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Abstract

Background: The impact of increased energy resolution of cadmium–zinc–telluride
(CZT) cameras on the assessment of left ventricular function under dual-isotope
conditions (99mTc and 123I) remains unknown.
The Amsterdam-gated dynamic cardiac phantom (AGATE, Vanderwilt techniques,
Boxtel, The Netherlands) was successively filled with a solution of 123I alone, 99mTc
alone, and a mixture of 123I and 99mTc. A total of 12 datasets was acquired with each
commercially available CZT camera (DNM 530c, GE Healthcare and DSPECT,
Biosensors International) using both energy windows (99mTc or 123I) with ejection
fraction set to 33, 45, and 60 %. End-diastolic (EDV) and end-systolic (ESV) volumes,
ejection fraction (LVEF), and regional wall motion and thickening (17-segment
model) were assessed using Cedars-Sinai QGS Software. Concordance between single-
and dual-isotope acquisitions was tested using Lin’s concordance correlation coefficient
(CCC) and Bland–Altman plots.

Results: There was no significant difference between single- or simultaneous
dual-isotope acquisition (123I and 99mTc) for EDV, ESV, LVEF, or segmental wall
motion and thickening. Myocardial volumes using single- (123I, 99mTc) and dual-isotope
(reconstructed using both 123I and 99mTc energy windows) acquisitions were,
respectively, the following: EDV (mL) 88 ± 27 vs. 89 ± 27 vs. 92 ± 29 vs. 90 ± 26
for DNM 530c (p = NS) and 82 ± 20 vs. 83 ± 22 vs. 79 ± 19 vs. 77 ± 20 for DSPECT
(p = NS); ESV (mL) 40 ± 1 vs. 41 ± 2 vs. 41 ± 2 vs. 42 ± 1 for DNM 530c (p = NS)
and 37 ± 5 vs. 37 ± 1 vs. 35 ± 3 vs. 34 ± 2 for DSPECT (p = NS); LVEF (%) 52 ± 14
vs. 51 ± 13 vs. 53 ± 13 vs. 51 ± 13 for DNM 530c (p = NS) and 52 ± 16 vs. 54 ± 13
vs. 54 ± 14 vs. 54 ± 13 for DSPECT (p = NS); regional motion (mm) 6.72 ± 2.82 vs.
6.58 ± 2.52 vs. 6.86 ± 2.99 vs. 6.59 ± 2.76 for DNM 530c (p = NS) and 6.79 ± 3.17 vs.
6.81 ± 2.75 vs. 6.71 ± 2.50 vs. 6.62 ± 2.74 for DSPECT (p = NS). The type of camera
significantly impacted only on ESV (p < 0.001).
(Continued on next page)
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Conclusions: The new CZT cameras yielded similar results for the assessment of
LVEF and regional motion using different energy windows (123I or 99mTc) and
acquisition types (single vs. dual). With simultaneous dual-isotope acquisitions,
the presence of 123I did not impact on LVEF assessment within the 99mTc energy
window for either CZT camera.

Keywords: CZT, SPECT, Myocardial perfusion imaging, Myocardial innervation
imaging, Dual-isotope acquisition, mIBG, Dynamic phantom, DNM 530c, DSPECT

Background
The measurement of left ventricular (LV) ejection fraction (LVEF), end-diastolic vol-

ume (EDV), and end-systolic volume (ESV) using cardiac SPECT has been widely vali-

dated in comparison to other imaging techniques [1, 2]. Gated perfusion SPECT with
99mTc-labelled tracer is commonly used for prognosis assessment and clinical decision-

making [3]. In addition, cardiac sympathetic innervation can be directly imaged with
123I-meta-iodobenzylguanidine (123I-mIBG), a radiolabelled norepinephrine analogue

[4] that reflects neuronal integrity by visualising reuptake and retention in cardiac sym-

pathetic terminals [5]. Previous studies using serial 123I-mIBG and 201thallium acquisi-

tions have suggested that myocardial sympathetic innervation is compromised after

myocardial infarction [6–8]. Due to the enhanced sensitivity of neural tissue to ische-

mia, regional sympathetic denervation exceeds the extent of the perfusion defect [9].

Comparing sympathetic innervation and viability is of potential interest to assess the

risk of ventricular arrhythmias after myocardial infarction (MI) [10, 11].

The new cadmium–zinc–telluride (CZT) detectors offer higher photon sensitivity

and dramatically increased spatial energy resolution compared with standard cameras.

The advanced technical capabilities of these dedicated cardiac cameras enable com-

bined assessment of myocardial innervation and perfusion within a single imaging ses-

sion, using a dual injection of 123I-mIBG and a 99mTc-labelled perfusion tracer. Bellevre

et al. [12] recently demonstrated the feasibility of determining heart-to-mediastinum

ratio of 123I-mIBG uptake in patients with heart failure using dual-isotope imaging with

a CZT camera (DSPECT) and combined 99mTc-tetrofosmin injection to localise the

heart within the thorax.

Despite their increased energy resolution, the scatter fraction remains high with CZT

cameras (30 vs. 34 % with conventional Anger gamma cameras) [13]. Moreover, the

tailing effect in the energy spectrum towards lower energies due to incomplete charge

collection [14] (Fig. 1) may specifically affect count statistics with CZT cameras. These

two phenomena may impact on image acquisition within the 99mTc photopeak during a
123I/99mTc dual-isotope acquisition, further compromising the accuracy of ventricular

function assessment using gated SPECT with 99mTc-labelled tracer. This situation

remains however to be investigated.

The aim of this study was to evaluate the impact of simultaneous dual-isotope (123I/
99mTc) acquisition on the assessment of global and regional left ventricular function in

the 99mTc photopeak using two commercially available CZT cameras, Discovery NM

530c (DNM 530c, GE Healthcare, Milwaukee, WI, USA) and DSPECT (Biosensors

International, Caesarea, Israel).
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Methods
Gated phantom studies

We used the Amsterdam gated (Agate) dynamic phantom (Vanderwilt techniques,

Boxtel, The Netherlands) as a reference for volume and LVEF measurements [15]. This

phantom is a realistic 3-D water-filled torso with two thin membranes simulating endo-

cardial and epicardial walls with known ejection fraction (Fig. 2). The compartment

between these membranes was successively filled with a solution of 123I alone, 99mTc

alone, and a mixture of 123I and 99mTc (22/44 kBq/mL, respectively) simulating the

myocardial wall. The cardiac phantom stroke volume was controlled by a

programmable adjustable pumping system, and an ECG-triggered signal was produced

at a constant heart rate. Four datasets (single 123I, single 99mTc, dual 123I, and 99mTc)

were acquired using three different ejection fractions (33 and 45 % to mimic LV dys-

function and 60 % to simulate normal LV function) on each camera (DNM 530c and

DSPECT) with the following parameters: 10-min acquisition and 70-bpm contraction

Fig. 1 Energy spectra using DNM 530c. Typical single 123I, single 99mTc, and simultaneous (123I and 99mTc)
point source (1.7 MBq) energy spectra using DNM 530c without in-object scatter. Notice the low tailing
effect and the down-scatter of 123I towards 99mTc in the dual isotope condition

Fig. 2 The AGATE dynamic gated phantom. The AGATE dynamic gated phantom with fillable cardiac set,
successively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc
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rate. EDV, ESV, LVEF, and regional wall thickening and motion (17-segment model)

were assessed using Quantitative Gated SPECT software (QGS, Cedars-Sinai Medical

Center, Los Angeles, CA). The acquisition parameters were as follows: 70 × 70 matrix

for the DNM 530c system and 64 × 64 for the DSPECT with a total of 120 projections

recorded by each block in the heart area defined on a short prescan acquisition [13].

The energy window was asymmetric for both cameras, 140 keV (−10 + 5 %) for 99mTc

and 159 keV (−5 + 10 %) for 123I, for each acquisition.

CZT cameras

We successively used (i) a DNM 530c equipped with a multiple pinhole collimator and

19 stationary CZT detectors that simultaneously image 19 cardiac views, each detector

being composed of four 5-mm-thick elements of 32 × 32 pixels (pixel size 2.46 ×

2.46 mm) [16] and (ii) a DSPECT operating with nine mobile blocks of pixelated CZT

detectors (pixel size 2.46 × 2.46 mm) associated with a wide-angle square-hole tungsten

collimator, recording a total of 120 projections by each block [13]. All SPECT data were

acquired and reconstructed using the parameters currently recommended for clinical

routine and provided by each manufacturer, leading to a reconstructed pixel size of

4 × 4 × 4 and 4.92 × 4.92 × 4.92 mm for DNM 530c and DSPECT, respectively. No

attenuation correction was performed.

Statistical analysis

Values are presented as mean ± SD. A linear model analysis evaluated the effect of

camera, acquisition type (single- vs. dual-isotope), isotope (123I vs. 99mTc), and the

interaction between camera type and isotope. Continuous mean values were compared

using the Wilcoxon signed-rank test or Mann–Whitney U test when appropriate.

Relationship between DNM 530c and DSPECT results were assessed using Pearson’s

(r) correlation coefficient, Bland–Altman limit-of-agreement, and Lin’s concordance

correlation coefficient (CCC), a measure of both precision and bias [17, 18]. Lin’s CCC

measures the equivalence of two measurement methods. The accuracy (i.e. the

deviation of the best fit line from the line of identity) was assessed using the bias cor-

rection factor calculated as C.b = CCC/r, r being Pearson’s correlation coefficient. The

values of r and CCC were characterised using the Landis and Koch scale (0.2–0.4: fair;

0.4–0.6: moderate; 0.6–0.8: substantial; 0.8–1.0: almost perfect) [19]. A p value <0.05

was considered statistically significant.

Statistical analyses were performed using R software (R Foundation for Statistical

Computing, version 3.2.4, Vienna, Austria) except the linear model analysis performed

using JMP 11 (SAS institute, Cary, NC).

Results
The mean values of overall cardiac volumes (EDV and ESV), LVEF, and regional wall

motion and thickening using single- and dual-isotope acquisitions with DNM 530c and

DSPECT are shown in Table 1 and illustrated in Figs. 3 and 4.

Linear model analysis demonstrated that the type of camera but not the acquisition

mode (i.e. single- or dual-isotope) impacted on volume measurements. Post hoc

Mann–Whitney test showed that this impact was only observed for the ESV
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measurements (p < 0.0001) whereas EDV, LVEF, and segmental wall motion were

similar for the two cameras.

Lin’s concordance correlation coefficient and Bland–Altman plots (see Tables 2 and 3

and Fig. 5) revealed an almost perfect agreement between single- and dual-isotope

acquisitions for assessing segmental wall motion and thickening with 99mTc with both

CZT cameras. Conversely, using 123I, the agreement was weaker with both CZT

cameras, with a decreased CCC and an increased 95 % CI of the difference between the

two measurements on Bland–Altman plots. Pearson’s correlation (r) and CCC were

similar, also indicating that no systematic bias was present (C.b > 0.97) between the two

cameras and the acquisition mode.

Discussion
Our results demonstrated the feasibility of LVEF evaluation using gated perfusion

SPECT with CZT cameras. On simultaneous dual radionuclide acquisitions, the 99mTc

photopeak was unaffected by 123I scatter and crosstalk. To our knowledge, this is the

first dual-isotope gated phantom study evaluating ventricular function using the two

commercially available CZT cameras (DNM 530c and DSPECT).

Table 1 Results for each camera

Camera DNM 530c DSPECT

Energy
window

123I 99mTc 123I 99mTc

Acquisition
type

Single Dual Single Dual Single Dual Single Dual

EDV (mL) 88 ± 27 92 ± 29 89 ± 27 90 ± 26 82 ± 20 79 ± 19 83 ± 22 77 ± 20

ESV (mL) 40 ± 1* 41 ± 2* 41 ± 2* 42 ± 1* 37 ± 5 35 ± 3 37 ± 1 34 ± 2

LVEF (%) 52 ± 14 53 ± 13 51 ± 13 51 ± 13 52 ± 16 54 ± 14 54 ± 13 54 ± 13

Motion (mm) 6.72 ± 2.82 6.86 ± 2.99 6.58 ± 2.52 6.59 ± 2.76 6.79 ± 3.17 6.71 ± 2.50 6.81 ± 2.75 6.62 ± 2.74

Thickening
(%)

47.7 ± 30.6 47.1 ± 29.9 45.4 ± 27.7 44.3 ± 29.2 44.2 ± 28.8 42.7 ± 23.6 42.2 ± 24.5 41.5 ± 26.7

Phantom study results for each camera model expressed as mean ± SD. EDV, ESV, LVEF, and thickening and motion mean
values for 99mTc and 123I isotope in two acquisition types (single or dual), for both energy windows (123I and 99mTc) on
each camera (DNM 530c and DSPECT). *p < 0.0001 vs. DSPECT

Fig. 3 DNM 530c and DSPECT 99mTc and 123I uptake. Single 123I (a) and single 99mTc (b). Simultaneous 123I
(c) and 99mTc (d) end-systolic apical short axis uptake for DNM 530c (upper row) and DSPECT (lower row) for
LVEF 50%
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Dual-isotope acquisition with CZT cameras remains a challenging technique.

Impaired myocardial innervation leads to low myocardial 123I-mIBG uptake, requiring

a dual-isotope protocol to localise the heart [12]. Due to the small field-of-view of the

dedicated CZT cardiac cameras, a scout view is mandatory to localise the heart and

correctly centre the field-of-view prior to SPECT acquisition. In addition, most of the

patients referred for 123I-mIBG assessment have an ischemic cardiomyopathy with

heart failure (66 % in the ADMIRE-HF study [20]). In this clinical setting, the dual-

isotope protocol allows a simple and efficient co-registration of innervation and perfu-

sion studies and thus a robust assessment of innervation-perfusion mismatch. The

measurement of LV function is a key step of prognosis assessment and may potentially

be altered when using CZT cameras with a simultaneous dual-isotope protocol due to

the down-scatter, crosstalk, and tailing effect of 123I in the 99mTc photopeak.

Fig. 4 DNM 530c and DSPECT end-systolic volume rendering, volume (mL), and filling (mL/s). End-systolic
volume rendering, volume (mL), and filling (mL/s) in single 99mTc (a) and dual 99mTc (b) condition using
DNM 530c (upper row) and DSPECT (lower row)

Table 2 DNM 530c and DSPECT concordance correlation coefficients for motion

Motion Pearson’s Bland Altman

r [95 % CI] CCC [95 % CI] C.b Mean diff. [95 % CI] Regression R2

Acquisition Isotope

Single 123I 0.94 [0.89–0.96] 0.93 [0.89–0.96] 0.99 0.06 [−2.15;2.28] y = 0.123x − 0.764 0.107
99mTc 0.95 [0.92–0.97] 0.94 [0.91–0.97] 0.99 0.23 [−1.48;1.94] y = 0.088x − 0.354 0.071

Dual 123I 0.90 [0.83–0.94] 0.88 [0.81–0.93] 0.98 −0.15 [−2.8;2.5] y = −0.188x + 1.13 0.144
99mTc 0.94 [0.90–0.97] 0.94 [0.9–0.97] 1 0.03 [−1.81;1.87] y = −0.007x + 0.076 0

Camera

DSPECT 123I 0.91 [0.86–0.95] 0.89 [0.83–0.93] 0.98 0.08 [−2.57;2.72] y = 0.248x − 1.599 0.271
99mTc 0.97 [0.95–0.98] 0.97 [0.95–0.98] 1 0.22 [−1.74; 2.18] y = −0.003x + 0.239 0

DNM
530c

123I 0.94 [0.90–0.97] 0.94 [0.9–0.97] 1 −0.14 [−2.11;1.84] y = −0.061x + 0.276 0.031
99mTc 0.97 [0.96–0.99] 0.97 [0.95–0.98] 1 −0.01 [−1.29;1.26] y = −0.089x + 0.576 0.135

Bland–Altman mean difference (mean diff), regression, and R2

r, Pearson’s correlation (precision); CCC, Lin’s concordance correlation; C.b, r/CCC = bias factor (trueness)
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Our results demonstrated that DNM 530c provided higher systolic volumes com-

pared to the DSPECT camera. This camera effect on volume assessment is likely related

to spatial resolution. Imbert et al. [21] reported the following classification of measured

central spatial resolution: DNM 530c (6.7 mm) and DSPECT (8.6 mm). These results

are concordant with previous findings by Bailliez et al. [22] showing in both phantom

and patients that LV volumes were higher using the DNM 530c model compared to

DSPECT and to Anger camera equipped with cardiofocal collimators.

Our results also demonstrated that, in comparison with single 99mTc acquisition, dual
123I/99mTc acquisition did not compromise the assessment of ventricular function using

the 99mTc photopeak. In some patients with severe heart failure, the sole use of 123I-

mIBG SPECT can lead to suboptimal localisation of the heart because of the CZT cam-

era’s narrow field-of-view, particularly when cardiac mIBG uptake is very low and the

left ventricle is dilated. A dual-isotope protocol acquisition using both perfusion and

innervation tracers provides a clear perfusion image and a perfect registration that

allows the definition of the heart contours and thus an accurate measurement of
123I-mIBG uptake [12].

In the clinical setting, simultaneous dual-radionuclide acquisition provides perfectly

registered functional images leading to a reduced imaging time. In cardiac SPECT,

several dual-radionuclide imaging protocols have been proposed. Simultaneous
99mTc-sestamibi/123I-BMIPP imaging was proposed for assessing rest perfusion and

fatty acid metabolism at the same time in patients with recent myocardial infarction

[23, 24]. The dual-isotope acquisition protocol using 201Tl and 123I-mIBG is well docu-

mented on conventional Anger cameras, using the triple-energy window [25] for scatter

and crosstalk correction. Simultaneous perfusion and sympathetic innervation imaging

with 123I-mIBG and 99mTc-labelled tracers enables the evaluation of innervation-flow

mismatch and may provide valuable information to target the trigger zone in the

setting of ventricular arrhythmia [4, 26]. In a recent study, Gimelli et al. [11, 27] using

sequential 123I-mIBG and 99mTc-tetrofosmin myocardial SPECT demonstrated a

relevant association between innervation derangement (123I-mIBG) and myocardial

synchronicity (99mTc-tetrofosmin).

Table 3 DNM 530c and DSPECT concordance correlation coefficients for thickening

Thickening Pearson’s Bland Altman

r [95 % CI] CCC [95 % CI] C.b Mean diff. [95 % CI] Regression R2

Acquisition Isotope

Single 123I 0.93 [0.88–0.96] 0.92 [0.86–0.95] 0.99 −3.59 [−26.45;19.28] y = −0.063x − 0.694 0.026
99mTc 0.94 [0.90–0.97] 0.93 [0.89–0.96] 0.99 −3.14 [−21.65;15.38] y = −0.125x + 2.331 0.121

Dual 123I 0.87 [0.79–0.93] 0.84 [0.75–0.9] 0.97 −4.35 [−33.78;25.08] y = −0.248x + 6.801 0.191
99mTc 0.94 [0.90–0.97] 0.94 [0.89–0.96] 1 −2.84 [−22.04;16.35] y = −0.09x + 1.009 0.067

Camera

DSPECT 123I 0.88 [0.80–0.93] 0.88 [0.81–0.93] 1 1.43 [−23.87;26.74] y = 0.208x − 7.608 0.177
99mTc 0.96 [0.93–0.98] 0.96 [0.93–0.98] 1 0.78 [−14.06;15.63] y = −0.088x + 4.449 0.09

DNM
530c

123I 0.91 [0.85–0.95] 0.91 [0.85–0.95] 1 0.67 [−24.38;25.71] y = 0.026x − 0.588 0.004
99mTc 0.96 [0.94–0.98] 0.96 [0.93–0.98] 1 1.08 [−14.5;16.65] y = −0.053x + 3.446 0.037

Bland–Altman mean difference (mean diff), regression, and R2

r, Pearson’s correlation (precision); CCC, Lin’s concordance correlation; C.b, r/CCC = bias factor (trueness)
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Fig. 5 Lin’s CCC and Bland–Altman motion for DNM 530c and DSPECT. Lin’s CCC for DSPECT 123I (a) and
99mTc (c), DNM 530c 123I (e), and 99mTc (g) motion and Bland–Altman plots for DSPECT 123I (b) and 99mTc
(d), DNM 530c 123I (f), and 99mTc (h) motion for single and dual acquisitions
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Despite a significant increase in energy resolution and sensitivity, the scatter fraction

with the CZT camera is still high, evaluated up to 30 vs. 34 % with conventional Anger

cameras [13]. Due to incomplete charge collection and intercrystal scatter, the CZT

detectors are subjected to a tailing effect below the photopeak that may lead to an

overcorrection of photon scatter when using a conventional triple-energy window

method [28]. Recently, Fan et al. for the DNM 530c [29] and Holstensson et al. for the

DSPECT [30] presented a model-based correction algorithm which extracts the useful

primary counts of 99mTc and 123I from projection data, taking into account the tailing

effect to correct the scatter and crosstalk in 99mTc–123I dual imaging. In the present

study, we did not apply any tailing effect correction and observed no significant impact

on ventricular function assessment.

All reconstructions were performed using the vendor’s workstation and available

software for both cameras. Routinely, scatter and crosstalk correction is not performed on

the DNM 530c camera. Image data from DSPECT were corrected for scatter and

crosstalk but not for the tailing effect. In our study, the ratio between 123I and 99mTc

concentration was set to 1:2, which is representative of the low 123I-mIBG myocardial

uptake, observed in severe heart failure. Under these specific conditions, the absence of

scatter and crosstalk correction using the DNM 530c did not affect ventricular function

assessment using 99mTc acquisitions. In severe heart failure, 123I-mIBG myocardial uptake

is low and we assumed that the crosstalk and scatter of 123I in the 99mTc photopeak had

no consequences.

Limitations of the study

Due to the design of the phantom, EDV and ESV were not predetermined. The

phantom was filled under static equilibrium conditions at atmospheric pressure to

provide a reproducible ejection fraction. Based on this equilibrium, ejection fraction

was imposed by injecting a stroke volume into the ventricular cavity [15, 22]. As a

consequence, true EDV and ESV were not known and thus could not be compared with

measured volumes.

As we used only commercially available software, scatter and crosstalk were corrected

with DSPECT but not with DNM 530c. However, our results displayed no critical

differences between the single-isotope and dual-isotope 99mTc window, even with the

DNM 530c. At best, the demonstration could be made by comparing the results

obtained with and without scatter and crosstalk corrections. However, the aim of our

study was to compare the results obtained with the two CZT cameras using the

dedicated commercially available software to mimic routine clinical conditions.

Conclusions
In this phantom study, the two CZT cameras (DNM 530c and DSPECT) provided

similar results for ventricular function assessment (EDV, ESV, and LVEF) with single-

(separate 123I and 99mTc acquisitions) and simultaneous dual-isotope (123I and 99mTc)

acquisitions. Further studies are needed to evaluate perfusion match and mismatch

using 123I-mIBG and 99mTc-labelled tracers.
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