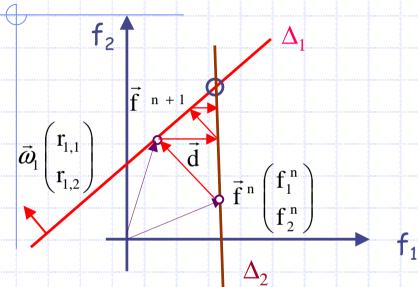
$$\begin{pmatrix}
\mathbf{r}_{1,1} \, \mathbf{r}_{2,1} \, \mathbf{r}_{3,1} \, \mathbf{r}_{4,1} \\
\mathbf{r}_{1,2} \, \mathbf{r}_{2,2} \, \mathbf{r}_{3,2} \, \mathbf{r}_{4,2} \\
\mathbf{r}_{1,3} \, \mathbf{r}_{2,3} \, \mathbf{r}_{3,3} \mathbf{r}_{4,3} \\
\mathbf{r}_{1,4} \, \mathbf{r}_{2,4} \, \mathbf{r}_{3,4} \, \mathbf{r}_{4,4}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3} \\
\mathbf{p}_{4}
\end{pmatrix} = \begin{pmatrix}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3} \\
\mathbf{b}_{4}
\end{pmatrix}$$

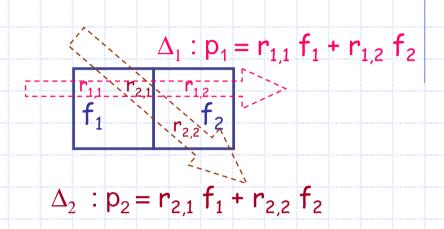
$$^{\dagger} \mathbf{R} \cdot \vec{\mathbf{p}} = \vec{\mathbf{b}}$$

Projection / Rétroprojection



Algebraic Reconstruction Technique (I)

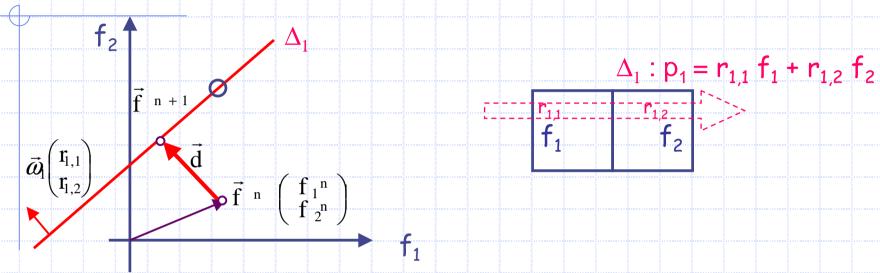




S. Kaczmarz 1895-1940

On construit une suite de coupes \vec{f}^n en projetant chaque itéré sur l'un puis l'autre hyperplan.

Algebraic Reconstruction Technique (II)



La distance d d'un point f^n à une droite Δ_1 est :

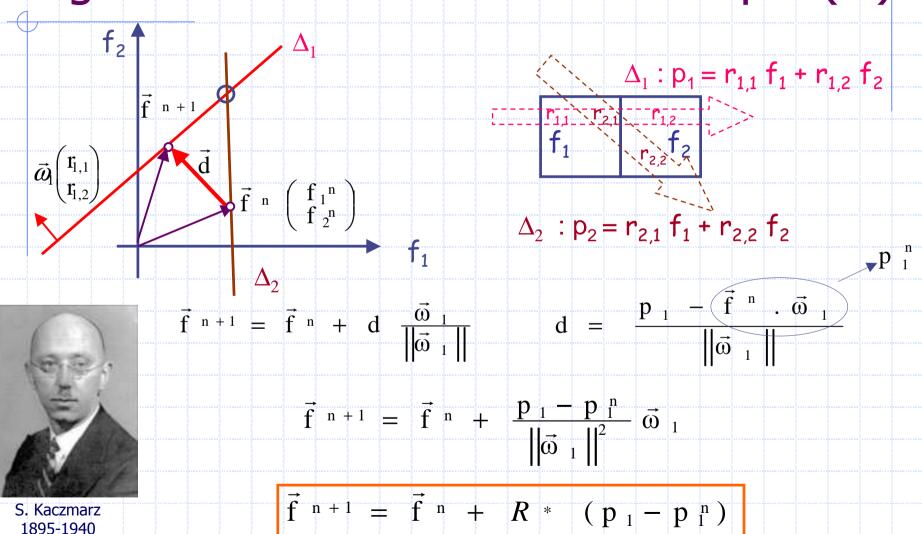
$$d = \frac{p_{1} - \vec{f}^{n} \cdot \vec{\omega}_{1}}{\|\vec{\omega}_{1}\|} = \frac{p_{1} - p_{1}^{n}}{\|\vec{\omega}_{1}\|}$$

$$p_1^n = r_{1,1} f_1^n + r_{1,2} f_2^n$$
, projection qui serait mesurée si f^n était la solution

S. Kaczmarz 1895-1940

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

Algebraic Reconstruction Technique (II)



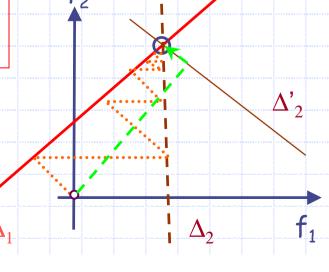
Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

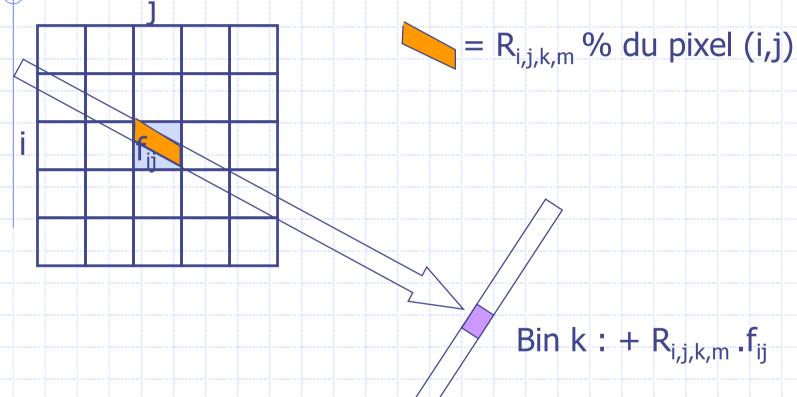
AUTRES ALGORITHMES ALGEBRIQUES

- ART: $\vec{f}^{n+1} = \vec{f}^n + R^* (p_1 p_1^n)$
- MLEM: $P(\vec{f}/\vec{p}) = P(\vec{p}/\vec{f}).P(\vec{f})/P(\vec{p}) = P(\vec{p}/\vec{f}).P(\vec{f})$ max $\vec{f} = \arg\min_{\vec{f}} \left[-\log P(\vec{p}/\vec{f}) \log P(\vec{f}) \right]$ Stat. de Poisson sur $P(\vec{p}/\vec{f})$

$$f_{i}^{n+1} = f_{i}^{n} \cdot \frac{1}{\sum_{l=1}^{P} r_{l,i}} \sum_{l=1}^{P} r_{l,i} \frac{p_{l}}{\sum_{s=1}^{N} r_{l,s} f_{s}^{n}} \Rightarrow f_{i}^{n+1} = k_{i} \cdot f_{i}^{n} \cdot R^{*} \left[\frac{p_{l}}{p_{l}^{n}} \right]$$

OSEM:

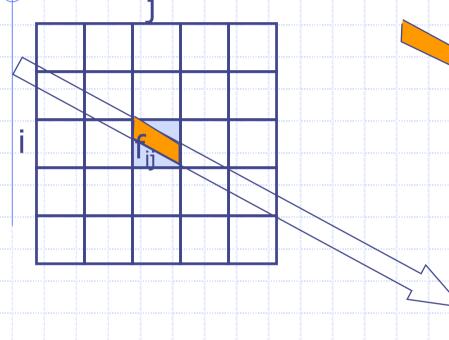




Bin $k : + R_{i,j,k,m} .f_{ij}$

m

MODELISATION DE L'ATTENUATION



$$= R_{i,j,k,m} \% du pixel (i,j)$$

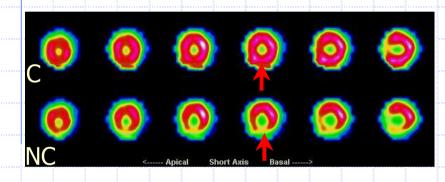
Bin $k: + R_{i,j,k,m}.f_{ij}.k_{i,j}$

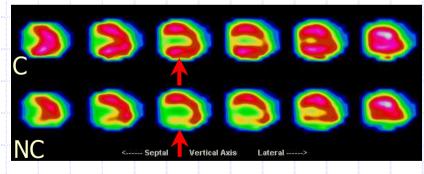
m

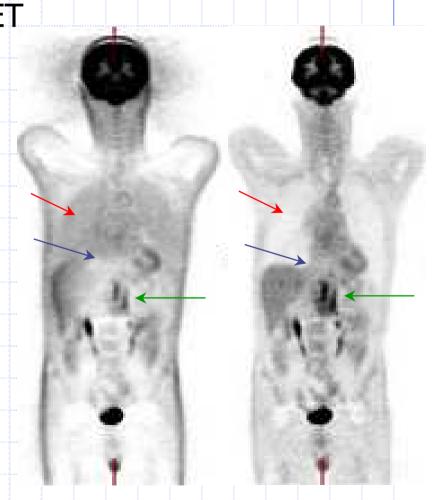
 $k_{i,j} = \exp(\mu_o x_o^{i,j} + \mu_{tm} x_{tm}^{i,j} + \mu_a x_a^{i,j}). K_{i,j}^d$

CORRECTION D'ATTENUATION PAR CT

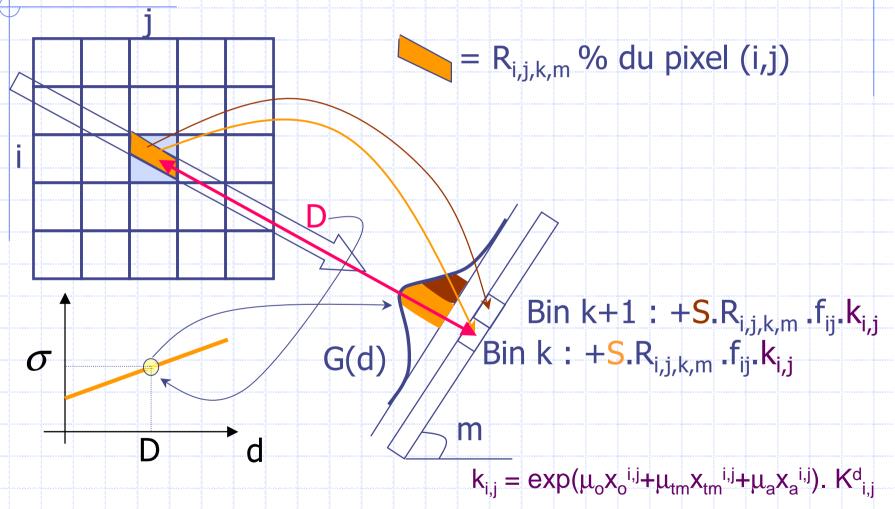
TEMP PET





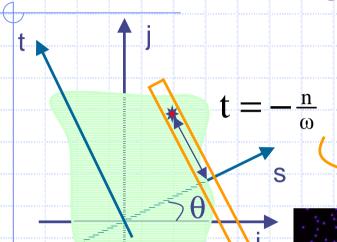


MODELISATION DE LA REPONSE GAUSSIENNE



Tsui et Floyd, IEEE Trans Nucl Sci 1988;35 – A Formiconi, Phys Med Biol 1989;34 – Penney, IEEE TNS 1990;37 - McCarthy, IEEE TMI 1991;10 – Zeng, IEEE TNS 1991;38-1992;39 – Bechman, IEEE TNS 1993; 40

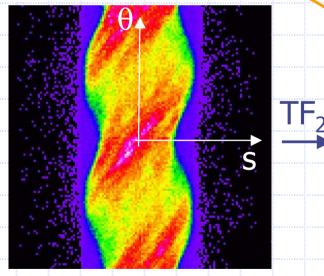
RELATION FREQUENCE DISTANCE



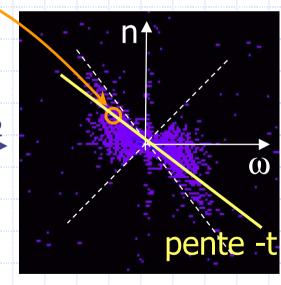
Une désintégration contribue à

$$\hat{p}_c(\omega,n)$$

quand θ permet que $t = -\frac{n}{\omega}$

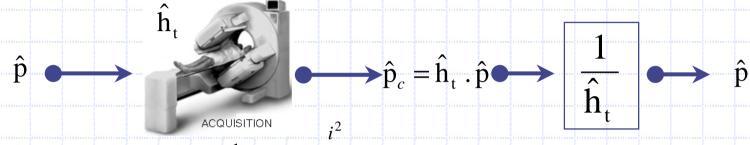


$$p_c(s, \theta) = \int f(i, j) dt$$



$$\hat{p}_c(\omega,n)$$

FILTRE DE METZ EN SPECT

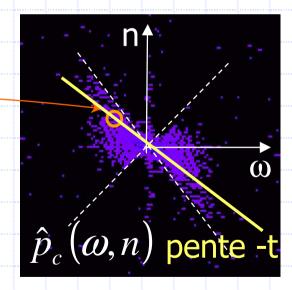


$$h_{t}(i) = \frac{1}{\sqrt{2\pi}\sigma_{t}} e^{-\frac{i}{2\sigma_{t}^{2}}}$$

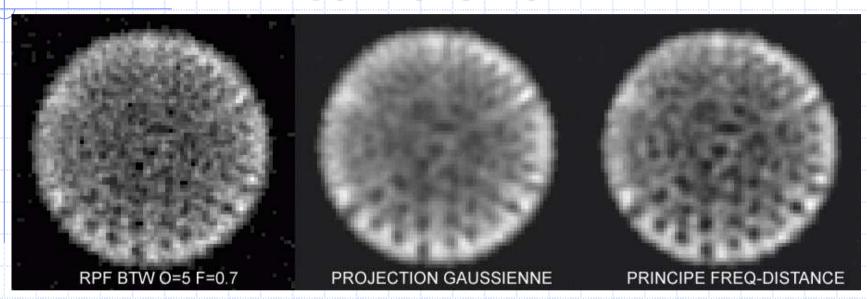
$$\hat{p}_{c}(\omega, n) = \hat{h}_{\underline{n}}(\omega).\hat{p}(\omega, n)$$

$$\hat{p}_c(\omega, n) = \hat{h}_{\underline{n}}(\omega).\hat{p}(\omega, n)$$

$$\hat{p}(\omega, n) = \frac{1}{\hat{h}_{n}(\omega)} \hat{p}_{c}(\omega, n)$$

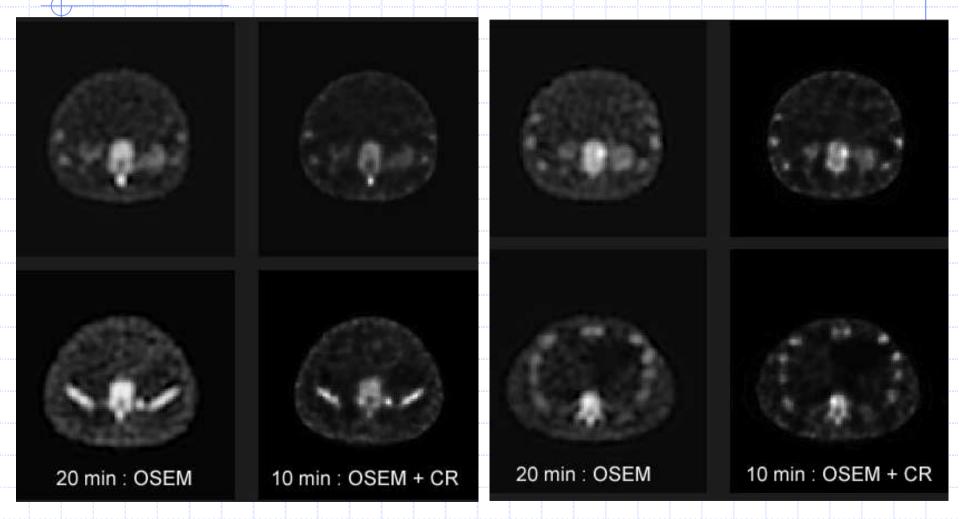


EXEMPLE DE DECONVOLUTION

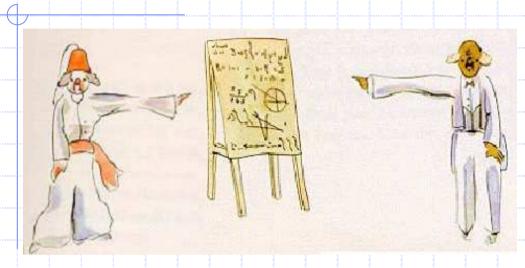


Résultats comparables pour les deux méthodes

EXEMPLE DE DECONVOLUTION



Applications cliniques: restore®, evolution for bone®...



Bibliographie:

Introduction au traitement numérique des images médicales. D. Mariano-Goulart.

Encyclopédie Médico-chirurgicale, 35-100-A-10, 2015.

Reconstruction tomographique en imagerie médicale. D. Mariano-Goulart Encyclopédie Médico-chirurgicale, 35-105-A-10, 2015.

The Mathematics of Computerized Tomography. F. Natterer. 2001. SIAM.

Merci de votre attention...

denis.mariano-goulart@univ-montp1.fr http:\\scinti.edu.umontpellier.fr