IMAGERIE SCINTIGRAPHIQUE CARDIAQUE POUR MEDECINS NUCLEAIRES

Denis MARIANO-GOULART Département de médecine nucléaire CHRU de Montpellier http:\\scinti.edu.umontpellier.fr

SCINTIGRAPHIES FREQUENTES

France, 2017: 1,5 10⁶ Scinti = 71% SPECT + 29% TEP (94% FDG)

TEP cardiaque (CHU MTP 2018): 0,3% myocarde (25 examens) + infections et inflammations

% des actes SPECT > 10% en France

41 39 37 35 33 31 29 2013
2014
2015
2016
2017

http://www.unscear.org/unscear/en/publications/2008_1.html

http://www.irsn.fr/FR/expertise/rapports_expertise/Documents:radioprotection/IRSN_INVS_Rapport_Expri_032010.pdf

PLAN DE LA PRESENTATION

Perfusion myocardique

- Tomoscintigraphie myocardique de perfusion, gated SPECT,
- Tomoscintigraphie dynamique 4D
- Viabilité en TEP FDG
- Amyloses et Sarcoïdose
- Pathologies infectieuses
- Innervation sympathique
- Fonction ventriculaire

TOMOSCINTIGRAPHIE DE PERFUSION MYOCARDIQUE

RADIOTRACEURS

CATIONS LIPOPHILES

- MIBI, TETROFOSMINE
- Diffusion passive
- \propto ddp transmembranaire
- 95% \in mitochondries
 - Muscle, Gld. Exocrines, cancers
- THALLIUM 201 (²⁰¹Tl)
 - Analogue du K (Na/K ATPase, cotransport Na/K/2Cl)

RUBIDIUM 82 (⁸²Rb)

- Analogue du K (Na/K ATPase, cotransport Na/K/2Cl)
- En cours de développement clinique (quantification ++)
- ¹⁸F-FDG : traceur d'ischémie myocardique

MYOCARDIQUE : PERFUSION FONCTION VIABILITE INNERVATION VENTRICULOGRAPHIE NOUVEAUTES

RADIOTRACEURS

Glover et al. Circulation 1995 et 1997, ACC 2003. Vanzetto et al. Circulation 1999.

PROTOCOLE 1 (ANGER) en 4h

(Dichlorhydrate de trimétazidine) 3 h Au repos 11 MBq/kg Stress mixte : 20' (30 x 40") 20' (30 x 40") 21 mCi pour 70 kg fc > 85% (220-âge) ou 0,5 MBq/kg Tl201 synchro ECG synchro ECG dipyridamole 0,56-0,75 mg/kg procubitus/decubitus procubitus/decubitus Sur 4 minutes si CI: Regadenoson 0,4 mg RPF/OSEM BTW 0,25/5 RPF/OSEM BTW 0,4/10 ou dobutamine A L'acmé du stress 3,7 MBq/kg MIBI/TF acmé stress (7 mCi pour 70 kg) ou 1,5 MBq/kg Tl201

± TNT SL ou 3x20 mg Vastarel

Dosimétrie: 7 mSv = 1 an d'exposition naturelle à Clermont Ferrand (260 mSv/an à Ramsar)

PROTOCOLE 2 (CZT) en 30'

Repos ± TNT/Vastarel

3,7 MBq/kg MIBI/TF 7 mCi pour 70 kg au repos

3'-5' repos synchro ECG procubitus/decubitus

RPF/OSEM BTW 0,4/5

Stress mixte : fc > 85% (220-âge) dipyridamole 0,56-0,75 mg/kg Sur 4 minutes si CI: Regadenoson 0,4 mg ou dobutamine

11 MBq/kg MIBI/TF acmé stress (21 mCi pour 70 kg)

3'-5' repos synchro ECG procubitus/decubitus

RPF/OSEM BTW 0,4/7

PARTICULARITES EN CZT CARDIO

- Sensibilité x 5-10:
 - protocoles écourtés, exposition,
 - TEMP dynamique...
- Résolution en énergie : ¹²³ I / ⁹⁹Tc
- Résolution spatiale/2: intérêt clinque ?

- Bougé du patient non détectable
 - Artefacts à contrôler (10%)
 - De bougé, respiratoire
 - De centrage, activité hors du FOV
- Résolution spatiale/2: QGS ?

ARTEFACTS EN CZT CARDIO

Hindhorf, J Nucl Cardiol 2014;21 – Kennedy Med Biol Eng Comput 2017;55

ARTEFACTS DE MOUVEMENT VARIANTES

 PROME
 April
 Short Axis
 Basi

 PART
 PART
 PART
 PART
 PART

 PART
 PART
 PART</td

CAS CLINIQUES

(+

 Image: Provide state st

 STRESS_FBP(G)
 REST_FBP(G)

 Date: 2009/12/15 11:08
 Date: 2009/12/15 13:66

 SA Pixel Size: 6.65mm
 SA Pixel Size: 6.65mm

 SA Thickness: 6.65mm
 SA Thickness: 6.65mm

 Recon: FBP/Bw/0.25/5
 Recon: FBP/Bw/0.4/10

CAS CLINIQUE

REST_FBP(G) Ungated

<----- Inferior Horizontal Axis A

Anterior ----->

CAS CLINIQUE

Stress + CA par CT

Cq: FP en inférieur Mauvaise spécificité de la TSM jusque aux années 2000.

D'après G Vanzetto (CHU Grneobles). Adapté de Underwood et al. Eur J Nucl Med Mol Imaging 2004

IMPLICATION CLINIQUE

SYNCHRONISATION

SYNCHRONISATION ECG

Eur J Nucl Med Mol Imaging (2007) 34:1107–1122 DOI 10.1007/s00259-007-0405-6

REVIEW ARTICLE

The expanding role of left ventricular functional assessment using gated myocardial perfusion SPECT: the supporting actor is stealing the scene

Roberto Sciagrà

Effet de volume partiel

Segmentation des données scintigraphiques
 Identifier les artefacts d'atténuation
 Evaluer la sévérité d'une ischémie

- Evaluer la sevence d'une ischernik
 Evaluer le pronostic CV à 3 ans
- Se ≈ 90%
 Sp ≈ 85%

Approche intuitive, aspect qualitatif :

Le pixel image s(i) est la moyenne pondérée par h(i) du pixel objet p(i) et de ses voisins (CONVOLUTION)

COEFFICIENT DE RECOUVREMENT

Le signal maximum (au centre de l'objet) est atténué par CR:

 Un épaississement normal prouve :
 que le myocarde se contracte donc, n'est pas nécrosé, ni sidéré, ni hibernant
 ES = Echocardiographie sous dobutamine

JR Galt et al. IEEE Trans Med Imaging 1990; 9:144-150

CC: → 54 ANS HIV ASYMPTOMATIQUE

J Am Coll Cardiol 2002;39:991-8 - Clin Nucl Med 2009;34(10) :731-3

CC: x³ 54 ANS HIV ASYMPTOMATIQUE

EFFORTREPOSES(apico-inf) = 11-17%ES(apico-inf) = 32-42 %Sidération d'effort réversible : sténose > 80%

CAS CLINIQUE

Thickening (%)

CAS CLINIQUE

Benkiran et al. Nucl Med Com 2015; 36(1):69-77

CA OU EPAISSISSEMENT ?

Bateman 2005: N=116 CA Mowatt: N=3032 (méta)		BMI < 30	BMI	> 30	Tous patients	ECG d'effort	
Concibilité (0/.)	NC	90	{	37	88	6.4	
Sensibilité (%)	CA	90	82		86	04	
Spécificité (%)	NC	64	4	41	50	77	
	CA	82	76		79		
Benkiran 2015 : N=70 (suivi 2 ans, 13 CA)			TSM	+ E\$	6 + TDM		
Sensibilité %			77	69	67		
Spécificité %			60	98	81		
Exactitude %			63	93	79		

versus sténoses > 50 %

JM Links J Nucl Cardiol 2002;9:183-187-T.M. Bateman.Semin Nucl Med 2005;35:37-51-G. Mowatt. Health Technology Assessment 2004; 8(30):1-222; M. Benkiran Nucl Med Comm 2015; 36(1):69-77

CAS CLINIQUE

Examen normal (AC, autres explorations inutiles)

SPIRALE ISCHEMIQUE

	DIAGNOSTIC	FONCTION SYST EPAISSISSEMENT	VIABILITE	REPOS	STRESS			
	Normal	Ν	N HYPO	N HYPO	N HYPO			
	REMODELAGE	HYPO	± N	± N	± N			
	ISCHEMIE	N	(N)	N	HYPO			
	SIDERATION	HYPO stress	(± N)	± N	HYPO			
\Rightarrow TEP	HIBERNATION	HYPO	Redistribution Tl ou hyper FDG	HYPO	HYPO			
	NECROSE	HYPO	HYPO	HYPO	HYPO			
	+ Ftude possible de la réserve contractile							

(\uparrow fonction sous 5 µg/kg/min de dobutamine)

J Narula et al. JACC 2000; 36

Epaississement systolique

T. Sharir J Nucl cardiol 2018;25:754-7; Emmet JACC 2002;39:991-8; S Karimi-Ashtiani J Nucl Med 2012;53-1392-00; Wei Yang J Nucl Cardiol 2018;25:742-53

SEGMENTATION ENDO/EPICARDE

Reproductibilité

Comparaisons effort - repos avec BDD normale

pronostique

 \rightarrow fonction

INF

INF

Reversibility Perfusion (%)

ANT

STRESS_FBPSC		
52ml		
103cm ²		
17cm ²		
17%		
MYOCARDE 99mTc		
REST_FBPSC		
57ml		
104cm ²		
1cm ²		

SSS 11

Study

APE)

APE>

SRS 0

SDS 11

MYOCARDE 99mTc

SUBJECTIF / 20 SEGMENTS

QPS[®] : binarisation (données non synchronisées)

A Ezekiel et al. in Computers in cardiology. NY, IEEE Computer society. 1991:237-240 G. Germano et al. JNM 1995;36:1107-1114 et 1995;36:2138-2147

QPS[®] : activité extra-cardiaque

A Ezekiel et al. in Computers in cardiology. NY, IEEE Computer society. 1991:237-240 G. Germano et al. JNM 1995;36:1107-1114 et 1995;36:2138-2147

QPS[®] : en cas d'échec...

A Ezekiel et al. in Computers in cardiology. NY, IEEE Computer society. 1991:237-240 G. Germano et al. JNM 1995;36:1107-1114 et 1995;36:2138-2147

QPS[®] : en cas d'échec...

Le problème est de déterminer (par son centre et son rayon) le cercle qui passe au mieux par les maxima locaux de S(i,j) supposés appartenir au myocarde... S Transformation de Hough

D. Ballard, C. Brown. Computer vision. Englewood Cliffs, NJ: Prentice-Hall; 1982. http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm

On cherche le centre (a₀,b₀) d'un cercle de rayon r passant par divers points M, M',M "...

Les centres possibles sont sur un cercle de rayon r centré en M: on met ces points à 1

: transformation de Hough b M Μ 3 b_0 b_0 M a_0 a a_0 X

On recommence avec un 3° point M" qui identifie le centre cherché

En pratique, on teste plusieurs rayons possibles et on choisit celui qui incrémente le plus un des points

- ① Détection du cercle $C \supset VG$
 - activité sur le cercle >> centre
- ② Majoration du rayon de 2 pixels
- \bigcirc Extension cylindrique du cercle *C*
- ④ Pixels extérieurs au cylindre $\leftarrow 0$
- S ? Maximum C_{max}
- [ⓑ] Seuillage à $C_{max}/2$ ⇒ masque VG

Masque VG

QPS[®] : surface myocardique médiane

- G : Centre de Gravité du masque binaire
 Données = Volume SPECT ∩ Masque
- ③ Extraction de 18x36 profils d'activité
- ④ Surface médio VG = maxima des profils M
- (5) Fit ellipse $3D \rightarrow axe VG \rightarrow proj.(G)/axe \rightarrow G$

JC Cauvin et al. Eur J Nucl med 1992;19:1032-1037

G. Germano et al. JNM 1995;36:1107-14 ; 1995;36:2138-47 et JNM 2000;41:712-19

QPS[®] : surface myocardique médiane

(cylindrical-spherical)

Ellipsoidal sampling

Surface médio-VG (⊃ lacunes de perfusion) + fit ellipsoïde 3D

G. Germano et al. JNM 1995;36:1107-14 ; 1995;36:2138-47 et JNM 2000;41:712-19

QPS[®]: gestion des lacunes de perfusion

- ① Échantillonnage 24 x 32 de l'ellipsoïde 3D
- ② Normales à chaque échantillon
- ③ Profils des acquisitions brutes sur ces normales
- ④ Convolution avec une réponse std. de détecteur
- ④ Extraction des maxima locaux sur chaque profil
- ⑤ Sélection d'un maximum local par profil→SMVG'

X 32

Solution Sector Minimum de C(x,y) = C1(x,y) + C2(x,y)

SMVG'//éllipsoïde

SMVG' proche de SMVG

6 Fit d'un dernier ellipsoïde = grille

X 24

SMVG

G. Germano et al. JNM 1995;36:1107-14

: « endocarde » et « épicarde » M(t)SMVG(t) SMVG(t) **Profil(t)** σe σί 65% σί 65% σe 40 mm EPI(t) ENDO(t)

① M(t) < $C_m/2 \Rightarrow$ minimiser l'écart aux 4 σ voisins ② Affiner/ Volume myocardique = EPI-ENDO = cste(t)

G. Germano et al. JNM 1995;36:1107-14

QPS®: On dispose donc :

• d'un ellipsoïde 3D moyen

• = grille d'échantillonnage surfacique

• pour tout instant :

- de la surface médio-VG,
- des surfaces endocardique et épicardique
- de l'activité totale sommée entre endocarde et épicarde (le long d'une normale à la surface médio-VG)
- donc d'une quantification de l'activité myocardique

G. Germano et al. JNM 2000;41:712-19

SSS 11	SRS 0	SDS	11
Study	MYOCAF	DE 99r	nTc
Dataset	STRESS	_FBPS(0
Date			
Volume	52ml		
Area	103cm ²		
Defect	17cm ²		
Extent	17%		
Study	MYOCAR	DE 99r	nTc
Dataset	REST_FE	BPSC	
Date			
Volume	57ml		
Area	104cm ²		
Defect	1cm ²		
Extent	1%		
•		A	
ST CONTRACTOR		Re Contraction of the second s	
		alori	
AULO 0 - C	and Accet	u keje	ect (

SSS/SRS/SDS reproductible \Rightarrow diagnostic \Rightarrow pronostic

Dilatation ischémique transitoire

 $DEF = V_{stress} / V_{repos} > 1,12-1,38$ (sans synchro)

Study

.

.

-181-

.

-8

Golzar 2015

Yuan Xu 2012

Petretta 2012

Fallahi 2010

Emmett 2008

Emmett 2005

Abidov 2004

Marcasa 1990

Chouragui 1990

COMBINED

Noriyuki Kinoshita 2002

Marco Mazzenti 1996

A.Teddy Weiss 1987

- Causes :
 - ischémie sous
 - -endocardique diffuse
 - sidération de stress Chistoph Rischpler 2012
- Sp = 88 % pour

maladie coronaire diffuse Exercise

0.5 1-Specificity

0.0

1.0

SENSITIVITY (95% CI) Study SPECIFICITY (95% CI) 0.07 [0.02 - 0.20] Golzar 2015 0.90 [0.87 - 0.93] Chistoph Rischpler 2012 0.21 [0.09 - 0.39] 0.96 [0.86 - 0.99] Yuan Xu 2012 0.47 [0.33 - 0.60] 0.94 [0.92 - 0.96] 0.28 [0.17 - 0.40] Petretta 2012 0.92 [0.87 - 0.96] Fallahi 2010 0.67 [0.43 - 0.85] 0.71 [0.58 - 0.81] Emmett 2008 0.30 [0.13 - 0.53] 0.88 [0.71 - 0.96] Emmett 2005 0.33 [0.20 - 0.48] 0.93 [0.83 - 0.98] Abidov 2004 0.32 [0.26 - 0.39] 0.85 [0.77 - 0.91] Noriyuki Kinoshita 2002 0.92 [0.78 - 0.98] 0.76 [0.60 - 0.89] Marcasa 1999 0.37 [0.29 - 0.46] 0.62 [0.49 - 0.73] Marco Mazzenti 1996 0.74 [0.62 - 0.84] 0.94 [0.88 - 0.98] Chouragui 1990 0.62 [0.24 - 0.91] 0.85 [0.74 - 0.92] A.Teddy Weiss 1987 0.60 [0.41 - 0.77] 0.95 [0.86 - 0.99] COMBINED 0.44 [0.30 - 0.60] 0.88 [0.83 - 0.92] 1.0 0.5 1.0 SENSITIVITY SPECIFICITY

T Sharir J Nucl Cardiol 2018;25:738-741 - M Alama J Nucl Cardiol 2018;25:724-37

QPS[®]: Contrôle médical

XQGS 3.0	
Process Reset Manual Cual Slice Raw Surfa	ce Splash Views Results More () Score Defaults Save Movie About
Exam 📃 🗖	□ REST_SA_1 □ Δ□ 0 100 □
Label Contours ED ES Blur Smear Gate Spin 3	D Function Raw - Grid Segments - Interval 8 A Zoom 6 A Scale 1.0 A Rate 11
	ED Perfusion (%) 11 27 13 16 21 16 15 15 15 15 15 15 15 15 15 15
	Matrix 64x64 12 12 13 12 16 12 16 12 17 17 18 11 19 11 10 12 10 12 11 12 12 13 11 14 11 14 11 14 11 14 12 13 13 13 14 13 15 13 16 13 17 13 18 13 19 13 10 14 10 14 11 14 12 14 13 16 14 15 15 15 16 15 17 15 18 12 19 12 10 13 10 14 10 14 10 15 10 15 10 15 10 15 10 15 1
	-0.3 Area 149cm ² [1] Mof Ext 86%, 128cm ² [1] Mof Ext 86%, 128cm ² [1] Thk Ext 76%, 114cm ² [1] Volume (ml) / Interval 140 140 120 140 140 140 140 140 140 140 14
	-0.1 0.9 2 [ED] 8 [ES] 40 -0 -0 -0 -0 -0 -0 -0 -0 -0 -
	SEPT
	Surface Both -

$\mathsf{QPS} \to \mathsf{QGS} : \mathsf{FONCTION} \ \mathsf{SYSTOLIQUE}$

mouvement endocardique

épaississement

VTD et VTS \Rightarrow FE

Cinétique segmentaire

- Déplacement de la surface endocardique
- Épaississement systolique

Fonction ventriculaire gauche

Variation du volume endocardique

QGS[®]: Mouvement pariétal et FE

G. Germano et al. J Am Coll Cardiol 1997;30:1360-7

QGS[®] : Épaississement systolique

valeur du pixel i de la SMVG à l'instant t = comptage maximum sur le profil i à t

(C(t,i)) - C(1,i)

Max C(1, j)

% d'épaississement ex: L = $1.5 \rightarrow 50\%$

comptage maximum

en TD sur le profil i

 $(L_0(t, i)) - 1$

 $L(t, i) = \gamma(t) L_0(t, i)$

comptage maximum en TD sur toute la SMVG → « épaisseur TD maxi »

Normalisation Volume myoc. cst(t)

G. Germano et al. J Am Coll Cardiol 1997;30:1360-7

QGS[®] : validation métrologique

CD Cooke et al. JNM 1994;35 - G. Germano et al. J Am Coll Cardiol 1997;30

QGS[®] : validation métrologique

	Triple Detector: 360°	Triple Detector: 180°	Dual Detector: 180°	
Thickness				
6 mm	10.66 ± 0.43	10.59 ± 0.71	10.36 ± 0.83	canc
9 mm	10.88 ± 0.42	10.85 ± 0.66	10.61 ± 0.89	50115
12 mm	11.22 ± 0.37	11.13 ± 0.66	10.81 ± 0.82	γ(t)
Thickening L(TS,i)				
1.00 (0%)	1.00 ± 0.04	1.01 ± 0.07	1.00 ± 0.09	
1.33 (33%)	1.32 ± 0.07	1.34 ± 0.12	1.33 ± 0.15	2 + 2 %
1.50 (50%)	1.53 ± 0.08	1.52 ± 0.13	1.53 ± 0.17	
2.00 (100%)	2.02 ± 0.10	2.04 ± 0.18	2.03 ± 0.22)	
Motion MVT				
0 mm	0.01 ± 0.06	0.02 ± 0.10	0.01 ± 0.21	
3 mm	2.73 ± 0.14	2.74 ± 0.19	2.66 ± 0.44	10 + 10
6 mm	5.45 ± 0.22	5.47 ± 0.28	5.32 ± 0.67	10 - 1 70

G. Germano et al. J Am Coll Cardiol 1997;30 - Slomka et al. J Nucl Cardiol 2012

QGS[®] : validation clinique

6713 patients = 2735 femmes et 3978 hommes, suivi 35 ± 14 mois pour IDM ou mort cardiaque

T. Sharir et al. Circulation 1999;100:1035-42 et J Nucl cardiol 2006;13(4):495-506

T. Sharir et al. J Nucl cardiol 2006;13

Et avec une CZT ?

- La résolution de 6 mm réduit les EVP, donc détériore l'épaississement systolique
 - Préférer le mouvement pariétal (sauf HVG)
 - Ou filtrer Passe-Bas :
 - Exemple:
 - ANGER LMH = 12 mm (pixel=6 mm), $f_{max}=1/12$ mm⁻¹
 - CZT LMH = 6 mm (pixel=3 mm), f_{max}=1/6 mm⁻¹
 - Filtrer Passe Bas Butterworth 0,5 / 10

H Cochet et al. J Nucl Med 2013;54:556-63 - A Bailliez et al J Nucl Cardiol 2014;21-712-22- T. Sharir J Nucl cardiol 2018;25:754-7

QUANTIFICATION EN TSM

• AVANTAGES

- Reproductibilité et exactitude > analyse visuelle
- Quantification de l'ischémie: sidération de stress, Ø<80%
- Sensibilité sur les coronaropathies diffuses : DIT
- Quantification du pronostic cardiaque: ESV / FE
- Prise en compte des artefacts d'atténuation (activité/ES)
- Évaluation de petites anomalies (recherche)

CAUSES D'ERREURS

- Pas d'intégration des mesures (Épreuve de stress, A, ES, M, V, FE)
- Artefacts :
 - cinétique, atténuation, alignement, diffusé du digestif
- Base de patients normaux parfois inadaptée
- Repositionnement des limites (VG, Base) incorrecte

P. Slomka, J Nucl Cardiol 2012;19:338-46 - R Sciagrà, Eur J Nucl Med 2007;34 - MS Rosenthal. JNM 1995;36

INDICATIONS

DIAGNOSTIC & SUIVI DES CORONAROPATHIES

- Pendant, après un angor, suivi douteux.
- ATTENTION : sténose ⇒ ischémie ⇒ traitement

DEPISTAGE DES CORONAROPATHIES

- Pré-Op, cardiopathie,
- FRCV, ischémie silencieuse (DNID,VIH)

RECHERCHE DE VIABILITE MYOCARDIQUE

EVALUATION DE LA FONCTION SYSTOLIQUE VG

À des fins pronostiques seulement

RECHERCHE DE MALADIE DE SURCHARGE CARDIAQUE

Sarcoïdose cardiaque...

Am Heart J 1999;137(5):949-57 - Am J Cardiol 2002;90:827-832 - Eur Heart J 2004;25:543-550 - Diabetes Care 2004;27:1954-61 - Circulation 2005;112:I311-6 -Diabetes Métab 2004;30 - Circulation 2002;106:1883-1892 - Eur Heart J 2006;27:713-21 - JACC 2009;53(23):2201-2229

SCA & SPECT MYOCARDIQUE DE REPOS

- ECG: 40-65% N
- Troponine US : normale si ischémie sans nécrose
 Se (cTn T/I) < 40% si angor instable*
- TSM de repos à moins de 3h de la fin de la douleur :
 - Se >> Tropo 24h, ECG
 - Se = VPN = 99% , Sp = 73 % (12 études, N=4210)
 - 1450\$ d'économie moyenne par patient (8 études, N=10739)

A. Ghatak. Semin NuclMed 2013 43:71-81 – *MD Duca. J Nucl Cardiol 1999;6(6) – L Biliodeau JACC 1991; 18

SPECT DYNAMIQUE (LIST MODE)

MODELE PHARMACOCINETIQUE

JA Leppo Circ Res. 1989; 65:632-9

RESERVE CORONAIRE EN CZT

F Ben Bouallègue, et al. J Nucl Med 2015; 56:1712–1717 – D Agostini et al. Eur J Med Nucl Mol Imaging 2018; 45:1079-1090

RESERVE CORONAIRE

Cas clinique

Cas clinique

PREMIERS RESULTATS: PERFUSION

COMPLEMENTARITE CFR / FFR

- FFR : sténose épicardique unique.
- Limitations :
- sténoses étagées
- micro angiopathie (IDM récent, HTA, HVG, Diabète, HTG, tabac)
 - PVC, P°TD élevées (dysfonction diastolique) Utilisée dans 6-7% des coro

ACQUISITION DYNAMIQUE

Schindler et al. JACC Cardiovasc Imaging 2010

Klein et al. J Nucl Cardiol 2010

ANALYSE COMPARTIMENTALE

Schindler et al. JACC Cardiovasc Imaging 2010 - Klein et al. J Nucl Cardiol 2010

61 ans Diabète, HTA

Occlusion IVA Sténose 80% Cx Sténose 60% CD

Schindler et al. JACC Cardiovasc Imaging 2010

PET ou SPECT ?

Nkoulou et al J Nucl Med 2016 – Agostini et al. Eur J Nucl Med. 2018; 45:1079-1090

TEP DE PERFUSION

⁸⁷Rb, ¹³N, ¹⁵O,
¹⁸F-flurpiridaz
Analyse dynamique et
atténuation mieux gérées
Pb : traceur, coût, disponibilité

TOMOSCINTIGRAPHIE DE VIABILITE MYOCARDIQUE

VIABILITE MYOCARDIQUE

Thallium de repos et redistribution à 4 et/ou 24h

²⁰¹TI: Repos / Redistribution à 3h

VIABILITE MYOCARDIQUE

Traceur d'ischémie viable: Glu – ¹⁸F

PROTOCOLE TEP-FDG VIABILITE

VIABILITE MYOCARDIQUE

Homme, 49 ans tritronculaire Occlusions chroniques de l'artère Cx proximale, CD1, IVA2 sténose de Mg1, longue D1, lésion du tronc commun.

TSM de repos ^{99m}Tc-Tetrofosmine

TSM ¹⁸F-DG / ^{99m}Tc-Tetrofosmine

<u>TE</u>— ^{99m}TC

¹⁸**F-DG** TS

Nom	SZCZEPANSKI. JAN	
ID Pat	001399659	
Résultats	RESULTS: Résultats QGS+QPS	
Sexe	НОММЕ	
Limites	Pet	
3 X par jou	r	
LHR		
SMS 23	STS 16	
SM% 27	ST% 31	
Étude	PET^12 CardiacGated Viabilite	FDG (Ad
Ensemble	de données PET Cardiac Corrigé G	
Date	2016-06-15 11:37:11	
Statut	QC=13.50, IR=0.28 (manuel)	
Volume	214ml [7]	
DEV	218ml [8]	
SEV	150ml [3]	
VS	68ml	
EF	31%	
Mouv Ext	55%, 128cm² [7]	
Épaississ	ement Ext 48%, 110cm² [7]	
Forme	0.62 [SI ED], 0.54 [SI ES], 0.81 [Ed	c 7]
Matrice	200x200 x 75(z) x 8(t)	
Mm/Vox	2.04 x 2.04 x 3.00	
-Volume (m	I] et remplissage [ml/s] VG	
250 -	+ ~ ·	+ 250
200 -		150
150 -		- 50
100 -		-50
50		-150
50 -	\mathbb{N}	-250
0 -	1 2 3 4 5 6 7 8	, 200
PER -1	.13 DEV/s [1.6]	
PFR 1.	00 DEV/s [4.4]	
PFR2 0.	29 DEV/s [6.1]	
MFR/3 0.	67 DEV/s	
TTPF 1	B6ms	
BPM 5	2.8 (R-R=1136ms)	Mod

AUTRES INDICATIONS EN TEMP DE PERFUSION MYOCARDIQUE

Maladies de surcharge (amyloses, sarcoïdose) Vascularites Myopathies inflammatoires (TEP FDG + néo associé) Endocardites et infections vasculaires (TEP FDG)

AMYLOSES CARDIAQUES

Beaucoup de traceurs testés, peu/pas disponibles : ¹²³I-Serum Amyloid Protein, ⁹⁹Tc-Aprotinine, ¹¹¹In-antimyosine, ¹³¹I-β2–μglobuline

TEP FDG \leftrightarrow infiltrats/macrophages \rightarrow localisation d'amylose (poumon, cœur, reins, foie, ORL, os, muscles, articulations, nerfs, digestif...)

AMYLOSE CARDIAQUE :

- → Cardiomyopathie restrictive, angor, dénervation, troubles du rythme
- 4 traceurs utiles :
 - Diphosphonates \leftrightarrow infiltration amyloïde A-TTR
 - \square MIBG \leftrightarrow Dénervation \rightarrow pronostic
 - \Leftrightarrow TETROFOSMINE (TSM) \leftrightarrow Perfusion
 - Straceurs amyloïdes en évaluation

A Mekinian Amyloid 2012 – S Sachchithanantham British Med. Bull. 2013 – W Cytawa Pol J Radiol 2014 - Perugini JACC 2005 – Glaudemans Eut J Nucl Med 2009 – Rapezzi JACC Cardiovx Imag. 2011 – Antony J Nucl Med 2013

AMYLOSES TTR & MIBG précoce

W Noordzij Eur J Nucl Med 2121;39 - E Piekarski Eur J Nucl Med 2018;45

AMYLOSES & TEP

Healthy volunteers

Traceurs amyloïdes sensibles aussi sur AL

S Dorbala Eur J Nucl Med 2014;41 – Pilebro J Nucl Cardiol 2018;25

SARCOIDOSE

FDG \propto Macrophages et T activés biopsie, diagnostic, Δ ttt > 2/3

- \rightarrow médiastin, poumon (> 1/2)
- \rightarrow peau (1/3), muscles, os & moelle
- \rightarrow Foie & rate (1/10), digestif (2%),
- \rightarrow Rétro péritoine (1/4)
- \rightarrow SN (1/10)
- \rightarrow Cœur (5%)

Traceurs des SRS (Ga) en évaluation Limites : $\Delta \neq$ lymphomes / cancers

D Sobic-Saranovic Sem Nucl Med 2013 (revue) & JNM 2012

SARCOIDOSE CARDIAQUE

Clinique dans 5% des sarcoïdoses, 25% dans les autopsies Décès 13-25% (IC, tr. rythme) ♦ Inflammation → TEP (Se =89% Sp = 78%), IRM TEP/IRM + : 72/100 % chronique 92/67 % aigu ♦ Vasoconstriction → TSM ♦ Fibrose → TSM, IRM

Régime sans hydrate de carbone la veille puis jeûne

G Youssez J Nucl Med 2012 (méta-analyse) - Ohira Eur J Nucl Med 2011 et 2015 - M Soussan J Nucl Cardiol 2013 -Ahmadian J Nucl Cardiol 2014 - Blankstein JACC 2014 - Osborne J N Cardiol 2014 – Pei Ing J Nucl Cardiol 2016 -

SARCOIDOSE CARDIAQUE

MALADIE DE HORTON

• Diagnostic sur les grosses artères

- sous clavières, aorte, carotide, ilio-fémorales
- spécifique (88 ± 10%),
- sensible sauf cortisone/temporale
- pronostic pour dilatation aortique
- \downarrow M1-M3 puis \leftrightarrow : remodelage
- non prédictif des récidives

perisynovite des ceintures (> 90%) 31 % hyper Vx / ψPR « isolées »

D. Blockmans, Ann. NY Acad. Sci. 2011, Rheumatology 1999/2008, Am J Med 2000, Arthritis Rheum 2006* – M. Brodmann, Rheumatology 2004.

TAKAYASU & KAWASAKI

- Takayasu: TEP plus précocement positif que l'angio-IRM
 - Se = 77 ± 1% Spe = 76 ± 11%
 - VPP = 78% VPN = 60% (p = 63%)

Kawasaki

- pas d'étude en diagnostic
- scintigraphie de perfusion myocardique
- évaluation de la réserve coronaire
 - TEP au ¹⁸FDG
 - SPECT au ²⁰¹TI ou au ^{99m}Tc

KH Lee. Arthritis Rheum. 2012 - SG Lee. Clin Nucl Med 2009 – Arnaud et al. Arthritis Rheum 2009*.

MYOPATHIES INFLAMMATOIRES

Diagnostic clinique + myométrie, biologie (inflammation, Ac, CK), biopsie

Intérêt et place de la TEP FDG:

- Sensible, corps-entier (\neq IRM)
- SUV corrélé au grade histologique d'infiltration inflammatoire cellulaire
- Au diagnostic: identification d'un site de biopsie,
- Bilan d'extension: peau, poumon, œsophage, cœur, autre connectivite,
- Efficacité thérapeutique

 Recherche et surveillance de néoplasie (lymphome, poumon, colon, sein, ovaire) associée (dermato M surtout, polymyosite si pas d'anti p155)

- peut remplacer tous les autres tests (O'Callaghan 2010).
 - Se / Sp= 100 / 87 % dans une population de « MI idiopathiques » (Li 2017)

A Al Nahhas Ann NY Acad Sci 2011–S O'Callaghan Am J Med 2010–Y Li Clin Rheumatol 2017–M Tateyama BMJ Open 2014 – S Tanaka Rheumatology 2013

MYOPATHIES INFLAMMATOIRES

Syndrome des anti-synthétases:

Sd intersticiel pulmonaire Polymyosite (tibial antérieur +) Adénopathies IV, sus claviculaire, 4R, 5

ENDOCARDITES ET INFECTIONS

Positron Emission Tomography/Computed Tomography for Diagnosis of Prosthetic Valve Endocarditis

Increased Valvular ¹⁸F-Fluorodeoxyglucose Uptake as a Novel Major Criterion

	Final Diagnosis		
	Definite PVE	Possible PVE	Rejected PVE
Duke			
Definite PVE	21 (70)	0 (0)	0 (0)
Possible PVE	8 (27)	22 (100)	10 (50)
Rejected PVE	1 (3)	0 (0)	10 (50)
Duke-PET/CT			
Definite PVE	29 (97)	10 (45)	2 (10)
Possible PVE	1 (3)	12 (55)	10 (50)
Rejected PVE	0	0	8 (40)

ENDOCARDITES

Prothèse biologique aortique infectée

Sur prothèses valvulaires (peu sensible sur les végétations des valves natives < écho)

Foyer de SUV > 5 PN marqués en cas de doute

> Prothèse aortique infectée sur la valve aortique

Abcès sur prothèse aortique

Valve mitrale infectée

FONCTION SYMPATHIQUE

INDICATIONS

Pronostic des insuffisances cardiaques NYHA 4

Idem avec progression IC, Evts rythmiques, Mort

Admire HF (N=961) AF Jacobson et al. JACC 2010; 55(20):2212-21

AF Jacobson et al. JACC 2010; 55(20):2212-2221 - MJ Boogers et al. JACC 2010; 55(24):2769-2777

TACHYCARDIE VENTRICULAIRE

* tachyarythmie inductible en exploration électro-physiologique

Bax et al. Circ Cardiovasc Imaging 2008

PROTOLE ²⁰¹TI /¹²³I-MIBG EN CZT

GACHETTES POST SCA ST+ PEC à 3h

1- Clichés à 3 h en corrigeant le diffusé Compton de l'¹²³I nécessaire.

- 2- Gâchettes quasi systématiques d'étendues variables (plus en antérieur)
- 3- Gâchettes corrélées au pic de troponine, à la \downarrow FEVG et \uparrow NYHA à un an

E d'Estanques et al. J Nucl Cardiol 2017;24 - C. Hédon, Nucl Med Comm 2018;26

GACHETTES POST SCA ST+ PEC à 3h

CD3 suboccluse \$stent H3 80% / IVA2 + Mg1 \$stents J3

> IVA2 serrée ♦ Stent H3

GACHETTES POST SCA ST+ PEC à 3h

Suivi des zones gâchettes post SCA ST+: Stabilité et lien avec les évènements cardiovasculaires

ZONE A RISQUE APRES SCA ST+

VENTRICULOGRAPHIE

VENTRICULOGRAPHIE ISOTOPIQUE

Marquage des GR au ^{99m}Tc : Contraste
Synchronisation ECG

palette

selection de l'image

> 000

> 001

256×256

ZOOM

V

PVM

FE

TES

PEM

- Analyse de CTA
 - Activité x Volume
 - Globale ou locale

VENTRICULOGRAPHIE ISOTOPIQUE Marquage des GR au ^{99m}Tc : Contraste Synchronisation ECG

Problèmes :

- isoler VG
- extraire CTA
- déduire FE, TES...

SEGMENTATION PAR DERIVATION

SEGMENTATION PAR GRADIENT DE CANNY

(b)

DECOMPOSITION HARMONIQUE

APPROXIMATION A 1 HARMONIQUE

- filtrage passe-bas du bruit
- isolement de A₁ et φ₁

IMAGE D'AMPLITUDE A (H1)

H1

 $s(t) \approx A_0 + \overline{A_1} \cos(\omega_0 t + \varphi_1)$

Recherche d'hypokinésie locale

IMAGE DE PHASE A (H1)

ANALYSE MULTI-HARMONIQUE

Rythmologie :

•Analyse locales et mesure de σ_{TES} •Pb : Superposition \Rightarrow OAG, OAD, PG •Pb : bruit \Rightarrow \uparrow stat, H3 et filtrages...

(Le Guludec, JACC 95)

RESYNCHRONISATION

Pacing-off

(LVEF22%)

Pacing-on

-washing

152.64

38.04

SD

Muramatsu et al. Circ J 2005

Caderas de Kerleau et al, IEEE TRANS MED IMAGING 2004

AJUSTEMENT EN TEMPS

- Filtrage linéaire de la CTA
 - H1 : imprécis
 - Multi-harmoniques : bruité

H1

H1+H2+H3

H1+H2

Modélisation de la CTA

- contraint
- peu sensible au bruit
- peu sensible à la l'échantillonnage temporel

Valette, *Phys Med Biol* 90, Caderas de Kerleau et al, IEEE Trans Med Imag 2004 KIM, JNC et INT J Cardiovasc Imag 2005, Mariano-Goulart, JBMN 2005

PEU SENSIBLE A L'ECHANTILLONAGE

KIM, JNC et INT J CARDIOVASC IMAGING 2005, Mariano-Goulart, JBMN 2005

VENTRICULOGRAPHIE 2D

VENTRICULOGRAPHIE 2D: LIMITES

Superposition des plans :

- FEVD planaire au 1° passage, Pb bolus
- FEVG planaire sous estimée
- Superposition ampli/Phase
- Ni volumes ni débits ?

ZOOM

> 001

Solution States Mode tomographique:

selection de l'image

Bergmann, Nichols, Franken, Mariano-Goulart

LIGNE DE PARTAGE DES EAUX

Seuillage pour isoler le fond

Séparation optimale en fonction de l'origine probable du photon issue d'une cavité cardiaque, compte tenu du diffusé

LPE PAR IMMERSION

Schmitt M, Mattioli J. « Morphologie mathématique ». Paris, Masson, 1993.

LPE PAR AMINCISSEMENT HOMOTOPIQUE

Mariano-Goulart et al.EJNM 1998; 22:1300-07 et Revue Acomen 2000;6:69-77

RESULTATS

Immersion 4D

Mariano-Goulart et al.EJNM 1998;22 et EJNM 2001;28- Daou et al. JNM 2001;42

TOMO-VENTRICULOGRAPHIE (3D)

FONCTION VENTRICULAIRE D & G

Débit eject. max. = -302 cc/s (-2.71) - t-DEM = 103 ms Débit remp. max. = 128 cc/s (1.15) - t-DRM = 965 ms Débit eject. max. = -350 cc/s (-3.81) - t-DEM = 117 ms Débit remp. max. = 166 cc/s (1.81) - t-DRM = 482 ms

ETT & IRM ?

Référence mais

- contre-indications
 accessibilité
 durée
- traitement manuel

ETT

- reproductibilité
- Hypothèses géométriques
- VD

D. Mariano-Goulart et al. Eur J Nucl Med 1998 & 2001, Eur J Heart Fail. 2003, IEEE-TMI 2004, J Nucl Med 2001 & 2007, Nucl. Med Commun 2010, J Nucl Cardiol 2011

ANALYSE LOCALE

(Tompool[®])

Vilain, J Nucl Cardiol 01- Caderas de Kerleau et Mariano-Goulart, IEEE TRANS MED IMAGING 2004
AMPLITUDE ET PHASE 3D

http://scinti.edu.umontpellier.fr/ recherche/logiciels-a-telecharger/

Applications: IVG, IVD, HTAP, DVDA, DYSKINESIES, HYPOKINESIES...

CAS CLINIQUE: DVDA

D. Mariano-Goulart et al. JNM 2007;48

CAS CLINIQUE: PMK multi sites

Non stimulé

Stimulé

CAS CLINIQUE: HTAP

CC RESERVE SYSTOLIQUE VG

FEVGs

Bilans préopératoires de scolioses dans la myopathie de Duchenne

RECONSTRUCTION PMUGA EN TEP

Patients adressés en PET ¹⁸FDG pour un suivi de cancer sous chimiothérapie:

Image VLA de phase VLA \rightarrow Plan mitral

SA sommées de l'apex à la mitrale

PMUGA ou TMUGA EN TEP 1'

Logiciel ERNA commercialisé

RECONSTRUCTION PMUGA EN TEP

Fayçal Ben Bouallègue et al. Travail en cours de soumission

Merci pour votre attention...

http:\\scinti.edu.umontpellier.fr d-mariano_goulart@chu-montpellier.fr

RECONSTRUCTION TOMOGRAPHIQUE EN TEMP et TEP cardiaque

Demander à Boumédiène s'il souhaite que je traite ce point

PROJECTION MODELISATION CONDITIONNEMENT RECONSTRUCTION REGULARISATION TEP PROGRES

PROJECTION EN TE(M)P

d

a

MODELISATION ALGEBRIQUE

p₃

p₄

RETROPROJECTION: ${}^{t}R.\vec{p} = b$

Pb INVERSE LINEAIRE

=

 $\sum \Delta_{1}: \mathbf{p}_{1} = \mathbf{r}_{1,1} \mathbf{f}_{1} + \mathbf{r}_{1,2} \mathbf{f}_{2}$ $\Delta_{2}: \mathbf{p}_{2} = \mathbf{r}_{2,1} \mathbf{f}_{1} + \mathbf{r}_{2,2} \mathbf{f}_{2}$

Reconstruire une coupe

Résoudre un système linéaire de n² équations ($p_i = ...$) et n² inconnues (f_j)

 f_2

Pb INVERSE LINEAIRE MAL CONDITIONNE

PROJECTION MODELISATION CONDITIONNEMENT RECONSTRUCTION REGULARISATION TEP PROGRES

TECHNIQUE DE RECONSTRUCTION ALGEBRIQUE

Hypothèse: $r_{i,i}=1$ si le pixel j se projette dans la raie i; $r_{i,i}=0$ sinon.

TECHNIQUE DE RECONSTRUCTION ALGEBRIQUE

1895-1940

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

TECHNIQUE DE RECONSTRUCTION ALGEBRIQUE

Kaczmarz S. Angenährte Auflösung von Systemen linearer Gleichungen. Bull Int Acad Pol Sci Lett A 1937;35:355-7.

RECONSTRUCTION

MLEM et OSEM

PROJECTION MODELISATION CONDITIONNEME	MENT RECONSTRUCTION			Projections Projections Rapport
MLEM Itération 1: initialisation Hypothèse: r _{i,j} =1 si le pixel j se projette dans la raie i;	1	3	1	mesurées estimées 1 →45 5 ←9
	3	4	3	→90 10 ←9
	1	3	1	→45 5 ← 9
r _{i,j} =0 sinon.		Ţ		
	9	27	9	$f_{i=1}^{\text{iter } 2} = 1. \frac{1}{2} \left(\frac{45}{5} + \frac{45}{5} \right) = 9$
Itération	2 27	36	27	$f_{i=2}^{\text{iter } 2} = 3. \ \frac{1}{2} \left(\frac{45}{5} + \frac{90}{10} \right) = 27$
	9	27	9	$f_{i=5}^{\text{iter } 2} = 4. \ \frac{1}{2} \left(\frac{90}{10} + \frac{90}{10} \right) = 36$
$f_{i}^{n+1} = f_{i}^{n} \cdot \frac{1}{2} \left(\frac{p_{mesur\acute{e}}^{H}}{p_{calcul\acute{e}}^{H}} + \frac{p_{mesur\acute{e}}^{V}}{p_{calcul\acute{e}}^{V}} \right)$	45	90	45	Projections mesurées
	45 1	90 ↑	45 ↑	Projections estimées 2
	1	1		Convergence atteinte

PROJECTION MODELISATION CONDITIONNEMENT RECONSTRUCTION REGULARISATION TEP PROGRES

MLEM (Maximum likelihood Expectation Maximization)

Bayes : $P(\vec{f} / \vec{p}) = P(\vec{p}/\vec{f}) \cdot P(\vec{f}) / P(\vec{p}) = P(\vec{p}/\vec{f}) \cdot P(\vec{f})$

$$\vec{f} = \arg \min_{\vec{f}} \left[-\log P(\vec{p}/f) - \log P(f) \right]$$

Vraisemblance = adéquation aux données

Dempster A et al. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 1977;39:1-38.

PROJECTION MODELISATION CONDITIONNEMENT RECONSTRUCTION REGULARISATION TEP PROGRES

OSEM (Ordered Subsets Expectation Maximization)

Bayes : $P(\vec{f} / \vec{p}) = P(\vec{p}/\vec{f}) \cdot P(\vec{f}) / P(\vec{p}) = P(\vec{p}/\vec{f}) \cdot P(\vec{f})$

$$\vec{f} = \arg \min_{\vec{f}} \left[-\log P(\vec{p}/f) - \log P(f) \right]$$
 régularisation

Vraisemblance = adéquation aux données

Dempster A et al. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 1977;39:1-38. Hudson H et al. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601-9.