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ABSTRACT 

Purpose: Dynamic 18F-FDG PET allows quantitative estimation of cerebral glucose metabolism both at 

the regional and local (voxel) level. Although sensitive to noise and highly computationally expensive, 

nonlinear least-squares (NLS) optimization stands as the reference approach for the estimation of the 

kinetic model parameters. Nevertheless, faster techniques, including linear least-squares (LLS) and 

Patlak graphical method, have been proposed to deal with high resolution noisy data, representing a 

more adaptable solution for routine clinical implementation. Former research investigating the relative 

performance of the available algorithms lack precise evaluation of kinetic parameter estimates under 

realistic acquisition conditions. 

Methods: The present study aims at the systematic comparison of the feasibility and pertinence of kinetic 

modelling of dynamic cerebral 18F-FDG PET using NLS, LLS, and Patlak method, based on numerical 

simulations and patient data. Numerical simulations were used to study 𝐾1 and 𝐾𝑖 parameters estimation 

bias and variance under representative noise levels. Patient data allowed to assess the concordance 

between the three methods at the regional and voxel scale, and to evaluate the robustness of the 

estimations with respect to patient head motion. 

Results and Conclusions: Our findings indicate that at the regional level NLS and LLS provide kinetic 

parameter estimates (𝐾1 and 𝐾𝑖) with similar bias and variance characteristics (𝐾1bias ± rel. std dev.  

0.0±5.1% and 0.1%±4.9% for NLS and LLS respectively, 𝐾𝑖 bias ± rel. std dev. 0.1%±4.5%  and -

0.7%±4.4% for NLS and LLS respectively), NLS estimates being however slightly less sensitive to 

patient motion. At the voxel level, provided that patient motion is negligible or corrected, LLS offers an 

appealing alternative solution for local 𝐾1 mapping, with high correlation with NLS values (Pearson’s r 

= 0.95 on actual data) in computations times less than two orders of magnitude lower. Last, Patlak 

method appears as the most robust and accurate technique for the estimation of 𝐾𝑖 values at the regional 

and voxel scale, with or without head motion. It provides low bias / low variance 𝐾𝑖  quantification (bias 

± rel. std dev. -1.5±9.5% and -4.1±19.7% for Patlak and NLS respectively) as well as smooth parametric 

images suitable for visual assessment.  

 

Keywords: 18F-FDG PET, cerebral glucose metabolism, quantification, kinetic analysis. 
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1. Introduction 

Positron emission tomography (PET) allows absolute quantification of physiological parameters 

describing human brain function, such as cerebral blood flow using perfusion tracers (15O-water), or 

cerebral glucose metabolism with 18F-FDG [1-3]. However, since these parameters are not directly 

measurable, indirect parameter estimation based on activity measurements and kinetic modelling is 

required. The compartmental model for the determination of the local cerebral metabolic rate of glucose 

(CMRglu) was initially developed by Sokoloff and colleagues in the late 70’s using 14C-deoxy-glucose 

and an autoradiographic method [4], and further adapted to noninvasive assessment using 18F-FDG PET 

[5]. Although simplified protocols relying on static scans combined with an assumption of fixed rate 

constants have been proposed for clinical routine implementation [6-7], dynamic data acquisition 

remains the state-of-the-art technique for complete and accurate kinetic parameter estimation [8-10]. 

Although original techniques based on machine learning have been proposed [11], iterative fitting of the 

compartment model and graphical approaches are most commonly employed to estimate the kinetic 

parameters. 

Nonlinear least-squares (NLS) optimization stands as the reference technique for the estimation of the 

kinetic model parameters [12-13], based on the iterative minimization of an objective function to attain 

the best fitting of the model parameters to the measured PET data. The parameter estimates obtained 

using this method are expected to have optimal statistical accuracy [12]. Unfortunately, the least-squares 

objective function for multi-compartment models with noisy data is ill-formed, leading to results that 

are critically dependent upon parameter initialization [14-15]. Moreover, NLS optimization is highly 

demanding in terms of computational resources and thus of limited feasibility in parametric imaging, 

where voxel-wise computations are required. 

Consequently, fast linear algorithms have been developed as an alternative to the nonlinear approach. 

Linear least-squares (LLS) and related generalized LLS methods involve a double integration of the 

modelling equations to obtain a linear system relating the rate parameters (or combinations thereof) to 

integrals of the tissue time-activity curve (TAC) and plasma input function [12, 16]. LLS is expected to 

provide parameter estimates that are highly correlated with those provided by NLS in a much shorter 

computation time. However, because the noise-related equation errors cannot be considered as 

independent random variables, bias may arise in parameter estimates when processing low count data 

such as voxel TACs [17]. 

The Patlak graphical method is a non-compartmental approach allowing a direct estimation of the 

metabolic rate of glucose without requiring the computation of the micro-parameters of the kinetic 

model [18]. It necessitates the computation of the slope of a transformed uptake curve that is supposed 

to exhibit a linear behaviour from about 15 minutes after tracer injection due to dominant unidirectional 

FDG transfer in steady-state conditions. The method is robust and computationally efficient [19-20] and 

has the potential to be compatible with multi-bed PET imaging [21]. However it does not allow for a 

complete description of the kinetic process, but only for an estimation of the net influx rate 𝐾𝑖. 

Previous research reported on the comparative performance of the available algorithms for kinetic 

assessment of dynamic cerebral 18F-FDG PET [12]. The authors performed a thorough evaluation of the 

available nonlinear, linear, and graphical methods, using numerical simulations and patient data. The 

study suffers however some limitations. In numerical simulations, a single set of kinetic parameters was 

employed, which did not allow to assess the correlation and concordance between parameter estimates 

and true values. The input function was assumed to be perfectly known and noiseless, which is not the 

case when exploiting an image-based vascular TAC [22-23], and the variability of input function shape 

that inherently affects clinical data was not accounted for. Further, the appropriateness of each method 



3 
 

in the particular cases of region of interest (ROI) modelling and voxel modelling was not evaluated, 

whether in numerical simulations or in patient data for which voxel-wise computations were not 

performed. Analogous evaluation of kinetic parameter estimation methods was reiterated more recently 

[24], anew based exclusively on numerical simulations using a single noiseless input function and a 

single set of reference kinetic parameters. 

In the present study, starting from realistic numerical simulations, we evaluated the pertinence of NLS, 

LLS, and Patlak derived kinetic parameter estimates in terms of bias, variance, and concordance with 

ground-truth parameter values using vascular and tissue TACs corresponding to a variety of input 

functions and a range of kinetic parameter values. Noise level in both vascular and tissue TACs was 

tuned to fit with realistic image-based data for ROI and voxel modelling. The three methods were then 

tested using actual dynamic PET data from a healthy volunteer and compared on an ROI and voxel 

basis. Using these actual data, degraded images were simulated by convolution of a single time frame 

with a shifted 3D kernel, in order to assess the impact of patient head motion. 

 

2. Methods 

2.1. Theoretical background 

Let us note 𝐶𝑝(𝑡) the time course of the arterial plasma concentration of 18F-FDG and 𝐶𝑐(𝑡) the time 

course of the measurable 18F-FDG concentration in the cerebral tissue compartment encompassing 

unmetabolized, metabolized, and vascular FDG. Let us note 𝐾1, 𝑘2, 𝑘3, and 𝑘4 the kinetic rate constants 

describing plasma-to-tissue exchange, tissue-to-plasma washout, phosphorylation, and 

dephosphorylation respectively, and 𝛽 the relative blood volume (Figure 1). 

 

Fig. 1. Standard compartmental model used for 18F-FDG kinetic modelling showing the PET measurments of plasma (Cp) and 

tissue (Cc) FDG concentrations, and the kinetic rate constants K1, k2, k3, and k4. 

 

Considering that dephosphorylation of FDG is negligible in first approximation for short (< 60 min) 

scan duration [6, 8], one can derive the following differential equation governing the temporal evolution 

of 𝐶𝑐(𝑡)[11]: 

𝑑2

𝑑𝑡2
𝐶𝑐(𝑡) = −(𝑘2 + 𝑘3)

𝑑

𝑑𝑡
𝐶𝑐(𝑡) + 𝛽 

𝑑2

𝑑𝑡2
𝐶𝑝(𝑡) + [𝛽(𝑘2 + 𝑘3) + (1 − 𝛽)𝐾1]

𝑑

𝑑𝑡
𝐶𝑝(𝑡) + 

(1 − 𝛽)𝐾1𝑘3𝐶𝑝(𝑡)                 (1) 

which closed-form solution is: 

𝐶𝑐(𝑡) = (1 − 𝛽) [
𝐾1𝑘3

𝑘2+𝑘3
∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0
 +   

𝐾1𝑘2

𝑘2+𝑘3
∫ 𝐶𝑝(𝜏)𝑒

−(𝑘2+𝑘3)(𝑡−𝜏)𝑑𝜏
𝑡

0
] +  𝛽𝐶𝑝(𝑡)       (2) 
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The parameter  

𝐾𝑖 =
𝐾1𝑘3

𝑘2+𝑘3
              (3) 

is of foremost clinical relevance since it is directly related to the cerebral metabolic rate of glucose 

(CMRglu) according to 𝐶𝑀𝑅𝑔𝑙𝑢 =
𝐺𝑝 

𝐿𝐶
𝐾𝑖 with 𝐺𝑝 denoting the plasma glucose concentration and 𝐿𝐶 

the lumped constant describing the differential tissue avidity for glucose and FDG [6, 12]. As for the 

rate constant 𝐾1, it may be thought of as a reflect of cerebral blood flow (CBF) since 𝐾1 = 𝐸. 𝐶𝐵𝐹 with 

𝐸 denoting the extraction fraction of FDG. As FDG is not a perfect perfusion tracer, this relation is not 

linear due to the possible variation of the extraction fraction with the blood flow and underlying 

pathophysiological conditions. 

Quantitative cerebral 18F-FDG PET relies on dynamic data acquisition and image reconstruction over a 

sufficient time range starting from the injection of the tracer. The method allows to obtain image-based 

decay-corrected average measures of 𝐶𝑝(𝑡) and 𝐶𝑐(𝑡) on appropriately sampled time intervals of 

duration Δ𝑛centred on 𝑡𝑛 (𝑛 = 1…N): 

𝐶𝑝̅̅ ̅(𝑡𝑛) =
∫ 𝐶𝑝(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
  ;  𝐶𝑐̅̅ ̅(𝑡𝑛) =

∫ 𝐶𝑐(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
         (4) 

where 𝐶𝑐̅̅ ̅(𝑡𝑛) may refer to either global, regional, or local (voxel-wise) tissue concentration. 

2.1.1. Nonlinear least-squares 

Based on the image-based measures, equation (2) may be rewritten as: 

𝐶𝑐̅̅ ̅(𝑡𝑛) = (1 − 𝛽)(
𝐾1𝑘3

𝑘2+𝑘3
[𝐶𝑝̅̅ ̅ ∗ 1](𝑡𝑛) +  

𝐾1𝑘2

𝑘2+𝑘3
[𝐶𝑝̅̅ ̅ ∗ 𝑒

−(𝑘2+𝑘3)𝑡](𝑡𝑛)) +  𝛽𝐶𝑝̅̅ ̅(𝑡𝑛)           (5) 

where numerical convolution over the discrete sampling grid was defined as: 

[𝐶̅ ∗ 𝑓(𝑡)](𝑡𝑛) = ∑ Δ𝑖 𝐶̅(𝑡𝑖) 𝑓(𝑡𝑛 − 𝑡𝑖)
𝑖=𝑛−1
𝑖=1 +

Δ𝑛

2
𝐶̅(𝑡𝑛) 𝑓 (

Δ𝑛

4
)           (6) 

Equation (5) is a set of N nonlinear equations in the set of parameters {𝐾1, 𝑘2, 𝑘3, 𝛽}. Solving it in the 

sense of the least squares amounts to finding {𝐾1, 𝑘2, 𝑘3, 𝛽} that minimize the L2 norm of the difference 

between both sides of the equation over the N time points.  

In the present study, NLS optimization was performed by means of the Levenberg-Marquardt algorithm 

[25] using the “MPfit” C subroutine library provided by the University of Wisconsin-Madison 

(https://www.physics.wisc.edu/~craigm/idl/cmpfit.html). 

2.1.2 Linear least-squares 

Integrating twice equation (1) with initial conditions 
𝑑

𝑑𝑡
𝐶𝑐(0) =

𝑑

𝑑𝑡
𝐶𝑝(0) = 𝐶𝑐(0) = 𝐶𝑝(0) = 0 yields: 

𝐶𝑐(𝑡) = −(𝑘2 + 𝑘3)∫𝐶𝑐(𝜏)𝑑𝜏

𝑡

0

+ 𝛽 𝐶𝑝(𝑡) + [𝛽(𝑘2 + 𝑘3) + (1 − 𝛽)𝐾1]∫𝐶𝑝(𝜏)𝑑𝜏

𝑡

0

+  

(1 − 𝛽)𝐾1𝑘3∬ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0
                   (7) 

which can be rewritten based on the image-based measures as: 
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𝐶𝑐̅̅ ̅(𝑡𝑛) = 𝑝1[𝐶𝑐̅̅ ̅ ∗ 1](𝑡𝑛) + 𝑝2 𝐶𝑝̅̅ ̅(𝑡𝑛) + 𝑝3[𝐶𝑝̅̅ ̅ ∗ 1](𝑡𝑛) + 𝑝4 [[𝐶𝑝̅̅ ̅ ∗ 1] ∗ 1] (𝑡𝑛)           (8) 

Writing (8) for a sufficient number of values of 𝑡 allows to build an over-determined linear system that 

can be expressed in matrix form: 

𝐀𝒑 = 𝒃    

with 

𝐀 = (

[𝐶𝑐̅̅ ̅ ∗ 1](𝑡1) 𝐶𝑝̅̅ ̅(𝑡1)

…
[𝐶𝑐̅̅ ̅ ∗ 1](𝑡N) 𝐶𝑝̅̅ ̅(𝑡N)

[𝐶𝑝̅̅ ̅ ∗ 1](𝑡1) [[𝐶𝑝̅̅ ̅ ∗ 1] ∗ 1] (𝑡1)

[𝐶𝑝̅̅ ̅ ∗ 1](𝑡N) [[𝐶𝑝̅̅ ̅ ∗ 1] ∗ 1] (𝑡N)

) 

𝒑 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) 
T  

𝒃 = (𝐶𝑐̅̅ ̅(𝑡1), … , 𝐶𝑐̅̅ ̅(𝑡N)) 
T                (9) 

and which solution in the sense of the least squares is: 

𝒑 = (𝐀T𝐀)
−1
𝐀T𝒃           (10) 

The kinetic parameters can then be recovered using: 

{
 
 

 
 𝐾1 =

𝑝1𝑝2+𝑝3

1−𝑝2
             

𝑘2 = −𝑝1 −
𝑝4

𝑝1𝑝2+𝑝3

𝑘3 =
𝑝4

𝑝1𝑝2+𝑝3
             

𝛽 = 𝑝2                        

           (11) 

2.1.3. Patlak graphical method 

For sufficiently large values of 𝑡, one can assume that steady-state conditions are reached (i.e., plasma 

and unmetabolized FDG have reached equilibrium) and that 𝑒−(𝑘2+𝑘3)𝑡 is negligible. In this case, and 

further hypothesizing that 𝛽~0, equation (2) may be simplified to [26]: 

𝐶𝑐(𝑡) =
𝐾1𝑘3

𝑘2+𝑘3
∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0
+ 

𝐾1𝑘2
(𝑘2+𝑘3)

2 𝐶𝑝(𝑡)        (12) 

Dividing through by 𝐶𝑝(𝑡) produces the Patlak graphical plot [18]: 

𝐶𝑐(𝑡)

𝐶𝑝(𝑡)
= 𝐾𝑖

∫ 𝐶𝑝(𝜏)𝑑𝜏
𝑡

0

𝐶𝑝(𝑡)
+ 

𝐾1𝑘2
(𝑘2+𝑘3)

2          (13) 

Writing (13) for a sufficient number of values of 𝑡 using image-based measures allows to estimate the 

slope of the Patlak plot 𝐾𝑖 using linear regression. Contrary to linear and nonlinear least-squares, the 

micro-parameters 𝐾1, 𝑘2, and 𝑘3 cannot be estimated using Patlak method. 

2.2. Numerical simulations 

Numerical simulations were run using vascular input functions expressed as the sum of a gamma variate 

modelling the peak and two decreasing exponentials modelling recirculation [12, 24, 27, 28]: 

𝐶𝑝(𝑡) =  [𝐴1(𝑡 − 𝑡0)
𝛼 − 𝐴2 − 𝐴3]𝑒

−𝜆1(𝑡−𝑡0) + 𝐴2𝑒
−𝜆2(𝑡−𝑡0) + 𝐴3𝑒

−𝜆3(𝑡−𝑡0)    (14) 
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with the shape parameters randomly generated (uniform distribution) in the range 𝐴1 ∈ [600 − 1000], 

𝛼 ∈ [0.8 − 1.2], 𝜆1 ∈ [3 − 5], 𝐴2 ∈ [10 − 30], 𝜆2 ∈ [0.01 − 0.02], 𝐴3 ∈ [10 − 30], 𝜆3 ∈ [0.1 − 0.2], 

and 𝑡0 set to 1 min [28].Values of 𝐶𝑝(𝑡) were computed on a fine time grid with a constant sampling 

step of 500 ms. 

Tissue uptake 𝐶𝑐(𝑡) was then numerically computed using equation (2) with randomly generated values 

(uniform distribution) of the kinetic parameters in the range [2, 10, 29-31] 𝐾𝑖 ∈ [0.02 − 0.05], 𝐾1 ∈

[0.07 − 0.13], 𝑘2 ∈ [0.06 − 0.20], and 𝛽 ∈ [1%− 5%], and 𝑘3 constrained by {𝑘3 =
𝑘2 𝐾𝑖

𝐾1−𝐾𝑖
;  𝑘3 ≤

0.15}. 

Discrete image-based measures of vascular and tissue TACs were simulated using equation (4) and the 

following sampling scheme corresponding to a total 40 minute scan duration: 

Δ𝑛 = {12 × 10𝑠 ; 6 × 30𝑠; 5 × 60𝑠; 6 × 300𝑠}        (15) 

In addition to the ideal TACs derived from equation (4), realistic noisy TACs were produced using a 

pseudo-random number generator following [12, 24, 32]: 

{
  
 

  
 
𝐶𝑝̅̅ ̅(𝑡𝑛) ~ 𝐺 (

∫ 𝐶𝑝(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
 , 𝜂 √

∫ 𝐶𝑝(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
 )

𝐶𝑐̅̅ ̅(𝑡𝑛) ~ 𝐺 (
∫ 𝐶𝑐(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
 , 𝜂 √

∫ 𝐶𝑐(𝑡)
𝑡𝑛+Δ𝑛/2

𝑡𝑛−Δ𝑛/2
𝑑𝑡

Δ𝑛
)   

       (16) 

with 𝐺(𝜇, 𝜎) the Gaussian distribution of mean 𝜇 and standard deviation 𝜎. 

The parameter 𝜂 was empirically determined so as to comply with the observed noise levels in actual 

dynamic PET data acquired at our institution, and to achieve similar goodness of fit in terms of model 

root-mean-square error (RMSE). It was set to 1.6 for the vascular TAC, while it was set either to 0.6 or 

2.8 for the tissue TAC so as to emulate TACs describing large cortical ROIs or single voxels 

respectively. For illustration purposes, Figure 2 shows representative exact and sampled vascular and 

tissue TACs. 

For each noise level (ideal TACs, noisy vascular TAC with ROI tissue TAC, noisy vascular TAC with 

voxel tissue TAC), 1000 simulations were conducted, each simulation corresponding to a randomly 

generated set of input function shape parameters and kinetic constants. For NLS and LLS, the goodness 

of fit was quantified using the relative RMSE between the simulated tissue TAC and the kinetic fit 

provided by the method. The quality of the kinetic constant estimations (𝐾1, 𝑘2, 𝑘3, and 𝐾𝑖) was assessed 

through their relative bias and variance, and through their correlation (Pearson’s coefficient) and 

concordance (Lin’s coefficient) with the true values. 

Given a set of pairs {𝑥𝑖; �̅�𝑖} with 𝑥𝑖 denoting the parameter estimates, �̅�𝑖 the true parameter values, and 

𝐸[∙] the statistical expected value. The relative bias 𝑏, mean square relative error 𝜀, and relative standard 

deviation 𝜎 were computed as: 

𝑏 = 𝐸 [
𝑥𝑖−�̅�𝑖

�̅�𝑖
]             

𝜀 = √𝐸 [(
𝑥𝑖−�̅�𝑖

�̅�𝑖
)
2
]            
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𝜎 = √𝜀2 − 𝑏²            (17) 

 

Fig. 2. Representative exact (plain line) and sampled (square markers) vascular and tissue time-activity curves (TAC) used for 

numerical simulations. Concentration in arbitrary units. Parameters were set at their median value (input function: A1=400; 

λ1=4; A2=10; λ2=0.15; A3=10; λ3=0.015; α =1; tissue: K1=0.10; k2=0.13; k3=0.07; Ki=0.035; β =3%). 

 

Using NLS and LLS, parameter estimates were constrained within the following bounds that were 

chosen wide enough to encompass the documented parameter values in grey and white matter [2, 10, 

29-31]: 0 ≤ 𝐾1 ≤ 0.25, 0 ≤ 𝑘2 ≤ 0.30, 0 ≤ 𝑘3 ≤ 0.20, and 0% ≤ 𝛽 ≤ 10%. Regarding NLS, the 

Levenberg-Marquardt algorithm was initialized using the median values of the randomly generated 

kinetic parameters, so as to minimize the computation time and avoid inducing artefactual algorithm 

failure due to inappropriate initialization. As for Patlak method, the evaluation of the linear regression 

slope was performed based either on the 4 last time points (2540 min) or 6 last time points (1540 

min). 

2.3. Actual dynamic PET data 

A dynamic cerebral PET study was realized in a healthy 27 year-old male volunteer after a fasting period 

of 8 hours. The examinations was performed using a time-of-flight Siemens Biograph mCT Flow 

scanner [33] following IV injection of 2.5 MBq/Kg of 18F-FDG for a total duration of 40 minutes. 

Dynamic frames corresponding to the time sampling described in equation (15) were reconstructed using 

3D OSEM (21 subsets and 2 iterations, including PSF correction) followed by a 5mm Gaussian post-

filtering. 

The last time frame (35-40 minutes) was spatially normalized to the standard Montreal Neurological 

Institute (MNI) space using SPM12 (Wellcome Trust Centre, London, UK). Preceding frames were 

normalized using the same transformation. Resulting PET data were sampled on a 135155128 grid 
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with cubic voxels of 1.51.51.5 mm3. PET image voxels were labeled according to the maximum 

probability tissue atlas derived from the “MICCAI 2012 grand challenge and workshop on multi-atlas 

labeling" and provided by Neuromorphometrics, Inc. (neuromorphometrics.com) under academic 

subscription, allowing to define the following cortical ROIs: frontal, temporal, parietal, occipital, insula, 

cingulum, and precuneus. 

A 333 voxel vascular ROI was placed on each internal carotid artery in its petrous portion. The 

vascular input function was computed by extracting the TACs inside these two ROIs, averaging them, 

and correcting for partial volume effect and spillover using a recovery coefficient of 40%1. Vascular 

ROI placement was automated so as to maximize the TAC peak. 

Kinetic parameters (𝐾1, 𝑘2, 𝑘3, and/or 𝐾𝑖) were estimated in each cortical ROI and on a voxel basis 

using the 3 aforementioned algorithms. Using NLS and LLS, parameter estimates were constrained 

within the bounds specified in the previous section. Patlak plot linear regression was performed using 

the 6 last time points (1540 min). Voxel 𝐾1and 𝐾𝑖 estimates were compared between methods using 

Pearson’s correlation and Lin’s concordance. 

In order to assess algorithm sensitivity to patient motion, the same computations were renewed after 

having numerically altered one time frame in order to simulate head motion. Ten sec frames 7 to 12 

(60120 sec) were used to simulate early motion during tracer first pass, and 5 min frames 24 to 29 

(1040 min) were used to simulate late motion during cerebral uptake (see Figure 3). Image offset and 

blurring resulting from head motion was simulated by convolving the considered frame with a shifted 

3D kernel centred (in mm) on (Δ𝑥, Δ𝑦, Δ𝑧) ∈ {−1.5, 0, 1.5} 3, resulting in 162 (6 time frames  27 kernel 

positions) early and 162 late motion simulations. 

The kernel was defined on a 333 voxel grid as: 

𝜅(𝑥, 𝑦, 𝑧) =
1

1+𝛾√𝑥2+𝑦2+𝑧²
           (17) 

The weighting coefficient 𝛾 was set to 1 when simulating early motion and 2 when simulating late 

motion (these values were set empirically in order to induce a relative variability of about 3% in whole-

cortex NLS 𝐾𝑖 estimates). 

When assessing voxel-wise parameter estimates, due to computation burden considerations, motion 

simulations were restricted to (Δ𝑥, Δ𝑦, Δ𝑧) ∈ {(±1.5,0,0); (0, ±1.5,0); (0,0,±1.5)}, resulting in 36 (6 

time frames  6 kernel positions) early and 36 late motion simulations. 

Robustness of regional parameter estimates (𝐾1 and 𝐾𝑖) was assessed through their relative bias and 

standard deviation with respect to motion-less parameter value. Robustness of voxel parametric 𝐾1 and 

𝐾𝑖 maps was evaluated by computing for each motion simulation the normalized L2 norm of the 

difference between the parametric map in motion condition and the reference map without motion 

(normalization was performed with respect to average map value) and by comparing the distribution of 

difference map L2 norm between algorithms using Student’s t-test. 

                                                           
1 The recovery coefficient was computed numerically based on the geometrical assumption of a cylindrical carotid artery of 5 

mm diameter [34] and a spatial resolution of 6.25 mm (3.8 mm intrinsic resolution and 5 mm post-smoothing). 
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Fig. 3. Vascular (top) and whole cortex tissue (bottom) TACs from actual dynamic PET data showing the 6 early and 6 late 

time frames in which patient head motion was simulated. Note that the abscissa are labelled according to frame number. The 

small tags indicate (in seconds) the centre of each time interval over which the TACs have been measured. 

 

3. Results 

3.1. Numerical simulations 

Table 1 summarizes the results of the three methods in terms of goodness of fit and quality of kinetic 

parameter estimates for each of the three noise levels.  

Regarding 𝐾1, NLS and LLS provided very low bias (02%) estimates regardless of the noise level. 

Concordance with true 𝐾1 values was almost perfect using ideal and ROI TACs (Lin’s coefficient above 

0.95), whereas it substantially decreased at voxel noise (Lin’s coefficient  0.650.70). Besides, NLS 

and LLS 𝐾1 estimates had very similar characteristics across the simulated noise range. 

Regarding 𝐾𝑖, NLS and LLS estimates were of identical quality and highly concordant with true values 

in case of ideal and ROI TACs (Lin’s coefficient  1). Using voxel TACs, NLS and LLS bias and 

variance tended to substantially increase, leading to moderate concordance with true values (Lin’s 

coefficient  0.700.80). On the contrary, Patlak estimates (6 points) showed minimal bias below 2% 



10 
 

regardless of the noise level (vs <1% for ideal and ROI TACs and 47% for voxel TACs using least-

squares methods). Patlak estimates exhibited a slowly growing variance around 79% (vs <1%, 5%, 

and 20% for ideal, ROI, and voxel TACs respectively, using least-squares methods), which allowed to 

maintain high concordance with true values even using voxel TACs (Lin  0.95). 

Figure 4 shows the distribution of the relative error in 𝐾1 (left) and 𝐾𝑖 (right) estimates according to true 

parameter values. Distributions were quite identical using NLS and LLS, with a dispersion that 

substantially increased when passing from ROI noise to voxel noise. The slowly growing dispersion of 

Patlak 𝐾𝑖 estimates with noise level that was evidenced in Table 1 is clearly apparent in the Figure. 

3.2. Actual dynamic PET data 

Figure 5 shows the histograms of regional 𝐾1 (A) and 𝐾𝑖 (B) estimates. Mean model RMSE over the 14 

cortical ROIs was 3.3% for NLS and 3.4% for LLS. Mean relative difference between LLS and NLS 

was -1.7% for 𝐾1 and -1.5% for 𝐾𝑖. Mean 𝐾𝑖 relative difference was -1.8% and -0.4% between Patlak 

and NLS, and Patlak and LLS respectively. 

Figure 6 shows the scatter plots of the kinetic parameters computed on a voxel basis inside the cortical 

area, the 14 cortical ROIs gathering a total of 241,465 voxels. Correlation was excellent between LLS 

and NLS 𝐾1 estimates (subplots A; Pearson’s r = 0.95) and 𝐾𝑖 estimates (subplots B; Pearson’s r = 0.97), 

and between Patlak and NLS 𝐾𝑖 estimates (subplots C; Pearson’s r = 0.95). Mean model RMSE over 

the cortical voxels was 15.4% for NLS and 16.1% for LLS. Figure 7 shows representative axial slices 

of 𝐾1 (top) and 𝐾𝑖 (bottom) voxel parametric maps obtained using the three tested methods. 

Figure 8 shows the relative bias ± standard deviation of regional 𝐾1 and 𝐾𝑖 estimates obtained using the 

three tested algorithms based on altered PET data with simulated early (top) and late (bottom) head 

motion. Early/late bias ± standard deviation for whole-cortex estimates was 2.8±4.6%/0.1±1.9% and 

1.9±5.7%/-0.2±2.7% for NLS and LLS 𝐾1 estimates respectively, and 0.5±3.1%/1.6±3.0%, 

0.4±3.1%/1.5±3.1%, and -0.3±3.2%/1.5±2.9% regarding NLS, LLS, and Patlak 𝐾𝑖 estimates 

respectively. 

Figure 9 shows the distribution of the difference map L2 norm in condition of early (top) and late 

(bottom) head motion. In late motion simulations, LLS 𝐾1 and 𝐾𝑖 estimates were significantly more 

prone to variation than NLS estimates. Patlak 𝐾𝑖 estimates were significantly more robust than NLS 

estimates in both early and late motion simulations. 

Table 2 provides indicative computation times for the three studied methods. There was an approximate 

20-fold increase in computation burden between Patlak and LLS, and a 250-fold increase between LLS 

and NLS. 
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Table 1 

Performance of nonlinear least-squares (NLS), linear least-squares (LLS), and Patlak graphical method in numerical simulations. For each noise level (ideal, ROI, and voxel, see text for details), 

each algorithm was run 1000 times using randomly generated input functions and tissue parameters (see text for details). SD: standard deviation. Pearson: Pearson’s correlation. Lin: Lin’s 

concordance. Patlak (4) and (6) refer to the number of time points used to compute the Patlak plot regression. 

 

 

Table 2 

Indicative computation times using a 22.40 GHz processor for nonlinear least-squares (NLS), linear least-squares (LLS), and Patlak graphical method. 

  

One run 
Actual PET data 

(250,000 cortical voxels) 

NLS 2 ms 8 min 

LLS 8 s 2 s 

Patlak 0.4 s 100 ms 

 

 

 Mean model 𝐾1 𝑘2 𝑘3 𝐾𝑖  

 RMSE Bias SD Pearson Lin Bias SD Pearson Lin Bias SD Pearson Lin Bias SD Pearson Lin 

Ideal                  

NLS 0.3% -0.2% 0.3% 1 1 -1.5% 0.9% 1 1 -0.3% 1.0% 1 1 0.6% 0.5% 1 1 

LLS 0.3% 0.1% 0.1% 1 1 -0.2% 0.6% 1 1 -0.5% 0.7% 1 1 -0.1% 0.3% 1 1 

Patlak (4)              -4.0% 3.4% 0.99 0.98 

Patlak (6)              -1.4% 6.7% 0.97 0.97 

Noisy (ROI)                  

NLS 3.6% 0.0% 5.1% 0.96 0.96 -0.9% 14.4% 0.92 0.92 -0.7% 12.5% 0.97 0.97 0.1% 4.5% 0.99 0.99 

LLS 3.7% 0.1% 4.9% 0.96 0.96 -0.6% 13.2% 0.91 0.90 -1.7% 11.4% 0.96 0.96 -0.7% 4.4% 0.99 0.99 

Patlak (4)              -3.7% 5.8% 0.98 0.97 

Patlak (6)              -0.9% 7.2% 0.97 0.97 

Noisy (voxel)                  

NLS 16.1% 1.3% 16.6% 0.70 0.66 6.7% 55.7% 0.55 0.46 -0.8% 45.1% 0.69 0.66 -4.1% 19.7% 0.81 0.78 

LLS 16.4% -2.1% 16.5% 0.72 0.67 -7.3% 41.8% 0.49 0.41 -12.2% 37.9% 0.65 0.62 -7.3% 22.0% 0.74 0.69 

Patlak (4)              -3.9% 15.1% 0.85 0.84 

Patlak (6)              -1.5% 9.5% 0.94 0.94 
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Fig. 4. Scatter plots of the relative error in 𝐾1 (A) and 𝐾𝑖 (B) estimates obtained using nonlinear least-squares (NLS), linear least-squares (LLS), and Patlak graphical method (6 time points) in 

numerical simulations. For each noise level (ideal, ROI, and voxel, see text for details), each algorithm was run 1000 times using randomly generated input functions and tissue parameters (see 
text for details). Mind that the ordinate scale is variable. 
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Fig. 5. Regional cortical 𝐾1 (top) and 𝐾𝑖 (bottom) values obtained using nonlinear least-squares (NLS), linear least-squares 

(LLS), and Patlak graphical method based on actual dynamic PET data. Each cortical ROI is divided into left then right, except 

the cingular cortex which is divided into anterior then posterior. 

 

 

Fig. 6. Scatter plots of cortical voxel 𝐾1 and 𝐾𝑖 values obtained using nonlinear least-squares (NLS), linear least-squares (LLS), 

and Patlak graphical method based on actual dynamic PET data. (A): LLS vs NLS 𝐾1; (B): LLS vs NLS 𝐾𝑖; (C): Patlak vs NLS 

𝐾𝑖. 
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Fig. 7. 𝐾1 (top) and 𝐾𝑖 (bottom) parametric maps obtained using nonlinear least-squares (NLS), linear least-squares (LLS), and 

Patlak graphical method based on actual dynamic PET data. 
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Fig. 8. Relative bias ± standard deviation (with respect to motion-less parameter values) in regional 𝐾1 and 𝐾𝑖 estimates 

obtained using nonlinear least-squares (NLS), linear least-squares (LLS), and Patlak graphical method based on actual dynamic 

PET data with simulated early (top) and late (bottom) head motion. Each cortical ROI is divided into left then right, except the 

cingular cortex which is divided into anterior then posterior. 

 

Fig. 9. Normalized L2 norm of the difference between the voxel parametric maps obtained with and without motion simulation. 

Boxes: median and interquartile range; whiskers: mean  standard deviation. Given p-values are with respect to NLS. 
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4. Discussion 

Accurate and robust analysis of dynamic PET data using complete kinetic modelling is essential to 

obtain reliable estimations of physiological parameters such as cerebral blood flow and cerebral 

metabolic rate of glucose. On the other hand, the high dimensionality of dynamic measurements requires 

the development of fast analysis techniques compatible with routine exploitation. 

In the present study, we deliberately chose to focus on NLS and LLS as the reference nonlinear and 

linear approaches respectively, since the added value of more elaborated optimization schemes 

(weighted least-squares, generalized least-squares, basis functions, ridge regression) remains 

controversial in the context of 18F-FDG kinetic modelling [12, 24]. Our goal was to determine to what 

extent fast algorithms such as LLS and Patlak graphical method were suitable for glucose metabolism 

assessment at the ROI and voxel level in routine clinical conditions with comparison to the reference 

NLS method. 

In numerical simulations, the range of variation of the kinetic parameters 𝐾1, 𝑘2, and 𝐾𝑖 was selected 

based on previously documented values in healthy subjects [2, 10, 29-30]. FDG dephosphorylation was 

considered negligible, which was motivated by the fact that normal values of the dephosphorylation rate 

𝑘4 are very low compared to the other kinetic constants (0.005 to 0.01/min) [6, 29]. Using short scan 

durations (less than 60 minutes), estimations of 𝑘4 are hence expected to be unreliable and of little 

relevance [8, 35], and minimal errors induced by the approximation 𝑘4=0 are expected to have a 

negligible impact on 𝐾𝑖 quantification [36]. It has however to be noted that non-negligible 𝑘4 values 

may be observed, in particular in neoplastic tissues [37]. In that particular case, a potential solution lies 

in the use of generalized Patlak model which is non-linear but sufficiently robust to be applied in clinical 

routine oncological imaging [38]. 

Our study specifically centred on the ability of the tested algorithms to provide reliable estimates of 𝐾1 

and 𝐾𝑖, since these two parameters are of clinical relevance in brain PET, the first correlating with 

cerebral perfusion and the latter quantifying glucose metabolism. Indeed, there is no consensual 

pathophysiological, let alone clinical, interpretation of variations in 𝑘2 or 𝑘3 micro-parameters. Thus, 

their estimation can be considered as less critical, compared to 𝐾1 and 𝐾𝑖, when performing kinetic 

modelling or related parametric imaging methods. 

Our actual dynamic PET data were used to simulate patient motion during acquisition and evaluate its 

impact on parameter estimation. Because of the long duration of the scanning protocol, dynamic PET 

data are expected to be affected by head motion, particularly during the last time frames due to patient 

discomfort. Motions in the millimetre range were simulated because larger image shift should be more 

easily observed in the acquired data and subsequently corrected using image registration methods. 

Although less likely in clinical setting, early head motion was also simulated owing to its potential 

incidence on input function measurement. 

The results presented in the previous section highlight that the algorithmic approach should be tailored 

to the desired modelling scale and decided according to the computing power at hand. This last 

consideration appears particularly critical insofar as the performance of the different methods seem 

rather similar while their computational burden largely differ. 

When the focus in on regional kinetic modelling in large cortical ROIs, the results indicate that NLS 

optimization provides the best parameter estimates in reasonable computation time, with negligible bias, 

minimal variance, and almost perfect concordance with true parameter values. Using actual data with 

simulated head motion, NLS 𝐾1 estimates were clearly less sensitive to transient image misregistration 

K1 Ki 



17 
 

than LLS estimates. No substantial difference was found between the three methods in terms of regional 

𝐾𝑖 estimates under both early and late motion conditions.  

𝐾1 parametric mapping requires a complete kinetic modelling and the processing of high-dimensional 

dynamic data at the voxel level. In this frame, LLS optimization may stand as a well-grounded 

alternative to NLS for the estimation of the 𝐾1 parametric map. Numerical simulations demonstrated an 

equal performance for the two methods in terms of bias, variance, and concordance with ground-truth 

parameter value. Using actual data, NLS and LLS 𝐾1 values were highly correlated (Pearson’s r = 0.95), 

yielding visually identical parametric images (Figure 7, top). However, LLS showed more sensitivity to 

head motion during the late time frames than NLS did (about 8% vs 4% relative error). This was likely 

due to the fact that, contrary to NLS, the integration scheme involved in LLS increases its sensitivity to 

data inaccuracies occurring at later time frames. NLS modelling should hence be preferred whenever 

late head motion is observed and accurate co-registration is not available or not feasible. 

When 𝐾𝑖 parametric mapping is desired, Patlak graphical method appears both as the fastest and most 

reliable method. In numerical simulations using voxel noise, it achieved the lowest bias and variance, 

and highest concordance with true 𝐾𝑖 values, while using actual data it provided 𝐾𝑖 estimates highly 

correlated with NLS estimates (Pearson’s r = 0.95). The low variance exhibited in numerical simulations 

translated visually in the parametric images (Figure 7, bottom) which appeared more suitable for 

qualitative assessment than NLS and LLS derived images. Patlak method also provided 𝐾𝑖 maps that 

were significantly less sensitive to patient motion than NLS and LLS maps, whether in early or late head 

motion simulations. This low sensitivity to data inconsistencies may be explained by the robustness of 

the linear regression over 6 late time points, and by the fact that errors in the input function peak are 

expected to have little influence on its area under the curve. Beyond the scope of the present study, 

another advantage of the Patlak method lies in its compatibility with multi-bed imaging, allowing for 

whole-body parametric imaging in clinical oncology [39]. 

 

5. Conclusions 

Based on realistic numerical simulations as well as actual patient data, the present study stresses the 

need for an appropriate algorithmic approach according to the desired parametric modelling and the data 

dimensionality. When working with low-noise low-dimension data (regional assessment), NLS stands 

as the reference method for 𝐾1 and 𝐾𝑖 estimation. When analysing high-noise high-dimension data 

(local/voxel assessment), due to computation time considerations, LLS appears as a reasonable 

alternative to NLS for 𝐾1  estimation, if a complete solution of the kinetic model is desired (for instance 

in order to estimate local 𝐾1 as a surrogate to blood flow). When the focus is on the estimation of 𝐾𝑖 as 

an indicator of glucose metabolism, Patlak graphical method achieves the lowest bias, variance, and 

sensitivity to patient motion. Its higher robustness translates into parametric images with suitable 

smoothness for visual assessment. Thus the Patlak method should be preferred over complete kinetic 

modelling for voxel-wise 𝐾𝑖 mapping. 
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