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Abstract
Our aim is to describe an original method for estimating the statistical properties
of regions of interest (ROIs) in emission tomography. Drawn upon the works
of Louis on the approximate inverse, we propose a dual formulation of the
ROI estimation problem to derive the ROI activity and variance directly from
the measured data without any image reconstruction. The method requires the
definition of an ROI characteristic function that can be extracted from a co-
registered morphological image. This characteristic function can be smoothed
to optimize the resolution-variance tradeoff. An iterative procedure is detailed
for the solution of the dual problem in the least-squares sense (least-squares
dual (LSD) characterization), and a linear extrapolation scheme is described to
compensate for sampling partial volume effect and reduce the estimation bias
(LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using
pixel summation after image reconstruction and with Huesman’s method. For
this comparison, we used Monte Carlo simulations (GATE simulation tool)
of 2D PET data of a Hoffman brain phantom containing three small uniform
high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show
that the performances of LSD characterization are at least as good as those of
the classical methods in terms of root mean square (RMS) error. For the three
small tumor regions, LSD-ex allows a reduction in the estimation bias by up to
14%, resulting in a reduction in the RMS error of up to 8.5%, compared with
the optimal classical estimation. For the large non-specific region, LSD using
appropriate smoothing could intuitively and efficiently handle the resolution-
variance tradeoff.
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1. Introduction

Emission tomography addresses the problem of reconstructing the activity map of a radio-
tracer from a series of projections, each projection corresponding to the number of photons
received by the tomograph in a given direction. These projections can be seen as a set of
estimates of the line integrals of the activity through the field of view of the imaging device,
so that the theoretical background and numerical tools of tomographic reconstruction can
be used to produce an estimate of the studied object. However, due to the random nature
of radioactive decay and to the detection process, the measured projections are affected by
Poisson noise which propagates into the reconstructed object. When a quantitative analysis is
necessary, it is useful to estimate the statistical uncertainty characterizing the reconstructed
activity map. This is especially true when one wants to compare the total activity inside one
or several regions of interest (ROIs) with other measurements performed in different regions
or at a different time. The problem of estimating image variance in emission tomography
has been extensively studied. Analytical and numerical approximations have been proposed,
many of them focusing on a specific reconstruction algorithm. Both filtered back-projection
and maximum-likelihood algorithms have been studied since the late 1970s in the field of
emission tomography and many formulations have been proposed to describe the propagation
of the uncertainty from the measured projections to the reconstructed images (Huesman
1977, Budinger et al 1977, Alpert et al 1982, Moore et al 1988, Gillen 1992, Wilson and
Tsui 1993, Liew et al 1993, Kim et al 1993a, 1993b, Barrett et al 1994a, 1994b, Pan and
Metz 1995, Wang and Gindi 1997, Nuyts 2002, Mariano-Goulart et al 2003, Nickerson
et al 2003, Fessler 1996). Original methods based on bootstrapping techniques (Haynor and
Woods 1989, Buvat 2002, Lartizien et al 2010) or intervalist prediction (Rico et al 2009,
Strauss et al 2009) have recently been proposed. The computation of the whole reconstructed
image covariance matrix however, remains a computational intensive task due to the huge
dimensions of the system matrix in typical acquisition settings. The difficult handling of
the subsequent numerical errors and heavy computational burden make these calculations
unsuitable for clinical routine. In addition, most image interpretation tasks require region of
interest assessment rather than pixel-wise variance estimation. Various attempts have been
made to design ROI-based quantification methods in emission tomography (Huesman 1984,
Carson 1986, Formiconi 1993, Carson et al 1993). However, the proposed techniques either
rely on the analytical formulation of the tomographic inverse problem (i.e., when using the
filtered back-projection algorithm) that cannot support an accurate modeling of the emission–
detection process, or they assume that the studied ROIs have uniform activity. A recent
work relying on a local segmentation technique yielded promising results with μSPECT data
(Moore et al 2012), but the method also assumes that the activity inside each segmented tissue
is uniform. Elsewhere, the importance of the ROI definition has already been pointed out
(Wells 1999).

Drawn upon the works of Louis on the approximate inverse (Louis and Maass 1990,
Louis 1996, Louis et al 2008), the present paper describes an original method for estimating
the statistical properties of an ROI. The method starts with a dual formulation of the ROI
estimation problem to derive the ROI activity and variance directly from the measured data
without any image reconstruction. It requires the definition of the ROI characteristic function,
which can be obtained from a co-registered morphological image. This characteristic function
can be smoothed to adjust the resolution-variance tradeoff. An iterative procedure is proposed
to solve the dual problem in the least-squares sense and a linear extrapolation scheme is
described to reduce the estimation bias caused by sampling partial volume effect. Dual
characterization is compared with classical ROI estimation using pixel summation and with
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Huesman’s reference method (Huesman 1984) through Monte Carlo simulations involving 2D
PET data of a Hoffman brain phantom.

2. Materials and methods

2.1. Direct characterization

Let f ∈ R
N denote an original activity map defined on a 2D Cartesian grid which pixels

are indexed with the letter j( j = 1, . . . , N)and R a subset of that grid called ROI. The
characteristic function of R is noted k and is such that k j = 1 if j ∈ R and k j = 0 otherwise.
The total activity inside ROI R is then F = kTf where T stands for the matrix transpose. In
emission tomography, the original activity map is estimated using a series of projections noted
p ∈ R

M. This estimation requires the modeling of the emission–detection process through a
system matrix M ∈ R

N×M whose element Mi j models the probability for a photon (in SPECT)
or photon pair (in PET) emitted from pixel j to be measured in bin i, where M is the number of
bins. An estimate ϕ of f is obtained by solving the inverse problem Mϕ = p. Starting from this
estimate, an estimate � of the ROI activity is deduced using � = kTϕ. The set of equations:

Mϕ = p (1a)

� = kTϕ (1b)

will be referred to as the direct problem and the resulting solution as the direct characterization
of the studied ROI. In practice, due to the physical properties of the radioactive decay and
detection process, projection p is a random variable which can be written as:

p = p̄ + ν (2)

where p̄ stands for the ideal noise-free projection such that p̄ = Mf, and ν is a Poisson
noise with E(ν) = 0 and Var(ν) = Diag(p̄). While f and p̄ remain unknown for a given
reconstruction problem, it is commonly accepted that Var(ν) = Var(p) ≈ Diag(p) represents
an acceptable approximation. An exact solution to the direct problem (1a) does not exist in
general due to the inconsistency resulting from the Poisson noise. The estimated solution ϕ̂

can be written as:

ϕ̂ = Hf + w (3)

where H ∈ R
N×N is a convolution operator that is intended to be as close as possible to the

identity matrix I but departs from it due to the non-injectivity of the tomographic problem and
the modeling errors affecting the system matrix, and w ∈ R

N is the image noise resulting from
the propagation of the statistical noise from the projections to the reconstructed image. Using
(1b), the corresponding estimation �̂ of the ROI value is given by:

�̂ = kTϕ̂ = kTHf + kTw (4)

The first term of equation (4) determines the estimation bias through the resolution kernel
HTk (bias = |E(�̂) − F| = |kT(H − I)f|). The second term determines the variance of the
estimate that can be computed as:

Var(�̂) = kTVar(w)k. (5)

As most modern techniques employed to solve (1a) are nonlinear (especially the algorithms
based on likelihood maximization), simple and accurate expressions for H and w are generally
not available and a statistical characterization of �̂ (in terms of resolution/bias and variance)
remains difficult to establish in a fast and effective way.
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2.2. Huesman’s method

In 1984, Huesman proposed a fast algorithm for the evaluation of ROIs and statistical
uncertainty based on the analytical solution of the tomographic problem known as filtered
back-projection (Huesman 1984). Huesman’s ROI estimate can be written as:

�̂ = kTBCAp (6)

where A ∈ R
M×M is a diagonal matrix accounting for the attenuation correction of the

measured projections, C ∈ R
M×M is the convolution matrix mapping the unfiltered projections

into the filtered ones using the ramp filter, and B ∈ R
N×M is the geometrical back-projection

matrix. As the formulation is strictly linear, the statistical uncertainty affecting �̂ can be
approximated as:

Var(�̂) = kTBCAVar(p)(BCA)Tk ≈ kTBCA Diag(p)(BCA)Tk. (7)

Huesman’s analytical method has two main drawbacks. First, the attenuation correction
as expressed above is only available in PET and not in SPECT, leading to substantial
inaccuracy in SPECT. Second, it suffers from the inability of filtered back-projection to force
the non-negativity of the reconstructed image (unlike most of the algebraic reconstruction
schemes which satisfy this constrain by using multiplicative iterative corrections). An extended
formulation of Huesman’s method has also been proposed (Muzic et al 1998) to compensate
for partial volume effects.

2.3. Least-squares dual characterization

This sub-section is in part inspired from the works of Louis on the approximate inverse
formulation for the solution of inverse problems (Louis and Maass 1990, Louis 1996, Louis
et al 2008). The goal of the dual characterization is to express the ROI estimate as � = δTp
where δ ∈ R

M is called the dual characteristic function through which � can be computed
in the projection space rather than in the image space as in (1b). From (1a) one deduces
� = δTp = δTMϕ, and from (1b) � = δTp = kTϕ. These two equations lead to kTϕ = δTMϕ,

which can be simplified into kT = δTM, or equivalently MTδ = k. The set of equations:

MTδ = k (8a)

� = δTp (8b)

will be referred to as the dual problem and the resulting solution as the dual characterization
of the studied ROI. Here, equation (8a) is independent of the projection data hence δ is a
deterministic vector depending only on the system matrix and the studied ROI. The dual inverse
problem (8a) is highly similar to the direct one (1a) since it involves the same system matrix
M, which is known to be ill-conditioned. As a result, an exact solution to the dual problem
does not exist in general and the estimated solution will be denoted δ̂. The corresponding
estimate �̂ for the ROI value can be derived using (8b):

�̂ = δ̂
T
p = δ̂

T
(p̄ + ν) = δ̂

T
Mf + δ̂

T
ν (9)

The first term of equation (9) determines the estimation bias through the resolution kernel
MT̂δ (bias = |E(�̂) − F| = |(̂δT

M − kT)f|). The second term determines the variance of the
estimate:

Var(�̂) = δ̂
T
Var(ν)̂δ ≈ δ̂

T
Diag(p)̂δ (10)
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Let us stress here the difference between direct and dual characterization. In both cases,
the ROI estimates given by equations (4) and (9) can be written as:

�̂ = hTf + ω (11)

where h ∈ R
N is the resolution kernel and ω is the noise. Direct characterization of the ROI is

performed using classical iterative nonlinear algorithms for which h and ω remain unknown
(or at least not easily computable). On the contrary, the dual formulation makes it possible to
estimate both h = MT̂δ (within modeling errors affecting the system matrix) and ω = δ̂

T
ν.

The knowledge of the noise ω leads to a simple and robust expression for the ROI estimate
variance as given in equation (10). The relative error e affecting the variance estimate:

e = �Var(�̂)

Var(�̂)
=

√∑
δ̂

4
i p̄i∑

δ̂
2
i p̄i

≈ 1√
qO(p̄)

(12)

is expected to decrease with the count rate and with the number q of non-null components
in δ̂ (i.e., the number of projections involved in the estimation of �̂). For instance, basic
computations yield e = O(3)%5 for q = 100 and O(p̄) = 10 (very tiny ROI at low count rate),
and e = O(0.3)% for q = 1000 and O(p̄) = 100 (large ROI at high count rate). In addition, the
knowledge of the resolution kernel h = MT̂δ can help manage the bias-variance tradeoff as will
be discussed thereafter. Since the solution of the dual problem may have negative components,
(8a) cannot be solved like the direct problem using maximum-likelihood algorithms involving
multiplicative corrections and will have to be solved with a descent method. Let us consider
the following objective function:

J(δ) = ‖MTδ − k‖2 + β‖δ‖2 (13)

which minimal argument δ̂ = argmin
δ∈RM

{J(δ)} corresponds to the least-squares solution of (8a)

with a Tikhonov regularization. The first term is a matching term between MT̂δ and k whose
minimization results in the minimization of the estimation bias on �̂. The second term is a
penalty whose roughness is determined by the scalar parameter β and whose minimization
results in the minimization of Var(�̂). Yet, these two terms are computed in different spaces
and their relative order of magnitude is hard to evaluate. Although optimization techniques
have been developed to tune the Tikhonov parameter β (Hansen and O’Leary 1993, Golub and
von Matt 1997), a less time-consuming and more intuitive manner to handle the bias-variance
tradeoff is to use the following objective function:

J(δ) = ∥∥MTδ − �

kα

∥∥2
(14)

where
�

kα is a smoothed characteristic function of the ROI:
�

kα = k ∗ Gα (15)

with ∗ standing for the 2D convolution operator, and Gα for the 2D Gaussian kernel of full-
width at half-maximum (FWHM) α pixels6.When the regularization parameters (β and α)
tend to zero, both equations (13) and (14) tend to the natural least-squares objective function
J(δ) = MTδ−k2. However, unlike the Tikhonov method, the regularization parameter α has a
clear physical and numerical interpretation and can be used to tune the regularization roughness
in terms of smoothing distance. The impact of the smoothing on the ROI characterization can
be assessed in terms of resolution kernel. Indeed, the solution of the dual problem δ̂ is built so

that MT̂δ is as close as possible to
�

kα and the smoothed characteristic function
�

kα may thus

5 Where O stands for ‘order of magnitude’.
6 Obviously, when working with 3D data, ∗ stands for the 3D convolution operator and Gα for a 3D Gaussian kernel.
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be viewed as the target resolution kernel for the ROI estimate. We propose to minimize the
objective function using the following iterative procedure:

• Initialize δ̂
0

to:

∀i,

{̂
δ

0
i = 1 if

{∃ j ∈ R|Mi j > 0
}

δ̂
0
i = 0 otherwise

(16)

then normalize it so that:∑
j

(MT̂δ
0
) j =

∑
j

�

kα, j. (17)

• At each iteration n, do:
• Compute the descent direction γn using an approximate Newton method:

γn ≈ −∇J(δn)(∇2J(δn))−1 (18)

As the inverse of the Hessian matrix ∇2J(δn) is hard to compute due to the huge dimensions
of the system, the following approximation is used:

∀i, γn
i = −[∇J(δn)]i/[∇2J(δn)]ii (19)

i.e., only the diagonal elements of the Hessian matrix are taken into account. Basic
computations show that this descent direction is equivalent to:

∀i, γn
i = argmin

γ∈R

{
J
(̂
δ

n
1, . . . , δ̂

n
i−1, δ̂

n
i + γ , δ̂

n
i+1, . . . , δ̂

n
N

)}
(20)

The reason why this approximate Newton descent direction is employed instead of a
classical gradient γn = −∇J(δn) is that the gradient results in a very slow convergence
rate when the components of the system matrix M exhibit large amplitude variations,
which is the case when attenuation correction is taken into account.

• Project γn onto the hyperplane
∑

j
(MTγn) j = 0 so as to preserve the normalization

throughout the iterations.
• Compute �

ε as:
�
ε = argmin

ε∈R

{J(δn + εγn)} (21)

The minimization here is straightforward since J is quadratic in ε.
• Update δ̂

n
according to:

δ̂
n+1 = δ̂

n + �
εγn (22)

• Proceed to the next iteration.
At each iteration n, equations (8b) and (10) give the current estimate of the ROI activity
and associated variance:

�̂n = δ̂
nTp (23)

Var(�̂n) ≈ δ̂
nTDiag(p)̂δ

n
. (24)

In the following, this least-squares dual characterization will be abbreviated as LSD
characterization.
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2.4. LSD characterization with linear extrapolation

During the iterative process described in sub-section 2.3 one can compute what will be referred
to as the overlap coefficient:

ρn = kTMT δ̂
n

kTk
(25)

Ideally, when solving the unregularized least-squares problem (i.e., when α is set to 0),
this coefficient should tend toward 1. In practice, due the inconsistency of the dual problem,
ρn will reach a plateau value depending on both M and k. Let us denote Aroi the mean activity
in the considered ROI and Abkg the mean activity in the ROI background. In the neighborhood
of the studied ROI, the original activity map can be decomposed as:

f ≈ Aroik + Abkg(i − k) (26)

where i is a vector with all components equal to 1. Using equation (9), one can write the
expectation of �̂n as:

E(�̂n) = fTMT̂δ
n ≈ AroikTMT̂δ

n + Abkg(iT − kT)MT̂δ
n

(27)

Noting S = kTk = iTk the number of pixels in the ROI, and noticing that iTMT̂δ
n = iTk

(due to the normalization of δ̂
n

throughout the iterative process), one has:

E(�̂n) ≈ SAroiρ
n + SAbkg − SAbkgρ

n = SAbkg + S(Aroi − Abkg)ρ
n (28)

If the ROI and background activities are sufficiently uniform, E
(
�̂n

)
is approximately

linear in ρn and E(�̂n) tends toward the true ROI value F = SAroi when ρn tends toward 1. Let
us consider the series {ρn, �̂n} and {ρn, Std(�̂n)}, with Std(�̂n) the square root of Var(�̂n).
When ρn reaches its plateau value, �̂n also reaches a plateau and the subsequent iterations
do not improve the estimate �̂n in terms of bias. However, δ̂

n
keeps on increasing with the

iterations which leads (via equation (24)) to a monotonic rise in Std(�̂n), i.e., in the variance
of the estimate. Choosing the optimal value of ρn at which to stop the iterative process would
require knowing the expected bias in order to compare it with the current variance and evaluate
the bias-variance tradeoff, which is not the case in practice. An alternative strategy consists
in stopping empirically the iterative process when the convergence of ρn becomes slow and
extrapolating the values of �̂ and Std(�̂) for ρ = 1 using a linear regression. Let us denote
[ρnminρnmax ] the relevant range of ρ values, with nmin � 1 (in practice the first iterations are
discarded since they are not representative of the general trend) and nmax corresponding to
the iteration index at which the iterative process is stopped. A subset of k ρ values evenly
distributed in the relevant range is chosen:

{ρn1 = ρnmin; ρn2; . . . ; ρnk−1; ρnk = ρnmax}, corresponding to k ROI estimates
{�̂n1; . . . ; �̂nk} and k variance estimates {Std(�̂n1 ); . . . ; Std(�̂nk )}. A linear regression
is then performed on the two series {ρnt , �̂nt } and {ρnt , Std(�̂nt )} with t = 1 . . . k:

� ≈ A(ρn1; . . . ; ρnk; �̂n1; . . . ; �̂nk )ρ + B(ρn1; . . . ; ρnk; �̂n1; . . . ; �̂nk ) (29a)

where A and B are the first and zero order coefficients of the linear regression respectively,

Std(�) ≈ C(ρn1; . . . ; ρnk; Std(�̂n1 ); . . . ; Std(�̂nk ))ρ

+ D(ρn1; . . . ; ρnk; Std(�̂n1 ); . . . ; Std(�̂nk )) (29b)

where C and D are the first and zero order coefficients of the linear regression respectively. For
illustrative purposes, figure 1 shows an example for the regression � ≈ Aρ + B. We denote
LSD-ex the LSD characterization obtained when extrapolating the two linear regressions for
the value ρ = 1:

�̂ex = A(ρn1; . . . ; ρnk ; �̂n1; . . . ; �̂nk ) + B(ρn1; . . . ; ρnk ; �̂n1; . . . ; �̂nk ) (30a)
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Figure 1. Example of a linear regression over a series {ρnt , �̂nt }, t = 1 . . . k.

Figure 2. Hoffman brain phantom. From left to right are displayed the activity map, the density
map, and the ROI subdivision.

Table 1. Phantom composition.

Tissue Relative uptake Attenuation (cm−1)

Bone 0 0.15
Gray matter 1 0.1
White matter 0.5 0.1
Cerebrospinal fluid 0.2 0.1
ROI 1 1.5 0.1
ROI 2 2 0.1
ROI 3 3 0.1

Std(�̂ex) = C(ρn1; . . . ; ρnk ; Std(�̂n1 ); . . . ; Std(�̂nk ))

+ D(ρn1; . . . ; ρnk ; Std(�̂n1 ); . . . ; Std(�̂nk )) (30b)

2.5. Monte Carlo validation

We studied a Hoffman brain phantom. Figure 2 shows the 2D activity and density maps and
the ROIs used in our study. Table 1 gives the relative uptakes and attenuation coefficients
of the different tissues. Three uniform hot spots of various sizes and uptakes mimicking
tumors were included inside the cerebral parenchyma and corresponded to ROI 1–3. A fourth
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non-uniform ROI was defined inside the frontal lobe, with boundaries not correlated with
anatomical region borders. Regions 1–3 were relatively small ROI with high contrast with
respect to the background and were typical of clinical situations when one wants to estimate
the statistical properties of a hot tumor, whereas region 4 was a large ROI with no particular
contrast with respect to its neighborhood and was representative of a non specific area serving
as a reference for ROI uptake comparison (for instance in dopaminergic neuroimaging where
an occipital ROI is used to assess the striatal uptake through the calculation of the binding
potential (Soret et al 2003)). From a statistical point of view, the estimation errors regarding
ROI 1–3 will mainly be caused by bias due to partial volume effects. In ROI 4, the bias is
expected to be small and the estimation error will mainly reflect the estimate variability.

The projection data were produced using the GATE (Geant4 Application in Emission
Tomography) platform (Jan 2004, Jan 2011). The numerical Hoffman phantom we used
was an axially invariant 3D phantom whose 2D activity and density maps are displayed in
figure 2 and defined on a 128 × 128 grid with a pixel size of 2 mm. The data were simulated
using the specifications of the GEMINI GXL PET scanner (Philips Healthcare) (Lamare et al
2006). Positron range and non-collinearity were not modeled. A 3D data set was produced
corresponding to a total activity of 80 MBq (18FDG) and an acquisition time of 10 min.
The simulated prompts, estimated scatter (Bailey and Meikle 1994), and estimated random
(Kadrmas 2004) were stored. The 29 transaxial sinograms of each data set (prompts, scatter
and random) were then summed and re-sampled to produce three high-statistics 2D 128 ×
128 sinograms. The prompts 2D sinogram included about 10 million counts, the scatter
2.4 million counts, and the random 1.8 million counts. These 2D sinograms were considered
as noise-free (Fu et al 2009), i.e., as the exact distributions of the prompts, scatter and random.
Let us note respectively p̄, s̄ and r̄ these three distributions. The distribution of the trues (i.e.,
the corrected projections) was computed as t̄ = p̄ − s̄ − r̄. Realistic noisy data sets were
simulated using the following method:

• Choose a count rate C.
• Scale the exact distributions using the appropriate scaling factors μ and η:

t = μt̄; s = μs̄; r = ημr̄ (31)

where μ is such that t includes C counts, and η accounts for the quadratic variation of the
number of random counts with the count rate.

• Simulate the noisy measured prompts p as:

p = �(t) + �(s) + �(r) (32)

where � stands for the Poisson noise operator (modeled using Knuth’s algorithm (Knuth
1969)).
• Simulate the estimated random r̂ as:

r̂ = �(r) (33)
• Simulate the estimated scatter ŝ as:

ŝ = �(s) ∗ G2 (34)
where the convolution with a 2D Gaussian kernel of FWHM 2 pixels accounts for the
smooth nature of the estimated scatter.
Three count rates were considered: 50 000, 200 000, and 800 000 counts. For each
count rate, 1000 realistic replicates of the measured prompts p, estimated scatter ŝ,
and estimated random r̂, were generated. The system matrix M employed for the
reconstructions and ROI estimations was built using a uniformly distributed pixel
activity model and corrected for attenuation and normalization using the appropriate
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correction factors. The images were reconstructed on a 128 × 128 grid with a pixel size
of 2 mm. The following methods were evaluated for the task of ROI characterization:

• Maximum-likelihood expectation-maximization (MLEM) (Shepp and Vardi, 1982,
Lange and Carson, 1984) was run on 400 replicates for each count rate, using the
measured prompts p. The estimated random r̂ and scatter ŝ were taken into account
by adding them to the projections of the current image estimate at each iteration,
according to the ordinary Poisson model proposed by Politte and Snyder (Politte and
Snyder, 1991). The total number of iterations was 100 for the 50 000 count sinograms,
150 for the 200 000 count sinograms, and 200 for the 800 000 count sinograms. These
values were set empirically so as to ensure sufficient convergence of the algorithm.
At each iteration, the ROI estimates were deduced by pixel summation. The bias was
computed as the absolute difference between the mean of the current estimates (over
the 400 replicates) and the true ROI value. The variability was computed as the standard
deviation of the current estimates (over the 400 replicates).

• Huesman’s method was run on the 1000 replicates for each count rate. Here, the
system matrix was a simple geometric projector and the projections were corrected for
attenuation and normalization. The ROI estimates were produced using equation (6)
as:

�̂ = kTBCAp − kTBCÂr − kTBCÂs. (35)
The bias was computed as the absolute difference between the mean of the estimates
(over the 1000 replicates) and the true ROI value. The variability was computed as the
standard deviation of the estimates (over the 1000 replicates). As this has already been
investigated elsewhere, the agreement between the true variance and the estimated
variance provided by equation (7) was not studied.

• LSD characterization. The iterative process described in section 2.3 was run on the 1000
replicates for each count rate. The total number of iterations was 100 for the 50 000
count sinograms, 150 for the 200 000 count sinograms, and 200 for the 800 000 count
sinograms. These values are identical to those chosen for MLEM: the computation
time of an iteration step of MLEM being very similar to that of an iteration step of
LSD, the same total number of iterations was used for both algorithms so that their
performance can be compared on the basis of identical computational costs. The ROI
activity was computed using equations (23):

�̂n = δ̂
nT(p − r̂ − ŝ) (36)

The LSD method does not require the correction of the projections prior to the ROI
characterization, thus avoiding the need to set negative projection values to zero (as is
sometimes done before MLEM reconstruction). The ROI variability was then computed
using equations (24):

Std(�̂n) =
√

Var(�̂n) ≈
√̂

δ
nTDiag(p + r̂)̂δ

n
(37)

where the variance of the scatter was assumed to be negligible. As discussed above, for
ROI 1–3, as the goal was to minimize the bias, LSD characterization was performed
with non smoothed ROI characteristic functions, i.e., α = 0 in equation (15). In
ROI 4, as the main error source is expected to be the variance, LSD characterization
was performed with three smoothing levels, corresponding to α = 0, α = 2 and
α = 4 pixels. In addition, LSD characterization was also run using a classical gradient
minimization to justify the choice of the descent direction employed in the recipe
described in section 2.3.

• LSD-ex characterization. This method was only applied to ROI 1–3 and used the
1000 noisy replicates for each count rate. The total number of iterations was set to
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nmax = 40. The subset of ρ values included k = 15 points: {n1 . . . n15} ={4, 5, 6, 7,
8, 9, 10, 12, 15, 18, 21, 25, 30, 35, 40}. The corresponding range of ρ values was
[0.58 0.91] for ROI 1, [0.48 0.87] for ROI 2, and [0.34 0.77] for ROI 3. The bias was
computed as the absolute difference between the mean of the estimates �̂ex (over the
1000 replicates) and the true ROI value. The variability was computed as the standard
deviation of the estimates �̂ex (over the 1000 replicates). The variance estimates given
by equation (30b) were computed and assessed through their 95% confidence interval
(CI95%) over the 1000 replicates.

The reason why MLEM was run on a restricted subset (400 replicates) of the whole
simulated data set (1000 replicates) is that MLEM reconstruction is highly time-consuming.
For Huesman’s method, kTBCA was pre-computed and stored for a given ROI then
applied to the 1000 noisy replicates. Similarly, for LSD, the successive values of the
dual characteristic function δ̂

n
(n = 1 . . . 200) were pre-computed and stored for a given

ROI then applied to the 1000 noisy replicates, which significantly quickened the ROI
estimation and allowed to process the 1000 replicates within a reasonable computation
time. To each bias and variance computation corresponded a root mean square (RMS)
error value according to RMSerror =

√
bias2 + variance. In the result section, these three

figures of merit (bias, standard deviation and RMS error) are normalized and expressed in
percent of the true ROI value.

3. Results

Figure 3 shows the intrinsic convergence properties of LSD characterization. The iterative
process was performed with α = 0. Figures 3(A/D), (B/E) and (C/F) correspond to ROI
1 to 3 respectively. Figures 3(A)–(C) show the evolution of the objective function defined
in equation (14) with the iteration number and figures 3(D)–(F) represent the evolution of
the overlap coefficient defined in equation (25) with the iteration number. The solid curves
correspond to the use of the approximate Newton descent described in section 2.3, the dotted
curves correspond to the classical gradient. Figures 4–6 compare the four estimation methods
and correspond respectively to the 50 000 count, 200 000 count, and 800 000 count simulations.
In each figure, ROIs 1–4 are shown from left to right. For each of the four ROIs, row A shows
the estimation bias, row B displays the associated standard deviation, and row C displays
the resulting RMS error. The thick dotted curves correspond to the results of MLEM, the
thin solid curves to the results of LSD given by equation (36), the gray dashed lines to the
results of Huesman’s method given by equation (35), and the crosses to the results of LSD-ex
given by equation (30a). The thick solid curves labeled ‘2’ and ‘4’ refer to the results of
LSD using respectively α = 2 and α = 4 pixels. The thin dotted curves indicate the 95%
confidence interval of the LSD variability estimate provided by equation (37). Table 2 shows
the adequacy between the variability of the LSD estimates at iteration 100 (obtained using
the noisy replicates) and the predicted value of that variability computed using equation (37).
Last, tables 3 and 4 summarize the performances of LSD-ex. Table 3 compares the LSD-ex
estimates with the optimal MLEM estimates (MLEM-opt, corresponding to the iteration
number for which the RMS error reaches its minimum) in terms of bias, standard deviation,
and RMS error. Table 4 shows the adequacy between the variability of the LSD-ex estimates
(obtained using the noisy replicates) and the predicted value of that variability computed using
equation (30b).



12 F Ben Bouallègue et al

(A) (B) (C)

(D) (E) (F)

Figure 3. Convergence properties of LSD characterization for ROI 1 (left), ROI 2 (middle), and
ROI 3 (right) in terms of the objective function J (top) and the overlap coefficient ρ (bottom).

Table 2. Variability of the LSD estimates at iteration 100: based on the noisy replicates (first
column), and predicted using equation (37) (third column).

Std(�̂) (%) Std(�̂) predicted CI95% (%) Error

50 000 counts ROI 1 10.31 9.75–10.01 −0.43%
ROI 2 12.48 12.06–12.38 −0.26%
ROI 3 21.54 20.53–21.33 −0.61%

200 000 counts ROI 1 5.24 5.01–5.08 −0.20%
ROI 2 6.54 6.19–6.27 −0.32%
ROI 3 10.48 10.32–10.52 −0.06%

800 000 counts ROI 1 3.41 3.22–3.24 −0.18%
ROI 2 4.08 3.92–3.94 −0.15%
ROI 3 6.79 6.62–6.67 −0.15%

4. Discussion

The convergence properties of the LSD algorithm shown in figure 3 clearly justify the use
of our Newton-like descent for the minimization of the objective function since the overlap
coefficient reaches a plateau within an acceptable number of iterations depending on the ROI
size (between 25 for the large ROI 1 and 50 for the small ROI 3). When using the classical
gradient, the convergence of the objective function is very slow and after 200 iterations the
plateau of the overlap coefficient is far from being reached. These results further justify the
choice of nmax = 40 as a reasonable number of iterations after which to stop the iterative
process before performing the linear extrapolation in LSD-ex. In practice, this choice can
be adapted on a case-by-case basis since the trend of the overlap coefficient is obviously
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(A)

(B)

(C)

Figure 4. 50 000 count simulations— comparison in terms of bias, standard deviation and RMS
error of the performances of LSD (thin solid curves), MLEM (thick dotted curves), Huesman’s
method (gray dashed lines), LSD-ex (crosses), and LSD with α = 2 and α = 4 pixels (thick solid
lines labeled ‘2’ and ‘4’). Row B, the thin dotted curves indicate the 95% confidence interval of
the LSD variability estimate provided by equation (38).

Table 3. Comparison between MLEM-opt and LSD-ex estimations in terms of bias, standard
deviation and RMS error.

50 000 counts 200 000 counts 800 000 counts

ROI 1 ROI 2 ROI 3 ROI 1 ROI 2 ROI 3 ROI 1 ROI 2 ROI 3

Bias MLEM 10.9% 12.0% 22.9% 9.0% 11.0% 18.8% 8.5% 9.9% 18.5%
LSD-ex 5.2% 5.0% 8.9% 4.8% 5.5% 9.2% 4.9% 5.5% 8.2%
Difference −5.7% −7% −14% −4.2% −5.5% −9.6% −3.6% −4.4% −10.3%

Std. MLEM 8.6% 10.4% 18.1% 4.8% 5.9% 10.2% 3.1% 3.9% 6.4%
dev. LSD-ex 9.9% 12.5% 23.8% 5.1% 6.5% 11.4% 3.3% 4.0% 7.5%

Difference + 2.3% + 2.1% + 5.7% + 0.3% + 0.6% + 1.2% + 0.2% + 0.1% + 1.1%
RMS MLEM 13.8% 15.9% 29.1% 10.3% 12.5% 21.5% 9.1% 10.6% 19.6%
error LSD-ex 11.2% 13.5% 25.4% 7.0% 8.5% 14.6% 5.9% 6.8% 11.1%

Difference −2.6% −2.4% −3.7% −3.3% −4% −6.9% −3.2% −3.8% −8.5%

independent of the measured data in general and of the count rate in particular (it only depends
on the system matrix and ROI characteristic function).

Comparing the four methods used for ROI characterization (figures 4–6), as expected,
the bias is rather independent of the count level. This is strictly true for LSD, LSD-ex, and
Huesman’s method since they are linear. For MLEM, the bias slightly increases at low count
rate due to the nonlinear nature of the method. Regarding the standard deviation, as expected,
it is approximately reduced by a factor of 2 when changing from 50 000 to 200 000 counts
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(A)

(B)

(C)

Figure 5. Same as figure 4 for the 200 000 count simulations.

(A)

(B)

(C)

Figure 6. Same as figure 4 for the 800 000 count simulations.
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Table 4. Adequacy between the real and predicted variability of the LSD-ex estimates.

Std(�̂ex) (%) Std(�̂ex) predicted CI95% (%) Error

50 000 counts ROI 1 9.92 9.26–9.47 −0.56%
ROI 2 12.50 11.71–12.00 −0.65%
ROI 3 23.83 22.50–23.40 −0.88%

200 000 counts ROI 1 5.13 4.75–4.80 −0.35%
ROI 2 6.50 6.01–6.08 −0.46%
ROI 3 11.43 11.08–11.30 −0.24%

800 000 counts ROI 1 3.32 3.06–3.07 −0.26%
ROI 2 4.01 3.80–3.82 −0.19%
ROI 3 7.52 7.11–7.16 −0.39%

then from 200 000 to 800 000 counts. As discussed above, the RMS error in ROI 1–3 estimates
depends on the relative proportion of the bias and the variance. At high count rate, the RMS
error is mainly influenced by the bias, whereas at low count rate the variance has a significant
and early impact on the evolution of the RMS error. In ROI 4, the RMS error mostly results
from the noise since the bias tends to zero as the iterations proceed.

Huesman’s method results in estimation biases that are significantly higher than the two
iterative methods (that is why the corresponding dashed line does not appear in ROI 4 plots for
which the bias is around 5%). On the contrary, the variance of Huesman’s estimates remains
moderate compared with MLEM and LSD. The resulting RMS error is significantly higher in
Huesman’s method than with MLEM and LSD, whatever the ROI and count rate.

The performance of MLEM and LSD are rather similar in terms of bias, variance and
RMS error. Likely due to the appropriate definition of the descent direction employed for the
minimization of the objective function, the convergence of LSD is faster than that of MLEM
(figures 4–6, rows A), yielding a faster bias decrease. For a given iteration, the variance of
the LSD estimates is always slightly higher than that of the MLEM estimates, due to the
higher convergence rate (figures 4–6, rows B). As confirmed by table 2, the LSD variance
estimates are fairly accurate since the error after 100 iterations is always below 1%. They also
prove to be highly robust as confirmed by the narrow confidence intervals. The resulting RMS
errors are comparable for LSD and MLEM and follow roughly the same trends whatever the
studied ROI and count level (figures 4–6, rows C). For the three small tumor ROIs, it appears
that the RMS error is always significantly lower with LSD than with MLEM. Regarding the
non-specific large ROI, the RMS error is lower with MLEM, but the difference between the
two methods remains small and weakly significant from a practical point of view.

In ROI 4, the minimum RMS error is reached early in the iterative process and the
subsequent RMS error rise follows the trend of the variance increase. For this kind of ROI with
large size and low contrast, a regularized estimation is hence desirable to avoid a large increase
in variance. As described in section 2.3, the regularization can be performed by smoothing
the characteristic function of the ROI with an adjustable convolution kernel. Figure 7 shows
the effect of regularization on the convergence properties of the LSD algorithm applied to

ROI 4. The top row displays the characteristic function
�

kα which, as discussed in section 2.3,
can be interpreted as the target resolution kernel for LSD characterization. The second row
shows the exact object smoothed using the corresponding Gaussian filter Gα . It clearly appears
that the filtering definitely alters the intrinsic resolution of the small tumor ROIs due to their
high contrast. In ROI 4, the smoothing and the related loss of resolution are not expected
to significantly bias the ROI estimate. The third row displays line profiles through the target

resolution kernel
�

kα (dotted) and through the resolution kernel MT̂δ (solid) at iteration 100.
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Figure 7. Unregularized LSD (α = 0, left column) and regularized LSD with α = 2 (middle

column) and α = 4 (right column). Top row: ROI 4 characteristic function
�

kα . Second row:

phantom smoothed using Gα. Third row: line profiles through
�

kα (dotted) and MT δ̂ (solid) at
iteration 100. Bottom row: convergence of the objective function J.

Whereas the match between the two is perfect for α = 4 and almost perfect for α = 2,

the solution of the unregularized dual problem fails in perfectly matching MT̂δ with
�

kα . The
bottom row shows the convergence of the objective function throughout the iterations and
illustrates that the roughness of the regularization strongly influences the speed and quality of
the convergence. These observations explain the results shown in figures 4–6 for ROI 4. In
terms of bias, the regularization does not yield a significant degradation of the ROI estimates
(almost 0% at convergence for α = 0, about 0.2% for α = 2 and less than 0.7% for α = 4). In
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terms of variance, the use of α = 2 significantly reduces the variance compared to α = 0, yet
the variance still follows a slow monotonic increase while the iterations proceed. Choosing
α = 4 yields a further reduction along with a fast and sustainable stabilization of the variance
(a plateau is reached within about 30 iterations). As a consequence, the strongly regularized
LSD algorithm produces the most accurate and stable ROI estimate in terms of RMS error.
So far, the adjustment of parameter α has been performed intuitively, based on basic a priori
knowledge regarding the considered problem such as the size of the ROI, its expected contrast
with respect to the background, the SNR in the recorded projections. Further work has to be
undertaken in order to design an automated procedure for the optimization of parameter α.

In the small tumor ROIs, LSD-ex characterization was also used to study to what extent it
could reduce the bias and RMS error. It appears from figures 4–6 and table 3 that the bias was
lowered compared with LSD and MLEM due to the compensation of sampling-induced partial
volume effects. The residual bias affecting LSD-ex estimates is mainly due to the re-sampling
of the projection data and to the modeling errors affecting the system matrix which does not
account for the detector response function. When compared with the optimal MLEM estimate
(MLEM-opt) in term of RMS error, the LSD-ex estimate reduces the bias from 4% to 14%
(depending on the ROI and count level). The variance of the LSD-ex estimate is similar to that
of the LSD estimate around 100 iterations (except for the smallest ROI for which the variance
is slightly higher, likely due to a wider range of ρ values over which the extrapolation is
performed, producing a higher variability in the linear regression). The resulting reduction in
terms of RMS error with comparison to MLEM-opt ranged from 2.5% to 8.5%. Furthermore,
table 4 shows that the LSD-ex estimate variance predicted using equation (30b) is highly robust
and accurate since the associated 95% confidence interval is always narrow and close to the
true LSD-ex estimate variance (the variance is mostly under-estimated with an error always
below 1%). Yet, before the LSD-ex method can be widely used, an automatic criterion for the
definition of the series to be extrapolated will have to be designed, so that the procedure could
be fully user-independent.

Regarding the computational requirements of the compared algorithms, the LSD
characterization of one ROI requires approximately the same time as that needed by an MLEM
iterative reconstruction followed by pixel summation. When several ROIs are studied, the LSD
algorithm has to be run for each ROI. Yet, when performing successive characterizations of the
same ROI (as in dynamic imaging), the dual characteristic function has only to be estimated
once.

As a summary, one can list the advantages of dual ROI characterization versus classical
direct ROI quantification:

• No need for image reconstruction.
• A similar computational complexity.
• A higher convergence speed allowed by the Newton-like descent.
• A linear expression of the ROI value enabling a straightforward estimation of the ROI

variance.
• An intuitive handling of the regularization of the inverse problem using a smoothed version

of the ROI characteristic function. The resulting estimation bias is directly interpretable in
terms of resolution loss.

• An innovative extrapolation scheme allowing a significant reduction in the estimation bias
induced by sampling partial volume effects. When LSD-ex is applied to the ill-posed
unregularized least-squares problem, the iterative process can be suitably stopped very
early in the iterations (based on the knowledge of the overlap coefficient), hence limiting
the estimate variance increase without requiring any stopping criterion.
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• Performances at least as good as those of optimal direct quantification (in terms of RMS
error).

• An inverse problem that is independent of the measured data. When ROI estimation is
required on successive recordings of the same object, the dual problem needs only to be
solved once. This should be particularly helpful in the frame of dynamic imaging.

5. Conclusion

This paper presents an original method for region of interest characterization in emission
tomography relying on a dual formulation of the ROI estimation problem inspired by the
works of Louis on the approximate inverse. The dual formulation yields estimations for the
ROI activity and variance directly from the measured data without any image reconstruction.
It requires the definition of an ROI characteristic function that can be derived from a co-
registered morphological image. When this characteristic function is properly smoothed, it
acts as a target resolution kernel for the characterization, and makes it possible to intuitively
tune the resolution-variance tradeoff. The dual problem is solved in the least-squares sense
(LSD characterization) by means of an iterative descent method. At each iteration, an LSD
estimate is produced while having a precise knowledge of the current resolution kernel (within
system modeling errors) and estimate variance. Furthermore, a linear extrapolation scheme is
described to reduce the estimation bias (LSD-ex). Both LSD and LSD-ex were compared
with classical ROI estimation using pixel summation after MLEM image reconstruction
and with Huesman’s reference method through Monte Carlo simulations. We found that
the performances of LSD characterization are at least as good as those of the classical methods
in terms of RMS error. The convergence of LSD is faster than that of direct MLEM estimation
and the LSD variance estimates is highly robust and accurate. For three small tumor ROIs,
LSD-ex allows a reduction in the estimation bias of up to 14%, resulting in a reduction in
the RMS error of up to 8.5%, compared with the optimal MLEM estimation. For a large
non specific region, LSD using appropriate smoothing made it possible to intuitively tune the
resolution-variance tradeoff.
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