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Confidence interval constraint based regularization
framework for PET quantization

F. Kucharczak, F. Ben Bouallegue, O. Strauss, D. Mariano-Goulart

Abstract—In this paper, a new generic regularized reconstruc-
tion framework based on confidence interval constraints for
tomographic reconstruction is presented. As opposed to usual
state-of-the-art regularization methods that try to minimize a
cost function expressed as the sum of a data-fitting term and a
regularization term weighted by a scalar parameter, the proposed
algorithm is a two-step process. The first step concentrates
on finding a set of images that relies on direct estimation of
confidence intervals for each reconstructed value. Then, the
second step uses confidence intervals as a constraint to choose
the most appropriate candidate according to a regularization
criterion. Two different constraints are proposed in this paper.
The first one has the main advantage of strictly ensuring that the
regularized solution will respect the interval-valued data-fitting
constraint, thus preventing over-smoothing of the solution while
offering interesting properties in terms of spatial and statistical
bias/variance trade-off. Another regularization proposition based
on the design of a smoother constraint also with appealing
properties is proposed as an alternative. The competitiveness
of the proposed framework is illustrated in comparison to
other regularization schemes using analytical and GATE-based
simulation and real PET acquisition.

Index Terms—Image reconstruction, positron emission to-
mography, confidence intervals, constrained regularization, total
variation.

I. INTRODUCTION

IN recent decades, Positron Emission Tomography (PET)
has gained great interest in many medical fields [1] due

to its ability to provide semi-quantitative measures of the
radiotracer uptake in a volume of interest. However, PET
reconstruction is an ill-posed problem and thus, the most
widespread iterative reconstruction algorithms (SIRT-based
[2], [3] and ML-EM-based [4], [5]) produce images with
undesirable noise amplification and instability under data
perturbations that increase with the number of iterations. As a
consequence, such algorithms have to be regularized, i.e. the
solution of the inverse problem has to be constrained to comply
with some prior knowledge. Such regularization is usually per-
formed either by early stopping [6], [7] or by post-processing
procedures [8], [9] like filtering or deconvolution. Bayesian
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reconstruction procedures like those based on maximum a-
posteriori (MAP) [10]–[12] or penalized maximum-likelihood
(PML) [13], [14] include a regularization term that fosters
spatial smoothness in the estimated PET images.

In recent years, the prevalent use of L2 norm based regu-
larization has been questioned in image processing, leading to
increasing interest in optimization-based reconstruction tech-
niques using compress sensing approaches [15]. The objective
of these approaches is to recover sparse images by solving
linear optimization problems involving the L1 norm. These
approaches were proven to be efficient in problems such as de-
noising [16], [17], image compression [18], image restoration
[19], [20] and inverse problems like super-resolution [21]–[23]
and in CT [24], [25]. Since the radiotracer activity distribution
in PET may in a first approximation be considered as a
piecewise constant function, reconstructing sparse gradient-
magnitude images seems completely relevant. This strategy
has been proposed to reconstruct sparse gradient-magnitude
images in PET [26], [27]. Recent work focusing on edge-
preserving regularization via smooth non-quadratic penalties
have also been presented using patch-based PML approaches
[14] or trust optimization transfer algorithms [28]. A common
problem currently faced by most of these approaches is that
a regularization hyper-parameter is needed to balance data
fidelity and regularization criterion. It makes the trade-off
between the two conflicting objectives dependent on the hyper-
parameter involved in this combination [29].

We propose an innovative approach based on a two-step
process to solve this trade-off problem. First, we define a
convex set D of images complying with the data fidelity
criterion and then we seek in D for the image that best fulfills a
chosen regularization criterion. Such an approach has recently
been proposed to achieve super-resolution reconstruction [29],
JPEG deblocking [30], [31], CT reconstruction [24] and Total
Variation (TV) optimization-based reconstruction in PET [32].
However, within this approach, one of the main challenges
concerns the definition of a meaningful convex set D to be used
as a data fidelity constraint for regularization. Recent works
has been carried out in the open field of statistical variability
estimation of PET reconstructed data. In [33], [34], authors
proposed extensions of both SIRT and ML-EM algorithms
that reconstruct voxel-wise stable confidence intervals (CI)
instead of scalar values. Here, we propose D to be these
meaningful, reliable and stable CI. The generic reconstruction
we propose consists in selecting the image that best minimizes
a chosen regularization criterion under the constraint of D. In
this paper, the choice was made to use the widely known TV
regularization criteria.
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In this paper, we first briefly recall the fundamentals of
CI reconstruction in PET in Section II-A, then present the
TV constrained regularized step in II-B. In Section II-C, the
full methodology of the reconstruction procedure is summa-
rized. Finally, Section III presents the competitiveness of the
presented algorithm in terms of the bias/variance trade-off in
both spatial and statistical terms using analytic and GATE [35]
simulation and real PET acquisition of phantom and clinical
data. Finally, the conclusions and perspectives are discussed
in Section IV.

II. THE CONSTRAINED, REGULARIZED RECONSTRUCTION
FRAMEWORK

In this paper, we propose a new reconstruction framework
based on CI constrained TV regularization. The novelty of
this approach resides in the fact that the regularized recon-
struction technique deals with inverse problem resolution in
two steps. Instead of trying to balance a data-fitting term and
a regularization term in the same reconstruction process, we
instead propose to first focus on reconstructing a convex set of
admissible solutions that ensure the data fidelity and then, in
a second step, to select the most appropriate image according
to a regularization criterion under the constraint established in
step one.

A. First step - data-fitting constraint reconstruction

In PET, the problem of assessing the uncertainty associated
with the reconstructed activity distribution has been addressed
using numerous approaches. However, none of them explicitly
presented algorithms for direct estimation of CI until [34].
The NIBEM (rsp. NIBART) algorithm, presented in [34] (rsp.
[33]) is an extension of the widely known ML-EM (rsp. SIRT)
algorithm. Its distinctive characteristic is, for each pixel, to
reconstruct intervals with appealing properties instead of scalar
values. This section presents a brief overview of the founding
principles of this algorithm.

1) Discrete-to-continuous interplay: Reconstructing a to-
mographic image involves inverting a model that describes
the projection of the studied distribution onto a finite set of
projection bins.

As this projection model is assumed to be linear, it can be
computed using a system matrix R, also called a Radon matrix,
whose (i, j)th element stands for the probability of a photon
emitted in the ith pixel to reach the jth detector. Considering
this model, the projection operator P and its dual operator,
the back-projection operator B, can be defined by:

P(f)j =
N∑
i=1

Ri,jfi, (1)

B(p)i =
M∑
j=1

Ri,jpj , (2)

with f ∈ RN being the image to reconstruct and p ∈ RM the
measurement vector.

Although the projection model usually requires the activ-
ity distribution to be continuous, the activity image f is

reconstructed on a discrete grid whose sampling is arbi-
trarily set according to the resolution of the PET device.
Thus, the reconstruction makes intensive use of kernel-based
interpolation to ensure this discrete-to-continuous interplay.
Modeling the interplay between the discrete reconstruction
space and the underlying continuous space, where the problem
can be formulated, impacts the resulting projected values. In
[36], the authors propose to reduce the impact of arbitrarily
choosing a kernel by switching to a method that computes
all projections that could have been obtained by using all
possible interpolation kernels having a bounded support. By
construction, all of these kernels form a continuous convex
set (i.e. if two kernels belong to the set, any linear com-
bination of those belongs to the set). Let K be this set,
then the interval-valued projection operator they propose can
be expressed as: [pj ] = [ min

κ∈K
(Pκ(f)j); max

κ∈K
(Pκ(f)j)], with

Pκ being the projection operator based on the interpolation
kernel κ. The appealing property of this framework is that,
since the spread of the resulting intervals reflects the range
of possible projections, it is thus linked to local variations in
the projections. As pointed out in [37], poor consensus on
the projected values, i.e. a wide interval spread, is a marker
of the effect of noise on the projections. Using the concave
capacities theory [38], it is possible to build an interval-
valued projection operator P that pools all projectors that
would have been obtained by using all possible four-neighbor
based interpolations that could ensure the discrete-to-continous
interplay. The theoretical justifications for P are presented
in [36]. Practical details about the implementation of P and
information on how it can be used for tomographic recon-
struction can be found in [34], where a graphical illustration
(Fig. 4 of [34]) and the corresponding pseudo-code (Procedure
1 of [34]) to compute the upper projection of a four-pixel
image is presented. With this example, computation of the
lower bound is straightforward. Using the so-defined interval-
valued projector P , it has been shown in [33], [34] that SIRT
and ML-EM algorithms can be extended to produce interval-
valued reconstructions.

2) Interval arithmetic: As the SIRT and ML-EM recon-
struction algorithms require vector element-wise arithmetical
operations and since the operator P is replaced by its im-
precise extension P , the SIRT and ML-EM interval-based
extensions require interval-valued arithmetical operations to be
performed. Let us consider [a] = [a, a] a real-valued interval
whose lower bound is a and upper bound is a. Using real
intervals, Minkowski � and dual Minkowski � arithmetical
operators are necessary (with · ∈ {+,−,×, /}). They are
defined, with [a] and [b] being two real intervals, as:

[a]	 [b] = [a− b, a− b], (3)

[a]� [b] = [a+ b, a+ b], (4)

and with [a] and [b] being two real positive intervals, as:

[a]� [b] = [a/b, a/b], (5)

[a]� [b] = [a× b, a× b], (6)
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Note also that for any λ ∈ R+, λ × [a] = [λ × a, λ × a].
The interval-based arithmetical formalism is not in the scope
of this paper but more details can be found in [33], [34].

3) CI reconstruction: NIBART [33] and NIBEM [34] algo-
rithms can be seen as straightforward interval-based extensions
of ML-EM and ART algorithms. As their precise version, these
algorithms are iterative. With k being the current iteration and
[fk] the reconstructed interval-based image at iteration k, both
NIBART and NIBEM iterative schemes are defined as:

NIBART: [fk+1] = λB∗
(
[p]�P([fk])

)
� [fk], (7)

NIBEM: [fk+1] = B∗
(
[p]�P([fk])

)
� [fk], (8)

with [p] = [p, p] being the measurement vector, λ ∈ [0, 1]
a relaxation parameter and B∗ the normalized version of the
back-projection operator defined in Eq. (2). In first step of
Fig. 1, NIBEM reconstruction is schematically decomposed
to facilitate the understanding of Eq. (8).

In [34], it has been highlighted that the reconstructed inter-
vals [f ] reflect statistical variability of the reconstructed values
and can be considered as reliable CI, with the confidence value
of these intervals being around 90%. It has also been shown
in [34] that the estimated CI can be considered as stable and
independent of the reconstructed value and the noise level.
We propose here to consider the convex set [f ] as a data-
fitting constraint to perform TV regularization and prevent
over-smoothing of the solution.

B. Second step - regularized selection

The data fidelity constraint used in the proposed framework
is the interval-valued image [f ] reconstructed in the first step
of Section II-A. [f ] represents the convex-set of admissible
images within which the function that best fits a regularization
criterion ε2 is constrained. With f denoting the regularized
image, the constrained optimization problem to solve can be
formulated as the follows:

min
f∈RN

ε2(f) + g[f ](f). (9)

with ε2 being a convex regularization criterion and g being
the data fitting constraint relative to the interval-valued image
[f ] reconstructed in the first step. For computability purposes,
ε2 and g are assumed to be proper, convex and lower-semi-
continuous (l.s.c) functions.

The convex optimization problem expressed in Eq. (9)
involving a sum of two convex functions is common, and
numerous convex optimization algorithms have been presented
in the literature [39]. Here, we use the primal-dual Chambolle
Pock algorithm [40] that was already used for CT convex
optimization-based reconstruction [25].

The proximal formulation of the primal-dual Chambolle-
Pock algorithm can be written, to solve Eq. (9) , as:

v(k+1) = proxνε2∗(v(k) + νw(k))

f (k+1) = proxµg(f
(k) − µv(k+1))

w(k+1) = f (k+1) + θ(f (k+1) − f (k)),

(10)

with proxF (X) = argmin
Y

(F (Y) +
1

2
|X −Y|22 ), | p|2 being

the L2 norm, µ, ν and θ being real numbers.
Within this formulation, the sufficient condition for the

Chambolle-Pock algorithm to converge is νµ < 1. Setting
ν = 1 and µ = 1/2 fulfills this condition. Note that θ is set
at 1, like in the third section of [40], and that it is possible to
compute the proximal of the convex conjugate F ∗ of F with
the relation proxF∗(f) = f − proxF (f) for f ∈ RN .

1) Choice of regularization criterion: The new regulariza-
tion scheme presented in this paper has various advantages:
the CI constraint prevents from over-smoothing and the re-
construction scheme is generic in terms of the regularization
function to use (with the only limit being to find an algorithm
to solve Eq. (9) with the chosen ε2).

As opposed to the widely used Tikhonov-like regularization
functions, TV functions better preserve sharp edges and object
boundaries that are usually the most important features to
recover. Indeed, as the radiotracer activity distribution could
be well-grounded considered as a piece-wise constant function,
reconstructing sparse gradient-magnitude images seems to be
completely relevant. In this paper, the usual discrete TV
presented first in [41] was chosen as regularization function
ε2, which is defined as the L1 norm of the discrete gradient of
image f . Note that quadratic or more complex convex penalties
would also perfectly fit within the proposed approach.

Considering this choice, Eq. (9) becomes:

min
f∈RN

TV (f) + g[f ](f), (11)

2) Choice of the interval inclusion constraint: In Eq. (11),
it is mandatory to formulate the data-fitting constraint in terms
of the attachment function. In this paper, we propose two
different choices for function g. As the density probability of
the true distribution within the intervals is unknown, according
to the Laplace principle, it is more judicious to consider the
values within the CI as equally likely. The most intuitive
approach is to constrain the TV regularized solution to be
strictly included within the intervals [f ]. In the following, this
constraint will be denoted ”Hard Constraint” (HC). The second
data-fitting constraint proposes to take into account the fact
that the reconstructed intervals [f ] are not 100% intervals and
to authorize the solution to go beyond the CI. We propose
to quadratically penalize the solution in this case. In the
following, this constraint will be denoted ”Soft Constraint”
(SC).

The HC constraint can be expressed using the convex
indicator function i[f ] defined as :

gHC
[f ] (f) = i[f ] : f 7→ i[f ](f) =

{
0 if f ∈ [f ],

+∞ if f /∈ [f ].
(12)

gHC
[f ] imposes the regularized solution (i.e. the function that

minimizes the TV in Eq. (11)) to strictly remain within the
reconstructed interval-valued image [f ].

To take into account the fact that the reconstructed intervals
[f ] are not 100% intervals, the proposed SC constraint allows
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the solution to go beyond the intervals. However, to ensure
sufficient data-fitting, the SC constraint gSC

[f ] was defined as
the squared Euclidean distance to the convex set [f ]:

gSC
[f ] (f) =

1

2
(d[f ](f))

2, (13)

with the Euclidean distance d[f ](f) of f to the convex set
[f ] being defined as d[f ](f) = inf

y∈[f ]
|f − y|2. Considering the

data-fitting constraint defined in Eq. (13) for solving Eq. (11),
the regularized solution f is free to vary inside the intervals.
It is however quadratically penalized when going beyond the
convex set [f ] (the more the solution is far from [f ], the more
it is penalized).

The constrained TV reconstruction framework of Eq. (11)
requires computation of the proximal operators of the discrete
TV, HC and SC functions. proxTV is easily computed using
Chambolle-Pock like algorithms [40]. The TV reconstruction
framework of Eq. (11) also requires the computation of
proxgHC

[f ]
for HC or proxgSC

[f ]
for SC.

From Chapter 10 of [42], the proximity operator proxgHC
[f ]

of
the convex indicator function gHC

[f ] onto the closed and convex
set [f ] is the projection operator P[f ](f) onto [f ] with [f ] being
a nonempty subset of RN . P[f ](f) is defined as the only point
verifying d[f ](f) = |f − P[f ](f)|2 . The proximity operator of
the squared distance to a convex set is also defined in [42].

Thus, the expression of both proxgHC
[f ]

and proxgSC
[f ]

proximal
operators are:

proxgHC
[f ]

= P[f ](f),

proxgSC
[f ]

=
1

2
(f + P[f ](f)).

(14)

Note that the 3D formulation of the proposed TV con-
strained reconstruction framework is rather straightforward
for both CI reconstruction and TV constrained regularized
selection.

C. Proposed reconstruction framework

This section presents how to practically reconstruct an
image within the Regularized-Selection (RS) framework. The
output of Algorithm 1 is the image f obtained after regu-
larizing the NIBEM (rsp. NIBART) algorithm with the RS
procedure for both HC and SC constraints.

Algorithm 1 is composed of two successive iterative steps,
each one is controlled by an iteration number. The first step is
the CI reconstruction step. As the process is not regularized,
an iteration number ItRec needs to be set to stop the iterative
process. In practice, ItRec is chosen according to the value
specified by the manufacturer for each corresponding usual
algorithm (ie. ML-EM or SIRT). The second step is the TV
constrained regularization step. For this step, there are two
cases. When HC constraint is considered, the Chambolle-Pock
minimization algorithm is run until convergence. In this case,
the step is considered as regularization hyper-parameter free
in the sense that no parameter is needed to set the balance
between data-fitting and regularization level. In the second
case, when considering the SC constraint, an iteration number

Algorithm 1 CI constrained TV regularization

Input:
Acquisition data: [p] = [p, p]
Reconstruction iteration number: ItRec
Regularization iteration number: ItReg

Output: Regularized reconstructed image f

FIRST STEP: CI constraint reconstruction
Initialization: [f0] = [1N , 1N ], 1N being the ones matrix in
RN
for k = 0 to ItRec do

if (MLEM) then
[fk+1] = B∗

(
[p]�P([fk])

)
� [fk]

else if (SIRT) then
[fk+1] = [fk]� λB∗

(
[p]�P([fk])

)
end if

end for
[f ] = [f , f ] = [f ItRec]

SECOND STEP: TV constrained RS
Initialization: v0 = 0N , n

0 = fcenter, w
0 = fcenter, with 0N

being the zero matrix in RN and fcenter =
1

2
(f + f)

for i = 0 to ItReg do
vi+1 = vi + wi − proxTV (v

i + wi)
if (HC) then
ni+1 = max(min(ni − 1

2
vi+1, f), f)

else if (SC) then
ni+1 =

1

2
(ni − 1

2
vi+1 + max(min(ni − 1

2
vi+1, f), f))

end if
wi+1 = 2.ni+1 − ni

end for
f = nItReg

return f

Fig. 1: Graphical illustration of HRS-NIBEM and SRS-
NIBEM reconstruction algorithms
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ItReg has to be set to control the regularization level of solution
f . The more iterations are performed, the more f is regularized.
As this step is computationally inexpensive, one could imagine
letting the physician decide which iteration corresponds to the
desired regularization level.

In the following, NIBEM reconstruction using an HC con-
straint for RS will be denoted HRS-NIBEM. When instead
using the SC constraint, the algorithm will be denoted SRS-
NIBEM. For the experiments, the proxTV implementation
proposed in [43], [44] was used.

III. EXPERIMENTS

Experiments were carried out to validate the proposed
regularization scheme and to quantitatively compare the pro-
posed method with usual ML-EM early-stop, Gaussian post-
smoothing and MAP-EM-OSL reconstruction using quadratic
[11] and TV [45] priors. Quantitative results were also com-
pared to a recent patch-based reconstruction method [14]. The
first experiment, presented in Section III-A aimed to investi-
gate the behavior of the proposed regularized reconstruction
scheme in terms of the spatial bias/variance trade-off. In the
second experiment, in Section III-B, the sensitivity to partial
volume effect of the proposed methods is addressed.

A. Spatial bias/variance trade-off

For this experiment, we investigated the behavior of the
proposed CI based constrained TV regularization in terms of
spatial bias and variance. In the first experiment of this section,
we compared the Contrast Recovery Coefficient (CRC) as a
function of the regularization weighting parameters of the pro-
posed reconstruction scheme to other regularization methods.
As the spatial bias/variance trade-off is difficult to evaluate,
we propose to use the spatial bias and variance estimation of
HRS-NIBEM reconstructions as a reference since this method
does not require parameters to set the regularization level (the
only parameter (ItRec) to select is chosen in accordance with
the value specified by the manufacturer for ML-EM). First, we
found the parameter for usual regularization methods to reach
the same variance level as the reference one and compared the
corresponding bias. Then we compared, for all tested methods,
the best bias level obtained and the corresponding variance
level.

1) Experimental setup: For this experiment, two different
phantoms were simulated: an analytical Jaszczak phantom
simulation and a more realistic Hoffman phantom acquisition
using [35]. A physical Jaszczak phantom acquisition was
also performed in clinical routine conditions to validate the
experiments using real data.

The Jaszczak-like phantom consisted of a 2D uniform disk
of 160 mm diameter including six hot regions with diameters
of 9.5, 11.1, 12.7, 15.9, 19.1 and 25.4 mm. The hot region
concentration was 4 times greater than the background con-
centration (Fig.2a). The Jaszczak-like phantom was digitalized
into a 128x128 image with 1.563 mm pixel size. The sinogram
was simulated with 128 linearly sampled detector bins and
128 angular views evenly spaced over 180o. The projection
matrix was computed using a rectangular measurement model,

implemented as described in [46]. Photon attenuation and
scatter were not simulated. Two different count levels were
simulated using a Poisson random generator (100k and 1M
expected events in the projection data).

2D PET data for the Hoffman phantom were simulated
using a realistic GATE [35] model of the Siemens Biograph
PET scanner. Only one slice of the phantom (Fig.2b) was
considered for this experiment and only coincidences located
within that cross-section were recorded. Two different count
levels were simulated (1M and 3M counts). Acquisitions were
corrected for attenuation, normalization, scatter and random.

The real Jaszczak phantom acquisition was performed using
a Siemens Biograph mCT20Flow. 18FDG was injected in the
phantom in order to obtain a 4:1 concentration ratio between
the hot spheres and the background. In this experiment, only
the four biggest spheres of the Jaszczak were used. Acqui-
sitions were corrected for attenuation, normalization, scatter
and random. 2D reconstructions were performed after FORE
rebinning [47] of the 3D data. In the following experiments,
we considered the transaxial slice that includes the centers of
the hot spheres.

(a) Jasczak-like (b) Hoffman brain

Fig. 2: Simulated phantoms and activity ratios

2) Data analysis: In order to quantitatively compare the
performance of the proposed method with other usual regular-
ization methods, we propose here to compare the mean tumor
Contrast Recovery Coefficient (CRC) versus the Standard
Deviation (SD) of a background region with uniform expected
activity values. For the Jaszczak phantom, we compared the
mean (CRC) in the hot spheres (4:1 ratio) versus a square
patch of background (1:1 ratio) located at the center of the
image. For the Hoffman phantom, we investigated the mean
CRC in the bigger tumor (1.5:1 ratio) versus the gray matter
(1:1 ratio) region considered as background. For real data, we
used the same methodology as for Jaszczak phantom. Inspired
by [14], the CRC, for the regularized reconstructed image was
computed as:

CRC =
|Atumor −Abackground|1
CR0 ×Abackground

, (15)

with CR0 being the normalization ratio between the ex-
pected tumor and the background activity (3 for simulated
Jaszczak phantom and real acquisition, 0.5 for the Hoffman
experiment), Atumor the mean activity value in the Region Of
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Interest (ROI) tumor, and Abackground the mean activity value
in the background.

Plots in Fig. 3 show the CRC versus the SD of the
background when varying the regularization weighting pa-
rameter of the corresponding method. For early-stop, the
number of iterations of the ML-EM reconstruction was used
as a regularization weighting parameter. For Gaussian post-
smoothing, the regularization weighting was performed by
varying the SD σ of the filtering Gaussian kernel. For MAP-
EM-OSL and patch-based edge-preserving reconstructions,
the regularization weighting parameter is denoted β. For the
proposed methods, HRS-NIBEM is considered regularization
hyper-parameter free as RS is run until convergence . For SRS-
NIBEM, the regularization level is set by the the number of
RS iterations.

To obtain these curves, we computed one noisy simulation
and two noise levels for each simulated phantom (100k and
1M in Fig. 3c and Fig. 3d for the Jaszczak phantom and 1M
and 3M in Fig. 3a and Fig. 3b for the Hoffman phantom).
Fig. 3e presents a comparison for real data acquisitions.

The behavior of the proposed method with respect to the
bias/variance tradeoff is highlighted by comparing the values
of normalized mean absolute error (NMAE) and normalized
mean variance (NMV) for the different regularization methods.
NMAE and NMV are respectively defined, for ROI R of N
pixels, by:

NMAER =
1

N

N∑
i=1

|fi − f true|
f true

,

NMVR =
1

N

N∑
i=1

(fi − fmean)2

f true
,

(16)

with f true being the ground truth value in uniform ROI R,
fmean being the mean reconstructed value in uniform ROI R
and fi the reconstructed value of the ith pixel in uniform ROI
R.

Considering two different ROIs representing tumors and
gray matter in realistic GATE simulations of 3M counts of
the Hoffman phantom (Fig. 2b), we tried to recover the
regularization parameters of the usual methods and SRS-
NIBEM that allow reconstruction of the images with the same
NMV as the HRS-NIBEM reference one. Results are presented
in Table I.

3) Results: For each phantom and each noise level, Fig.
3 presents quantitative comparisons of the mean tumor CRC
versus the SD of background noise as a function of the
regularization weighting parameter for each tested reconstruc-
tion algorithm. The performance of RS-NIBEM regularization
techniques are appealing. Indeed, for each of the simulations
(Fig. 3a,3b,3c,3d) and real acquisitions (Fig. 3e), the CRC at
any given background SD level is higher than the one obtained
with usual regularization methods. For the HRC-NIBEM re-
constructions, which do not make use of an hyper-parameter
to set the balance between data-fitting and the regularization
level, the CRC is higher than the other usual regularization
schemes for the same background SD (except for Hoffman

1M, where HRS-NIBEM CRC is slightly lower than MAP-
EM TV and the patch-based edge-preserving method [14]),
thus highlighting the competitiveness of this method. The
SRS-NIBEM reconstruction is likely to be more robust than
usual regularization schemes, and the quality competitiveness
of this approach in terms of CRC is even more noticeable for
low SD values, thus highlighting that SRS-NIBEM allows us
to reconstruct regularized images with a CRC in acceptable
ranges. It is also interesting to note the CRC peak obtained
for SRS-NIBEM in Fig.3b and Fig.3e, that can be considered
as the rupture point of the balance between the data-fitting
and regularization level. Indeed, from that point, SC allows
TV regularization to get the upper hand on the data fitting
constraint. Speaking of complexity, the computation time to
obtain a reconstruction of Hoffman 3M phantom for MAP-
EM TV algorithm lasted 7.5s. By comparison, 200 iterations of
SRS-NIBEM lasted 46.1s (24.1s for NIBEM CI reconstruction
and 22s for the 200 iterations of SRS).

To visually highlight the CRC comparison presented here,
in Fig. 6 we present the reconstructions of ML-EM, HRS-
NIBEM and SRS-NIBEM having the higher CRC for a real
Jaszczak-like phantom. For better CRC levels, RS-NIBEM
methods clearly achieve more interesting statistical variance
levels.

Table I presents the NMAE obtained for each methods for
the same NMV. For both tumors and gray matter, best results
were obtained with SRS-NIBEM. The second better results
were obtained with HRS-NIBEM for tumors but not for gray
matter.

Globally, RS-NIBEM methods allow us to obtain better
results than usual regularized reconstruction methods, for both
uniform large regions (SRS-NIBEM should be preferred) and
small tumors. As expected, HRS-NIBEM gives interesting
results for small tumors because the HC constraint prevents
the solution from over-smoothing and thus tends to prevent
the reconstructions from partial volume effects. However, SRS
performs better, for the same NMV level, than HRS-NIBEM in
terms of NMAE, especially in large uniform regions. Indeed,
as the gray matter is a large and uniform ROI, the TV
regularization term associated with the SC constraint allows to
better recover the uniformity of the ROI because the penalty
substantially reduces the perturbation of noisy pixels for which
the ground truth is not included in the intervals reconstructed
with NIBEM.

To visually highlight the results showed here, in Fig. 4, we
present the reconstructions with same variance level (NMV ≈
1.5) as HRS-NIBEM in gray matter (1:1 ratio) of 3M counts
of the Hoffman phantom.

In the last experiments, we investigated the NMAE obtained
for the same NMV with different reconstruction algorithms.
Now, for each algorithm, we computed reconstructions until
reaching the regularization hyper-parameter that allows us to
obtain the smallest global NMAE possible. Considering the
corresponding reconstructions of 100k Jaszczak phantom, we
compared the best achievable global NMAE and the NMV in
the background (1:1 ratio) between the different reconstruction
algorithms. The best results were obtained with RS-based
methods and MAP-EM TV. The corresponding reconstructions
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(a) Hoffman 1M counts (b) Hoffman 3M counts (c) Jaszczak 100k counts

(d) Jaszczak 1M counts (e) Jaszczak-like real acquisition (f) Legend

Fig. 3: Contrast recovery curves of tumor (Hoffman phantom) and hot spheres (Jaszczak phantoms) versus background SD
for the different regularization techniques. The curves were obtained by varying the corresponding regularization weighting
parameters.

ROI HRS-NIBEM MAP-EM quadratic MAP-EM TV Patch-based [14] Early-stop SRS-NIBEM

Regularization
parameter

free β = 0.003 β = 0.1 β = 0.07 It = 53 ItReg = 21

NMV 1.656 1.567 1.658 1.604 1.650 1.614

Tumor
3:1 ratio

NMAE 0.361 0.432 0.388 0.390 0.434 0.344

Regularization
parameter

free β = 0.013 β = 0.4 β = 0.6 It = 22 ItReg = 20

NMV 0.891 0.873 0.901 0.898 0.870 0.894

Tumor
2:1 ratio

NMAE 0.177 0.193 0.187 0.186 0.197 0.162

Regularization
parameter

free β = 0.025 β = 0.4 β = 0.6 It = 21 ItReg = 15

NMV 1.501 1.500 1.490 1.490 1.501 1.509

Gray matter
1:1 ratio

NMAE 0.165 0.162 0.158 0.160 0.155 0.155

TABLE I: Quantitative bias-variance tradeoff comparison for different ROI of 3M counts Hoffman phantom simulation.

(a) MAP-EM quadratic (b) MAP-EM TV (c) Patch-based [14] (d) ML-EM (e) HRS-NIBEM (f) SRS-NIBEM

Fig. 4: Typical reconstructions with regularization parameters chosen to obtain the same spatial variance (NMV=1.5) in the
gray matter of an Hoffman brain acquisition for 3M counts. The same colorscale was used for all figures.
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(a) MAP-TV
NMAE=0.043
NMV1:1=0.164

(b) HRS-NIBEM
NMAE=0.053
NMV1:1=0.153

(c) SRS-NIBEM
NMAE=0.034
NMV1:1=0.121

Fig. 5: Typical reconstructions with regularization parameters
chosen to obtain lower global NMAE possible for 100k
Jaszczak simulation (only MAP-TV, HRS-NIBEM and SRS-
NIBEM are presented since they provided the best results in
terms of global NMAE here). NMV values in the background
(1:1 ratio) for the same parameters are also displayed. The
same colorscale was used for all figures.

(a) ML-EM (b) HRS-NIBEM (c) SRS-NIBEM

(d) Intensity profiles along vertical line through the biggest ROI

Fig. 6: Real Jaszczak-like reconstructions with higher CRC
for a) ML-EM, b) HRS-NIBEM and c) SRS-NIBEM and d)
horizontal profiles through the center of the biggest hot sphere.
For vizualization matter, data were normalized in order to
obtain a mean background value of 1. Ratio expected between
hot sphere and background is 4:1.

are presented in Fig. 5. Other usual methods gave the following
results: MAP-EM quadratic: NMAE=0.089, NMV1:1=0.350;
Gaussian smoothing: NMAE=0.093, NMV1:1=0.479; ML-
EM: NMAE=0.086, NMV1:1 = 0.256. Thus, except for MAP-

EM TV which also gives interesting results, SRS-NIBEM
performs two times better in terms of global NMAE and NMV
in the background than the usual regularization methods. For
HRS-NIBEM, the quantitative improvement is about 60% in
terms of global NMAE and background NVM. As mentioned,
for this experiment where ”L1 like” priors are more adapted,
MAP-EM TV gives interesting results, but still not as effective
as those of SRS-NIBEM. Interesting quantitative properties
have been found for both HRS-NIBEM and SRS-NIBEM
reconstructions, however it is worth mentioning that point-
like artifacts can be present in HRS-NIBEM reconstructions
(Fig.4e,5b). SRS-NIBEM was designed to reduce these arti-
facts. It gave both quantitatively (Table. I) and qualitatively
(Fig.4e,5c,9c,9f) improved results when choosing the optimal
ItReg parameter. As the computational cost to perform SRS-
NIBEM reconstructions for different regularization levels is
relatively low, SRS-NIBEM seems a better option for clinical
use. Indeed, the choice of regularization level could be left to
the physician as it is directly related to the iteration number
of the second step. This operation would be computationally
inexpensive as it only consists of saving all iterations of the
SRS step.

B. Statistical sensitivity to partial volume effects
After investigating the spatial bias and variance properties

of the propose RS-NIBEM framework, we proposed in this
section to investigate the sensitivity to partial volume effects
of the reconstructed estimates.

1) Simulated setup: For this experiment, we used the same
simulation setup as in Section III-A1. In order to investigate
the statistical variability of the estimates, we simulated, for
both Jaszczak and Hoffman phantoms, K = 100 statistical
replicates for each considered count level.

2) Data analysis: For the Jaszczak phantom, for the K
reconstructions performed, for each sphere section i∈{2,4}
(with i being the index of the sphere sections from smallest
to biggest), the Central Intensity Recovery CIRpi,k for the
central pixel pi of each sphere of index i, for each replicate
k, was computed as:

CIRpi,k =
fpi,k
f truepi

, (17)

with fpi,k being the intensity value of pixel pi for replicate
k, and f truepi,k

being the ground truth expected value for this
same pixel.

For the Hoffman phantom, we also computed CIRpi,k as
in Eq. 17, for each tumor i∈{2,3} (with i being the index of
the tumor from the smallest activity ratio (1.5:1) to the highest
activity ratio (3:1) as displayed in Fig. 3).

The parameters that allow us to achieve the smallest global
NMAE in the whole image of the first replicate for both
Jaszczak and Hoffman phantoms were used for this experi-
ment.

To quantitatively compare the sensitivity of the reconstruc-
tion methods in terms of partial volume effect, we computed
the SRC through the K repetitions for each ROI of each
phantom. The results are presented in Fig. 7 for Jaszczak
phantoms and in Fig. 8 for Hoffman phantoms.
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3) Results: Concerning Jaszczak phantoms, the statistical
sensitivity of the reconstructed estimates to partial volume
effects using the proposed approach is appealing. Indeed,
HRS-NIBEM and SRS-NIBEM CIRs are always better than
CIRs obtained with usual methods either for mean bias or
dispersion. While the mean bias obtained with HRS-NIBEM
and SRS-NIBEM are slightly higher than those obtained with
the usual method, the difference remains in a reasonable
range. This statement is valid for both count levels. Dispersion
is always smaller for SRS-NIBEM, and comparable to that
obtained with the most efficient usual regularization scheme
in terms of CIR for HRS-NIBEM.

(a) 100k counts

(b) 1M counts

Fig. 7: CIR for Jaszczak phantoms

Experiments carried out on the more realistic Hoffman
phantom confirmed this trend. Quantitative results of statistical
sensitivity to partial volume effects for both SRS-NIBEM and
HRS-NIBEM reconstruction techniques are appealing in terms
of mean bias, with a reasonable estimated dispersion. In terms
of dispersion, they are overtaken by MAP-EM methods and
patch-based edge-preserving method that however give worse
CIR mean bias.

For visual assessment of the proposed framework, real
data acquired with a Siemens Biograph mCT 20 Flow scan-
ner 30 minutes after injection of 2.5 Mbq/Kg of 18F-FDG
were reconstructed using the proposed framework. Typical
reconstructions of a transaxial-slice of an healthy control
and a patient suffering from Alzheimer disease in clinical
acquisition conditions are presented in Fig. 9. Reconstructions
are qualitatively compatible with clinical routines.

(a) 1M counts

(b) 3M counts

Fig. 8: CIR for Hoffman phantoms

(a) fcenter (b) HRS-NIBEM (c) SRS-NIBEM

(d) fcenter (e) HRS-NIBEM (f) SRS-NIBEM

Fig. 9: Reconstruction of a trans-axial slice of a healthy control
(bottom row) and an Alzheimer’s disease patient (top row).
Data were acquired in clinical setting and reconstructed using
the proposed framework. (a) and (d) are obtained in output of
the first step. (b,c,e,f) are reconstructed with image smoothness
compatible with visual interpretation. The same colormap is
used for all of the presented slices.
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IV. CONCLUSION

We proposed in this paper a new framework for PET recon-
struction involving CI-based constrained TV regularization.
One of the features of the proposed methodology lies in the
fact that the reconstruction scheme is a two-step process.
We propose first to focus on reconstructing a convex-set of
admissible solutions that ensure the data fidelity and then, in
a second step, to select the most appropriate image according
to a regularization criterion under the constraint established in
step one.

In this paper, the proposed methodology was put into
practice using, for the first step, a new class of algorithms
that focus on statistical noise quantization. It makes it possible
to reconstruct stable and reliable CI. For the second step, the
widely used TV regularization function was used. In particular,
we investigated the properties of RS-NIBEM algorithms in
terms of the spatial and statistical bias/variance trade-off.
We showed with simulated and real data that HRC-NIBEM
reconstructions have appealing properties compared to the
usual regularization schemes in terms of the bias/variance
balance. The combination between the hard constraint and
the reconstructed CI used in this framework allows for the
design of a regularized algorithm that does not make data-
fitting compromises when regularizing the solution. Indeed,
the CI-constraint is a guarantee that over-smoothing will not
occur. An alternative to the hard constraint was also proposed.
The proposed soft constraint takes into account the fact that
currently reconstructed CI are not 100% CI. The SRS-NIBEM
allows us to reconstruct images with even more accurate
variance levels, keeping bias in reasonable ranges compared
to usual regularization procedures. Within this configuration,
the regularization level needs to be set by early-stopping the
second step. However, the optimization algorithm used [40]
was proven to be fast and efficient. It is thus straightforward
to reconstruct and select the reconstruction that best fits the
expected level of regularization.

RS-NIBEM has a potential scope of applications in detect-
ing small lesions, which is particularly relevant for oncological
imaging in which partial volume effects appear critical. Low-
dose PET reconstruction would undoubtedly benefit from such
an approach.

To conclude, it is also important to mention that the pro-
posed framework is generic. Indeed, it would benefit from
further work on CI reconstruction and from using more
sophisticated regularization functions such as [48]. The HRS-
NIBEM algorithm would still benefit from its over-smoothing
prevention nature. Nevertheless, other more complex soft
constraints could be worth considering by for example, making
use of prior anatomical information knowledge obtained by
using anatomical imaging such as CT or MR. Within this
framework, design of regularization procedures for specific
clinical application tasks could also be the focus of further
studies.
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