MAGNETISME & RMN

Bases physiques

Fayçal Ben Bouallègue UM – CHU Montpellier PACES 2018–2019

MAGNETISME & RMN

Bases physiques

Plan du cours

Contexte

Champ et interaction électrique Champ et interaction magnétique

Electron atomique Mécanique quantique

Magnétisme dans la matière Magnétisme nucléaire

RMN – principe RMN – séquence RMN – contraste

Applications : IRM & SRM Illustrations

Explorations morphologiques en coupe

Scanner (TDM, tomodensitométrie)

Résonance magnétique (IRM)

Explorations morphologiques en coupe

Scanner (TDM, tomodensitométrie)

Résonance magnétique (IRM)

Explorations morphologiques en coupe

IRM : excellent contraste des tissus mous

Explorations morphologiques en coupe

- IRM = examen de référence
- Neurologie : neuro-vasculaire tumeurs pathologies SB infections MAV

glioblastome

SEP

cavernome

Encéphalite HSV

- Cardiologie : fonction VG/VD cardiopathies...
- Ostéo-articulaire
- Rachis
- Abdomen : foie, pancréas
- Pelvis : rectum, prostate
- Sein

CMH

Compression médullaire

CLI sein droit

- Expliciter les propriétés magnétiques de l'électron / du proton : spin, moment magnétique, énergie magnétique.
- Décrire le comportement d'un dipôle magnétique dans un champ magnétique externe : précession, fréquence de Larmor, alignement.
- Exposer le principe d'une expérience de RMN : préparation (aimantation), perturbation (résonance), recueil du signal.
- Détailler les étapes d'une séquence d'acquisition RMN ainsi que les différents paramètres ajustables (temps de répétition, temps d'écho, angle de bascule).
- Décrire les bases physiques des phénomènes de relaxation (T₁ et T₂).
- Analyser la manière dont le choix des paramètres ajustables influe sur le contraste dans l'image IRM.

Rappels & conventions

x. v. z. t

Grandeurs scalaires :

Grandeurs vectorielles :

$$m, q, e$$

$$V(x, y, z)$$

$$\hbar = h/2\pi$$

$$\mathbf{x} = (x, y, z)$$

$$\mathbf{F}, \Gamma$$

$$\mathbf{B}(\mathbf{x})$$

$$\mathbf{L} = (L_x, L_y, L_z)$$

$$\omega = |\mathbf{\omega}|$$

$$\nabla f = \left(\frac{\partial f}{\partial x}; \frac{\partial f}{\partial y}; \frac{\partial f}{\partial z}\right)$$

Produit scalaire :

Produit vectoriel :

$$\mathbf{a} \cdot \mathbf{b} = a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z} \qquad \mathbf{a} \wedge \mathbf{b} = (a_{z})^{2}$$
$$= a b \cos(\phi) \qquad \mathbf{b} = a$$

 $\mathbf{a} \wedge \mathbf{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$ $= a \ b \ \sin(\phi) \ \mathbf{n}$

Champ & interaction électrique

Source = charge *q* (monopôle électrique)

en en en la la visión se

I I I A A A A

Champ:
$$\mathbf{E}(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 r^2} \mathbf{u}$$
 [Vm⁻¹] Force: $\mathbf{F}(\mathbf{x}) = q'\mathbf{E}(\mathbf{x}) = \frac{q q'}{4\pi\varepsilon_0 r^2} \mathbf{u}$ [N]
Potentiel: $V(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 r}$ [V] $\mathbf{E} = -\nabla V$

Champ & interaction électrique

Source = charge *q* (monopôle électrique)

Champ: $\mathbf{E}(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 r^2} \mathbf{u}$ [Vm⁻¹] Force: $\mathbf{F}(\mathbf{x}) = q' \mathbf{E}(\mathbf{x}) = \frac{q q'}{4\pi\varepsilon_0 r^2} \mathbf{u}$ [N] **Potentiel**: $V(\mathbf{x}) = \frac{q}{4\pi\varepsilon_0 r}$ [V] **Energie**: $U(\mathbf{x}) = q'V(\mathbf{x}) = \frac{q q'}{4\pi\varepsilon_0 r}$ [J] $E \qquad \qquad \mathbf{F} \qquad \mathbf$ **′ x** (q′) 1_ / F F $\mathbf{F} = -\nabla U$ e e e a visis sis and the second second

Champ & interaction électrique

Champ: $\mathbf{E}(\mathbf{x}) = \frac{q}{4\pi\varepsilon r^2} \mathbf{u}$ [Vm⁻¹]

Dans un matériau

 $\varepsilon = (1+\chi)\varepsilon_0 > \varepsilon_0$

Source = charge en mouvement (q, v)

Champ: $\mathbf{H}(\mathbf{x}) = \frac{q}{4\pi r^2} \mathbf{v} \wedge \mathbf{u}$ [Am⁻¹]

Champ (d'induction): $\mathbf{B}(\mathbf{x}) = \mu \mathbf{H}(\mathbf{x}) = \mu \frac{q}{4\pi r^2} \mathbf{v} \wedge \mathbf{u}$ [T Tesla]

 μ = perméabilité magnétique Dans l'air : μ = μ_0

Source = courant i = dq/dt

Champ:
$$\mathbf{H}(\mathbf{x}) = \int_{fil} \frac{i}{4\pi r^2} \, \mathbf{d} \mathbf{w} \wedge \mathbf{u} = \frac{i}{2\pi r} \, \mathbf{w} \wedge \mathbf{u} \quad [Am^{-1}]$$

Champ (d'induction): $\mathbf{B}(\mathbf{x}) = \mu \mathbf{H}(\mathbf{x}) = \frac{\mu i}{2\pi r} \mathbf{w} \wedge \mathbf{u}$ [T Tesla]

Source = boucle de courant *i* = dipôle magnétique

Champ : $\mathbf{B} = \frac{\mu i}{2r} \mathbf{n}$ B

Cible = dipôle magnétique

Moment magnétique : $\mu = A i n$ [Am²]

Energie: $U = -\mathbf{\mu} \cdot \mathbf{B}$ [J]

Forces de Lorentz

Source = boucle de courant *i* = dipôle magnétique

Champ : $\mathbf{B} = \frac{\mu i}{2r} \mathbf{n}$ B

Cible = dipôle magnétique

Moment magnétique : $\mu = A i n$ [Am²]

Energie: $U = -\mathbf{\mu} \cdot \mathbf{B}$ [J]

Couple : $\Gamma = \mu \wedge B$ [Nm]

Cas de l'électron atomique

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{-e}{T} = \frac{-e}{2\pi r/\nu} = \frac{-e}{2\pi r}$$

 $\frac{d\mathbf{p}}{dt} = \mathbf{F} \Rightarrow \text{ mouvement circulaire uniforme}$

RMN & Magnétisme – PACES 2018-2019

Cas de l'électron atomique

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{F} \qquad \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{\Gamma}$$

Dans le champ électrostatique du noyau

Energie :
$$U = \frac{-Q \ e}{4\pi\varepsilon_0 \ r}$$

Couple : $\Gamma = r \wedge F = 0$ (Force centrale F)

Evolution : L = cste

Dans le champ électrostatique du noyau + champ magnétique externe

Energie:
$$U = \frac{-Q \ e}{4\pi\varepsilon_0 \ r} - \mu_0 \cdot \mathbf{B}$$

 $\mbox{Couple}: \qquad \Gamma = \mu_o \wedge B$

Evolution :
$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{\mu}_{\mathrm{o}} \wedge \mathbf{B}$$

Cas de l'électron atomique

Analogie de la toupie

RMN & Magnétisme – PACES 2018-2019

Cas de l'électron atomique

Analogie de la toupie

RMN & Magnétisme – PACES 2018-2019

RMN & Magnétisme – PACES 2018-2019

RMN & Magnétisme – PACES 2018-2019

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t)$: $\mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques

- n : quantification de l'énergie E
- *l* : quantification du moment cinétique $|\mathbf{L}| = \hbar \sqrt{l(l+1)}$

m : quantification de $L_z = m\hbar = -l\hbar \dots 0 \dots l\hbar$

Indétermination de L_{χ} et L_{γ} : quelle est la longitude du pôle nord ?

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t) : \mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques *n* : quantification de l'énergie *E*

l : quantification du moment cinétique $|\mathbf{L}| = \hbar \sqrt{l(l+1)}$

m : quantification de $L_z = m\hbar = -l\hbar \dots 0 \dots l\hbar$

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t) : \mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques *n* : quantification de l'énergie *E*

l : quantification du moment cinétique $|\mathbf{L}| = \hbar \sqrt{l(l+1)}$

m : quantification de $L_z = m\hbar = -l\hbar \dots 0 \dots l\hbar$

RMN & Magnétisme — PACES 2018-2019

Z

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t)$: $\mathbb{R}^3 \times \mathbb{R}^+ \rightarrow \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques *n* : quantification de l'énergie *E*

l : quantification du moment cinétique $|\mathbf{L}| = \hbar \sqrt{l(l+1)}$

m : quantification de $L_z = m\hbar = -l\hbar$... 0 ... $l\hbar$

$$\mu_{o} = \gamma_{o} \mathbf{L}$$
$$|\mu_{o}| = \gamma_{o} \hbar \sqrt{l(l+1)}$$
$$\mu_{oz} = \gamma_{o} m \hbar$$

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t) : \mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques (n, l, m)

... MAIS

$$L_z = m\hbar = -l\hbar \dots 0 \dots l\hbar$$

2l +1 valeurs

Particules dans $\partial \mathbf{B}/\partial z$ déviées en fonction de L_z

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t)$: $\mathbb{R}^3 \times \mathbb{R}^+ \to \mathbb{C}$

La description complète fait apparaître 3 nombres quantiques (n, l, m)

... MAIS

$$L_z = m\hbar = -l\hbar \dots 0 \dots l\hbar$$

2l +1 valeurs

Particules dans $\partial \mathbf{B}/\partial z$ déviées en fonction de L_z

Nombre pair de taches Il existe un moment cinétique demi-entier intrinsèque **SPIN**

L'électron est décrit par une onde : $\Psi(\mathbf{x}, t, \sigma)$: $\mathbb{R}^3 \times \mathbb{R}^+ \times \begin{pmatrix} + \\ - \end{pmatrix} \to \mathbb{C}$

La description complète fait apparaître 4 nombres quantiques (n, l, m, σ)

SPIN S

tel que : $|\mathbf{S}| = \hbar \sqrt{s(s+1)}$ (*s* entier **OU** demi-entier)

$$S_z = \sigma \hbar = -s\hbar \dots s\hbar$$

pour l'électron : $s = \frac{1}{2}$ $\sigma = \pm \frac{1}{2}$

il s'y associe un moment magnétique :

 $\boldsymbol{\mu}_{\rm s} = \boldsymbol{\gamma}_{\rm s} \; \boldsymbol{\rm S} = g \; \boldsymbol{\gamma}_{\rm o} \; \boldsymbol{\rm S}$

$$\overline{\gamma_{\rm s}} \simeq 28 \, {\rm GHz} \, {\rm T}^{-1}$$

 $g\simeq 2$

facteur de Landé de spin

Considérations énergétiques

$$\mathbf{B} = \mathbf{0}$$
$$U = \frac{-Q \ e}{4\pi\varepsilon_0 \ r}$$

Considérations énergétiques

$$|\psi_{s}\rangle = \alpha|\oplus\rangle + \beta|\ominus\rangle$$

$$\wp(\oplus) = \alpha^{2} \qquad \wp(\ominus) = \beta^{2}$$

$$B = 0 \qquad \left\{ \begin{array}{l} |\psi_{s}\rangle = \frac{1}{\sqrt{2}}|\oplus\rangle + \frac{1}{\sqrt{2}}|\ominus\rangle \\ \\ \wp(\oplus) = \wp(\ominus) = 50\% \end{array} \right.$$

0

RMN & Magnétisme – PACES 2018-2019

Principe de superposition

10²⁰ dipôles

Principe de superposition

 $\begin{aligned} |\psi_s\rangle &= \alpha |\oplus\rangle + \beta |\ominus\rangle \\ \wp(\oplus) &= \alpha^2 \quad \wp(\ominus) = \beta^2 \end{aligned}$ $B > 0 \qquad \wp(\oplus) > \wp(\ominus) \end{aligned}$

Principe de superposition

Ð

0

• $M = \Sigma \mu_z$

$$\begin{split} |\psi_{s}\rangle &= \alpha |\oplus\rangle + \beta |\ominus\rangle \\ \wp(\oplus) &= \alpha^{2} \qquad \wp(\ominus) = \beta^{2} \\ B &> 0 \qquad \wp(\oplus) > \wp(\ominus) \end{split}$$

Principe de superposition

0

 $\begin{aligned} |\psi_s\rangle &= \alpha |\oplus\rangle + \beta |\ominus\rangle \\ \wp(\oplus) &= \alpha^2 \quad \wp(\ominus) = \beta^2 \end{aligned}$ $B > 0 \qquad \wp(\oplus) > \wp(\ominus) \end{aligned}$

Principe de superposition

 $\begin{aligned} |\psi_s\rangle &= \alpha |\oplus\rangle + \beta |\ominus\rangle \\ \wp(\oplus) &= \alpha^2 \qquad \wp(\ominus) = \beta^2 \end{aligned}$

Ce que dit la physique statistique :

Particule indépendantes Etats i d'énergie E_i Température suffisante Equilibre thermique

$$\wp_i \propto e^{-\frac{E_i}{kT}}$$
$$N_i = N \wp_i$$

Ce que dit la physique statistique :

Particule indépendantes Etats i d'énergie E_i Température suffisante Equilibre thermique

$$\wp_i \propto e^{-\frac{E_i}{kT}}$$

$$N_i = N \wp_i$$

$$\frac{\Delta N}{N} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{\overline{N_{-}}^{-1}}{\frac{N_{+}}{N_{-}} + 1} \qquad \mathbf{B}$$
$$= \frac{e^{\frac{\Delta E}{kT}} - 1}{e^{\frac{\Delta E}{kT}} + 1} \approx \frac{\frac{\Delta E}{kT}}{\frac{\Delta E}{kT} + 2}$$
$$\sim \frac{\Delta E}{2 kT} \sim \frac{1}{1000}$$

 N_{+}

RMN & Magnétisme – PACES 2018-2019

Magnétisme dans la matière

$$\sum_{\mu} \mu_{\mu} \mu_{\mu} \Sigma \mu = 0$$

RMN & Magnétisme – PACES 2018-2019

Magnétisme dans la matière

 µ : perméabilité magnétique du matériau

 χ : susceptibilité magnétique

 $\mathbf{H}' = \frac{\mathrm{d}\mathbf{M}}{\mathrm{d}V}$: aimantation volumique

Diamagnétisme

Doublets d'électrons Absence de moment permanent J = 0Modification du mouvement orbital

Magnétisme dans la matière

 µ : perméabilité magnétique du matériau

 χ : susceptibilité magnétique

 $\mathbf{H}' = \frac{\mathrm{d}\mathbf{M}}{\mathrm{d}V}$: aimantation volumique

Paramagnétisme

Electrons de valence non appariés Moment permanent J Alignement sur **B**₀ Température dépendant

RMN & Magnétisme – PACES 2018-2019

Magnétisme atomique essentiellement électronique

- Moment cinétique total J
- Moment magnétique permanent μ

 $\mu = \gamma_{\rm e} \mathbf{J} \qquad \overline{\gamma_{\rm e}} \sim \mathrm{GHz} \, \mathrm{T}^{-1}$ $\Delta E = \Delta \mu_z \ B = g \ B \ \mu_{\rm B}$

Noyau = protons + neutrons

- Moment cinétique total J : « SPIN »
- > Moment magnétique permanent μ : « SPIN »

$$\boldsymbol{\mu} = \boldsymbol{\gamma}_{\mathrm{N}} \mathbf{J} \qquad \overline{\boldsymbol{\gamma}_{\mathrm{N}}} \sim \mathrm{MHz} \, \mathrm{T}^{-1}$$

$$\Delta E = \Delta \mu_z \ B = g \ B \ \mu_{\rm N}$$

magnéton nucléaire $\mu_{
m N} = rac{e \ \hbar}{2 \ m_p} \ll \mu_{
m B}$

Proton :
$$g = 5,6$$
 Neutron : $g = -3,8$

$$\gamma_{\rm N} = g \; {e \over 2 \; m_p}$$

Magnétisme atomique essentiellement électronique

- Moment cinétique total J
- Moment magnétique permanent μ

 $\mu = \gamma_{\rm e} \mathbf{J} \qquad \overline{\gamma_{\rm e}} \sim \mathrm{GHz} \, \mathrm{T}^{-1}$ $\Delta E = \Delta \mu_z \ B = g \ B \ \mu_{\rm B}$

Noyau = protons + neutrons

- Moment cinétique total J : « SPIN »
- > Moment magnétique permanent μ : « SPIN »

$$\boldsymbol{\mu} = \boldsymbol{\gamma}_{\mathrm{N}} \mathbf{J} \qquad \overline{\boldsymbol{\gamma}_{\mathrm{N}}} \sim \mathrm{MHz} \, \mathrm{T}^{-1}$$

$$\Delta E = \Delta \mu_z \ B = g \ B \ \mu_N$$

magnéton nucléaire $\mu_{
m N} = rac{e \ \hbar}{2 \ m_p} \ll \mu_{
m B}$

Proton :
$$g = 5,6$$
 Neutron : $g = -3,8$

Magnétisme atomique essentiellement électronique

- Moment cinétique total J
- Moment magnétique permanent μ

 $\mu = \gamma_{\rm e} \mathbf{J} \qquad \overline{\gamma_{\rm e}} \sim \mathrm{GHz} \,\mathrm{T}^{-1}$ $\Delta E = \Delta \mu_z \ B = g \ B \ \mu_{\rm B}$

Noyau ¹H = 1 proton

p⁺

- Moment cinétique total J : « SPIN »
- > Moment magnétique permanent μ : « SPIN »

$$\boldsymbol{\mu} = \gamma_{\rm p} \mathbf{J}$$
$$\Delta E = \Delta \mu_z B = g B \mu_{\rm N}$$

$$\overline{\gamma_{\rm p}} = 42,6~{\rm MHz}~{\rm T}^{-1}$$

Nucleus	Spin	Landé factor	
proton p	ton p 1/2		
neutron n	1/2	-3.8263	
deuteron ² ₁ D	1	0.85742	
³ ₂ He	1/2	-4.255	
⁴ He	0		
¹² ₆ C .	0	—	
¹⁶ 8O	0	—	
³⁹ K	3/2	0.2609	
57 Zn	5/2	0.35028	
35 R b	5/2	0.54108	
¹²⁹ ₅₄ Xe	1/2	-1.5536	
¹³³ Cs	7/2	0.7369	
¹⁹⁹ 80Hg	1/2	1.0054	
²⁰¹ 80Hg	3/2	-0.37113	

- Spin dépend de la composition du noyau
- ➢ Pas de spin ⇔ Pas de magnétisme

Prix Nobel

Lauréats	Année	Discipline	Travaux
O. Stern	1943	Physique	Moment magnétique du proton (1933)
I. Rabi	1944	Physique	RMN
F. Bloch & E. Purcell	1952	Physique	RMN
R. Ernst	1991	Chimie	Spectroscopie RMN haute résolution
P. Lauterbur & P. Mansfield	2003	Médecine	IRM

Prix Nobel

Lauréats	Année	Discipline	Travaux
O. Stern	1943	Physique	Moment magnétique du proton (1933)
I. Rabi	1944	Physique	RMN
F. Bloch & E. Purcell	1952	Physique	RMN
R. Ernst	1991	Chimie	Spectroscopie RMN haute résolution
P. Lauterbur & P. Mansfield	2003	Médecine	IRM

Bloch & Purcell

Prix Nobel

Lauréats	Année	Discipline	Travaux
O. Stern	1943	Physique	Moment magnétique du proton (1933)
I. Rabi	1944	Physique	RMN
F. Bloch & E. Purcell	1952	Physique	RMN
R. Ernst	1991	Chimie	Spectroscopie RMN haute résolution
P. Lauterbur & P. Mansfield	2003	Médecine	IRM

Lauterbur & Mansfield

Prix Nobel

Lauréats	Année	Discipline	Travaux
O. Stern	1943	Physique	Moment magnétique du proton (1933)
I. Rabi	1944	Physique	RMN
F. Bloch & E. Purcell	1952	Physique	RMN
R. Ernst	1991	Chimie	Spectroscopie RMN haute résolution
P. Lauterbur & P. Mansfield	2003	Médecine	IRM

R. Damadian

Représentation des spins μ via $\langle \mu \rangle$

 $\langle \mathbf{\mu} \rangle = \begin{pmatrix} \langle \mu_{\chi} \rangle \\ \langle \mu_{y} \rangle \end{pmatrix}$

Représentation des spins μ via $\langle \mu \rangle$

$$\langle \mathbf{\mu} \rangle = \begin{pmatrix} \langle \mu_x \rangle \\ \langle \mu_y \rangle \\ \langle \mu_z \rangle \end{pmatrix}$$

RMN & Magnétisme – PACES 2018-2019

 $|\mathbf{\mu}\rangle = \alpha |\oplus\rangle + \beta |\ominus\rangle$

$$\langle \mu_x \rangle = 2 \alpha \beta \cos (\omega t)$$

 $\langle \mu_y \rangle = 2 \alpha \beta \sin (\omega t)$
 $\langle \mu_z \rangle = \alpha^2 - \beta^2$

 $\omega = \gamma B$

X

$B_0 = 0$

$B_0 = 0$

Etats superposés

B₀ > **0**

B₀ > **0**

Précession de Larmor : $\omega_0 = \gamma B_0$

RMN – principe

1. Préparation (aimantation)

Précession de Larmor : $\omega_0 = \gamma B_0$

Alignement sur le champ

- Aimantation longitudinale M_z
- Cinétique exponentielle T₁

 \succ Echanges énergétiques : $E = - \mu \cdot \mathbf{B}$

RMN & Magnétisme – PACES 2018-2019

RMN – principe

2. Perturbation (résonance)

Application d'un champ tournant B₁

- > de fréquence $\omega_0/2\pi$
- > pendant une durée τ (~ms)

Précession de M autour de B₁

- $\succ \omega_1 = \gamma B_1$
- ▶ Bascule (nutation) d'un angle $\eta = \tau \omega_1$

B₁

2. Perturbation (résonance)

Application d'un champ tournant B₁

- > de fréquence $\omega_0/2\pi$
- > pendant une durée τ (~ms)

Précession de M autour de B₁

- $\succ \omega_1 = \gamma B_1$
- > Bascule (nutation) d'un angle $\eta = \tau \omega_1$

Disparition de M_z Apparition de M_{xy} (aimantation transverse)

B₀

RMN & Magnétisme – PACES 2018-2019

RMN – séquence

Préparation

Aimantation longitudinale dans B_0 Relaxation T_1 Durant un temps t_r (temps de répétition)

$$FID(t) = M_{\rm L} (1 - e^{-t_r/T_1}) \sin(\eta) e^{-t_e/T_2} \sin(\omega_0 t)$$

Déterminants du signal :

$$M_{\rm L} = \sum \mu_z \qquad \begin{bmatrix} \propto \ \mu \propto \gamma \\ \propto \ \rho(\ {}^{1}{\rm H}) \\ \propto \frac{\Delta {\rm N}}{{\rm N}} \propto \frac{{\rm B}_{\rm 0}}{{\rm T}} \end{bmatrix}$$

intrinsèque intrinsèque

Densité de protons ρ :

Degré d'hydratation / lipidation

extrinsèque

T_1, T_2 intrinsèque

t_r, t_e, η extrinsèque

 $FID(t) = M_{\rm L} (1 - e^{-t_r/T_1}) \sin(\eta) e^{-t_e/T_2} \sin(\omega_0 t)$

Déterminants du signal :

 $FID(t) = M_{\rm L} (1 - e^{-t_r/T_1}) \sin(\eta) e^{-t_e/T_2} \sin(\omega_0 t)$

Déterminants du signal :

 $FID(t) = M_{\rm L} (1 - e^{-t_r/T_1}) \sin(\eta) e^{-t_e/T_2} \sin(\omega_0 t)$

Déterminants du signal :

> Fluctuations locales dues à l'environnement chimique (T_2)

RMN & Magnétisme — PACES 2018-2019

RMN & Magnétisme — PACES 2018-2019

RMN – contraste

Relaxation :

- > Couplage dipolaire
- Mouvements moléculaires

Relaxation :

- > Couplage dipolaire
- Mouvements moléculaires

Eau liée / lipides : τ_C moyen

Macromolécules : mouvement lent : τ_C long

RMN & Magnétisme – PACES 2018-2019

n et al. Natiology 2014.

1971 Volume 171, pp. 1151-1153 SCIENCE
Tumor Detection by Nuclear Magnetic Resonance
Raymond Damadian

IRM – exemples

Rectus muscle Liver 7 T_1 T_1 T_1 T_1 T_2 9 0.493 0.050 0.286 0.050 Ma 548 350 322 060 P 541 350 241 050 56 576 (0.600)* 070 306 (0.287)* 048 11 531 300 123 0.010 0.052 = 0 13 538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 Ma #Lixation ture after the spectmen stood overnught at room 14 15 Ma	T1	ble 1. Spin-latti	ce (T ₁)	and spi	in-spin	(T,) :	Rat No.	
T_1 T_1 T_1 T_2 9 0.493 0.050 0.286 0.050 Ma 548 350 322 360 Ma 541 350 241 350 11 576 (0.600)* 070 306 (0.287)* 348 11 531 300 300 Usam and c 13 538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 Ma staxation ume after the specumen stood overnught at room 14 15 Ma Ma Ma Ma	Rectus	muscle		L	Iver		7	
0.493 0.050 0.286 0.050 Me 548 350 322 360 F 541 350 241 350 576 (0.500) • 070 306 (0.287) • 048 11 12 300 Mean and c 13 538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 F etaxation ume after the specimen stood overnught at room 14 15 Me	Ti	Τ.		T.		T,	8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.493	0.050	0 :86		0.05	0	10 Men	
541 050 241 050 576 (0.600)* 070 306 (0.287)* 048 11 531 300 100 12 13 13 538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 Me etaxation ume atter the specimen stood overnight at room 14 15 Me 14 15	548	350	322		06	0	•	
538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 etaxation ume after the specumen stood overnight at room 14 15 Me	141	050	241		05	0		
538 = 0.015 0.055 = 0.005 0.293 ± 0.010 0.052 ± 0 P etaxation ume after the specimen stood overnught at room 14 15 Me	(11	070	306	(0.287)	• 04	8	11	
.538 = 0.015 0.055 = 0.005 0.293 = 0.010 0.052 = 0 Ma etaxation ume alter the specimen stood overnight at room 14 15 Me	231		100		Man		13	
elaxation ume after the specimen stood overrught at room 14 15 Me	.538 = 0.015	0.055 = 0.005	0.293 :	= 0.010	0.05	2 = 0	Mee	
14 15 Me	elasation ume	after the specim	MER 1100	d uvern	te Mar	1000		
15 Ma		ANA - ANA				-	14	
Ma							15	
Ma							Mes	-
Ma								
Ma								
							Mee	
								-

IRM – exemples

Carcinome hépatocellulaire

Park et al. World J Gastroenterol 2016.

Angiome hépatique

