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Ces rappels de notions de mathématique le plus souvent enseignées 
dans les options scientifiques en fin de lycée sont nécessaires à une 
compréhension en profondeur du cours de biophysique (UE7) de PASS. 
L’étudiant qui estime avoir besoin de ces rappels est invité à les lire du 
début à la fin, de préférence avant l’étude du cours en lui-même. 
 

A-Fonction, limite et continuité 
 

Nous nous limitons à une fonction 𝑓  de la variable réelle 𝑥  définie dans un domaine  𝔇  de 
l‘ensemble des nombres réels ℝ (𝔇 ⊂ ℝ) à valeurs dans ℝ. 

Par définition, une telle fonction est une transformation qui à tout nombre réel 𝑥 ∈ 𝔇 associe un 
seul nombre réel noté 𝑓(𝑥). On note : 𝑓: 𝔇 → ℝ, 𝑥 → 𝑓(𝑥). 

Pour deux fonctions 𝑓  et 𝑔  de la variable réelle 𝑥 , on appelle fonction composée 𝑓 ∘ 𝑔  la 
transformation, quand elle existe, qui associe à un nombre réel 𝑥 le nombre réel 𝑓(𝑔(𝑥)). 

On dit que la fonction 𝑓(𝑥) a pour limite la valeur réelle 𝐿 lorsque 𝑥 tend vers la valeur réelle 𝑎, et 
on note 𝑙𝑖𝑚

𝑥→𝑎
 𝑓(𝑥) = 𝐿 si l’on peut rendre 𝑓(𝑥) aussi proche qu’on le souhaite de 𝐿 en choisissant 

n’importe quelle valeur de 𝑥 ∈ 𝔇 suffisamment proche de a. Pour qu’une limite existe, il est donc 
nécessaire que 𝑓(𝑥) tende vers la même valeur 𝐿 quelle que soit la façon dont 𝑥 tend vers 𝑎 (et 
en particulier que 𝑥 tende vers 𝑎 en restant inférieur ou supérieur à 𝑎). 

Une fonction 𝑓(𝑥) est continue en 𝑎 ∈ ℝ si la fonction 𝑙𝑖𝑚
𝑥→𝑎
 𝑓(𝑥) = 𝑓(𝑎). Par exemple, la fonction 

𝑓(𝑥) = sin (
1

𝑥
) n’est pas continue en 𝑥 = 0. On peut montrer en revanche (cf. annexe relative aux 

fonctions sinus et cosinus) que 𝑙𝑖𝑚
𝑥→0

 
sin(𝑥)

𝑥
= 1. La fonction 𝑠𝑖𝑛𝑐(𝑥) = sin(𝑥)

𝑥
 n’est pas définie en 

𝑥 = 0, mais elle peut être prolongée par continuité en posant 𝑠𝑖𝑛𝑐(0) ≝ 1, ce qui permet de 
définir cette fonction sur ℝ et de la rendre continue. 

 

RAPPELS DE 
MATHEMATIQUE 

PASS : POLYCOPIE DE COURS. ANNEE 2025-2026  

Pr DENIS MARIANO-GOULART 

 



2 
 

B- Dérivée, différentielle et dérivée partielle 
 

A la base du calcul différentiel et intégral formalisé par Isaac Newton et Gottfried Wilhem Leibniz 
dans la seconde partie du XVII° siècle, les notions et techniques de dérivée et d’intégration ont 
révolutionné la physique en ouvrant la voie au développement de modèles mathématiques pour 
comprendre les observations du monde dans lequel nous vivons. 

la dérivée d’une fonction 𝑦 = 𝑓(𝑥) permet de calculer en un point 𝑥 donné l’amplitude de la 
variation de la valeur prise par cette fonction par rapport à une variation infiniment petite de la 
variable 𝑥 . A titre d’exemple, pour la fonction qui double une variable, 𝑦 = 𝑓(𝑥) = 2. 𝑥 , si la 
variable 𝑥  augmente d’une quantité infiniment petite 𝑑𝑥 , la fonction prend la nouvelle valeur 
𝑓(𝑥 + 𝑑𝑥) = 2. (𝑥 + 𝑑𝑥) = 2. 𝑥 + 2. 𝑑𝑥 =𝑓(𝑥) + 2. 𝑑𝑥. La valeur de la fonction augmente donc de 
𝑑𝑓(𝑥) = 2. 𝑑𝑥. L’augmentation de la fonction 𝑑𝑓(𝑥) par rapport à l’augmentation de la variable 

𝑑𝑥 est donc 𝑑𝑓
(𝑥)

𝑑𝑥
= 2 : la dérivée de la fonction 𝑓(𝑥) = 2. 𝑥 est la fonction constante 𝑦 = 𝑓′(𝑥) =

2 pour tout 𝑥. 

 

Plus généralement, lorsqu’elle existe, on appelle dérivée 𝑦′ = 𝑓′(𝑥) de la fonction 𝑦 = 𝑓(𝑥) la 
fonction définie par : 

𝑓′(𝑥) ≝
𝑑𝑦

𝑑𝑥
≝
𝑑𝑓(𝑥)

𝑑𝑥
≝ 𝑙𝑖𝑚
𝑑𝑥→0

𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)

𝑑𝑥
 

La fonction 𝑑𝑓(𝑥)= 𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥) est appelée différentielle de 𝑓. Elle associe à chaque 
variable 𝑥 l’accroissement de la fonction 𝑓 lorsque la variable passe de 𝑥 à une valeur 
infiniment proche 𝑥 + 𝑑𝑥, avec 𝑑𝑥 → 0 (figure A-1). 

 

Figure A-1 : dérivée et différentielle d’une fonction 

Lorsque 𝑑𝑥 → 0, l’angle 𝛼 représenté ci-dessus tend vers la pente de la droite tangente à la 
courbe 𝑦 = 𝑓(𝑥) au point 𝑥. 
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Le tableau ci-dessous rappelle quelques règles de calcul de dérivées :  

FONCTION DERIVEE 

Constante k  𝑓(𝑥) = 𝑘 𝑓′(𝑥) = 0 

Produit d’une fonction par un réel 𝑓(𝑥) = 𝑘. 𝑔(𝑥) 𝑓′(𝑥) = 𝑘. 𝑔′(𝑥) 

Somme de deux fonctions 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) 𝑓′(𝑥) = 𝑔′(𝑥) + ℎ′(𝑥) 

Produit de deux fonctions 𝑓(𝑥) = 𝑔(𝑥). ℎ(𝑥) 𝑓′(𝑥) = 𝑔′(𝑥). ℎ(𝑥) + 𝑔(𝑥). ℎ′(𝑥) 

Puissance d’une fonction 𝑓(𝑥) = 𝑔𝑘(𝑥) 𝑓′(𝑥) = 𝑘. 𝑔𝑘−1(𝑥). 𝑔′(𝑥) 

Quotient de deux fonctions 𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
 𝑓′(𝑥) =

𝑔′(𝑥). ℎ(𝑥) − 𝑔(𝑥). ℎ′(𝑥)

ℎ2(𝑥)
 

Composition de deux fonctions 𝑓(𝑥) = 𝑔[ℎ(𝑥)] 𝑓′(𝑥) = ℎ′(𝑥). 𝑔′[ℎ(𝑥)] 

Puissance 𝑓(𝑥) = 𝑥𝑘 𝑓′(𝑥) = 𝑘. 𝑥𝑘−1 

Dans le cas d’une fonction de plusieurs variables réelles à valeur réelle de la forme 𝑓(𝑥, 𝑦), il est 
possible de calculer la dérivée suivant l’une ou l’autre de ces variables, en considérant la variable 
par rapport à laquelle on ne dérive pas comme une constante. On parle alors de dérivée partielle 

suivant la variable 𝑥 (par exemple) que l’on note (𝜕𝑓
(𝑥,𝑦)

𝜕𝑥
)
𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

ou plus simplement 𝜕𝑓
(𝑥,𝑦)

𝜕𝑥
. 

Par exemple, pour une onde progressive pure de la forme 𝐸(𝑥, 𝑡) = 𝐴. sin (𝜔. (𝑡 − 𝑥

𝑐
)), on calcule 

facilement : 𝜕𝐸
(𝑥,𝑡)

𝜕𝑥
= −

𝜔

𝑐
. 𝐴. cos (𝜔. (𝑡 −

𝑥

𝑐
)) et 𝜕𝐸

(𝑥,𝑡)

𝜕𝑡
= 𝜔.𝐴. cos (𝜔. (𝑡 −

𝑥

𝑐
)). 

Dans un espace euclidien doté d’une base orthonormée (donc de coordonnées cartésiennes), le 
vecteur (voir ci-dessous) dont les coordonnées sont données par les dérivées partielles suivant 
chacune des coordonnées d’une fonction de plusieurs variables 𝑓(𝑥, 𝑦) est appelé gradient de 𝑓 
et est noté Grad⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑓(𝑥, 𝑦) ou ∇⃗⃗ 𝑓(𝑥, 𝑦) : 

∇⃗⃗ 𝑓(𝑥, 𝑦) ≝

(

 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 )

  

La lettre ∇ en forme de lettre delta majuscule renversée est connue sous le nom de nabla en 
référence à sa forme de harpe et au nom grec correspondant.  

 

C-Intégration 
 

I-Définition 
Considérons une fonction 𝑓(𝑥) de la variable réelle 𝑥  définie et continue sur l’intervalle [𝑎, 𝑏]. 
Décomposons cet intervalle en 𝑛 intervalles disjoints [𝑥𝑖 , 𝑥𝑖+1] de largeur identique 𝑑𝑥, de sorte 
que pour tout entier 𝑖 variant de 0 à 𝑛 − 1 :  

𝑥𝑖+1 − 𝑥𝑖 =
𝑏−𝑎

𝑛
 ,  

𝑥𝑘 = 𝑎 + 𝑘.
𝑏−𝑎

𝑛
 (donc 𝑥0 = 𝑎 et 𝑥𝑛 = 𝑏) 
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Figure A-2 : Intégrale de Riemann 

Dans la figure A-2, chacun des rectangles hachurés a une aire de 𝑏−𝑎
𝑛
. 𝑓(𝑥𝑘)  pour 

𝑘 entier variant de 1 à 𝑛 dans l’image de gauche et de 0 à 𝑛 − 1 dans celle de droite. 

La somme des aires de ces rectangles est 𝐴1 =
𝑏−𝑎

𝑛
. ∑ 𝑓(𝑥𝑘)
𝑛
𝑘=1  et 𝐴2 =

𝑏−𝑎

𝑛
. ∑ 𝑓(𝑥𝑘)
𝑛−1
𝑘=0 .  

Si 𝑛 → ∞ , alors 𝑏−𝑎
𝑛
→ 0 , et les aires 𝐴1  et 𝐴2  tendent vers la même limite qui mesure l’aire 

délimitée par le graphe de 𝑓(𝑥)  et le segment [𝑎, 𝑏]  sur l’axe des 𝑥 . Cette limite est appelée 

intégrale (au sens de Riemann) de la fonction 𝑓 entre les bornes 𝑎 et 𝑏 et est notée ∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
 : 

∫ 𝒇(𝒙). 𝒅𝒙
𝒃

𝒂

≝ 𝐥𝐢𝐦
𝒏→∞

𝒃 − 𝒂

𝒏
.∑ 𝒇(𝒂 + 𝒌.

𝒃 − 𝒂

𝒏
)

𝒏

𝒌=𝟏

= 𝐥𝐢𝐦
𝒏→∞

𝒃 − 𝒂

𝒏
.∑ 𝒇(𝒂 + 𝒌.

𝒃 − 𝒂

𝒏
)

𝒏−𝟏

𝒌=𝟎

 

Notez que dans l’expression ∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
, la grandeur 𝑥 est une grandeur qui indique seulement la 

variable sur laquelle la fonction 𝑓 est sommée, ou intégrée. Elle joue donc un rôle similaire à celui 
de l’entier 𝑘  dans la somme discrète ∑ …𝑛

𝑘=1 . Comme cet entier, 𝑥  peut être remplacée par 
n’importe quelle autre lettre du moment qu’elle n’interfère pas avec les autres variables de 

l’intégrale : ∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑡). 𝑑𝑡

𝑏

𝑎
= ∫ 𝑓(𝑢). 𝑑𝑢

𝑏

𝑎
 𝑒𝑡𝑐.  On dit que la variable d’intégration est 

une variable muette. 

Quelques propriétés de l’intégrale découlent directement de sa définition : 

∫ 𝑓(𝑥). 𝑑𝑥
𝑎

𝑎

= 0 

∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎

= −∫ 𝑓(𝑥). 𝑑𝑥
𝑎

𝑏

 

∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎

+∫ 𝑓(𝑥). 𝑑𝑥
𝑐

𝑏

= ∫ 𝑓(𝑥). 𝑑𝑥
𝑐

𝑎

 

∫ (𝑓(𝑥) + 𝑔(𝑥)). 𝑑𝑥 =
𝑏

𝑎

∫ 𝑓(𝑥). 𝑑𝑥 + ∫ 𝑔(𝑥). 𝑑𝑥
𝑏

𝑎

𝑏

𝑎

 

∫ 𝑔(𝑡). 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
= 𝑔(𝑡). ∫ 𝑓(𝑥). 𝑑𝑥

𝑏

𝑎
 pour toute une fonction 𝑔(𝑡) ne dépendant pas de la variable 

𝑥. 
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II-Lien entre intégration et dérivation, primitive 
Un lien étroit entre dérivation et intégration va nous permettre de calculer de nombreuses 
intégrales. 

Considérons la fonction 𝑔(𝑥) = ∫ 𝑓(𝑡). 𝑑𝑡
𝑥

𝑎
. La variable 𝑥  détermine ici la limite supérieure de 

l’intervalle d’intégration. La dérivée 𝑔′(𝑥) de 𝑔(𝑥) s’écrit :  

𝑔′(𝑥) ≝ 𝑙𝑖𝑚
𝑑𝑥→0

𝑔(𝑥 + 𝑑𝑥) − 𝑔(𝑥)

𝑑𝑥
= 𝑙𝑖𝑚
𝑑𝑥→0

∫ 𝑓(𝑡). 𝑑𝑡
𝑥+𝑑𝑥

𝑎
− ∫ 𝑓(𝑡). 𝑑𝑡

𝑥

𝑎

𝑑𝑥
= 𝑙𝑖𝑚
𝑑𝑥→0

∫ 𝑓(𝑡). 𝑑𝑡
𝑥+𝑑𝑥

𝑥

𝑑𝑥
 

Calculons l’intégrale ∫ 𝑓(𝑡). 𝑑𝑡
𝑥+𝑑𝑥

𝑥
≝ lim
𝑛→∞

𝑑𝑥

𝑛
. ∑ 𝑓 (𝑥 + 𝑘.

𝑑𝑥

𝑛
)𝑛

𝑘=1  : lorsque 𝑛 → ∞, chaque terme 

de la somme tend vers 𝑓(𝑥). La somme tend donc vers 𝑛. 𝑓(𝑥), et donc ∫ 𝑓(𝑡). 𝑑𝑡
𝑥+𝑑𝑥

𝑥
= 𝑑𝑥. 𝑓(𝑥). 

La dérivée cherchée est donc 𝑔′(𝑥) = 𝑙𝑖𝑚
𝑑𝑥→0

∫ 𝑓(𝑡).𝑑𝑡
𝑥+𝑑𝑥

𝑥

𝑑𝑥
= 𝑓(𝑥). 

La fonction 𝒈(𝒙) = ∫ 𝒇(𝒕). 𝒅𝒕
𝒙

𝒂
 admet donc pour dérivée 𝒈′(𝒙) = 𝒇(𝒙). 

En d’autres termes, 𝑓(𝑥) est la dérivée de toute fonction de la forme 𝐹(𝑥) = 𝑔(𝑥) + 𝐶 où 𝐶 est 
une constante. Comme 𝐹(𝑎) = 𝑔(𝑎) + 𝐶 = ∫ 𝑓(𝑡). 𝑑𝑡 + 𝐶 = 𝐶

𝑎

𝑎
, et 𝑔(𝑥) = ∫ 𝑓(𝑡). 𝑑𝑡

𝑥

𝑎
= 𝐹(𝑥) −

𝐹(𝑎). En particulier, pour tout 𝑏 réel ∫ 𝑓(𝑡). 𝑑𝑡
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) si la dérivée de 𝐹 est la fonction 𝑓. 

La fonction 𝐹 dont la dérivée 𝐹′ = 𝑓 est appelée primitive de 𝑓. Elle est définie à une constante 
additive près. On la note parfois simplement 𝐹(𝑥) = ∫𝑓(𝑥). 𝑑𝑥 ou 𝐹 = ∫𝑓 et on utilise souvent la 
notation 𝐹(𝑏) − 𝐹(𝑎) ≝ [𝐹(𝑥)]𝑎𝑏  . Il s’ensuit une méthode pour calculer les intégrales de 
fonctions dont on connait une primitive :  

∫ 𝑭′(𝒙). 𝒅𝒙
𝒃

𝒂

= [𝑭(𝒙)]𝒂
𝒃 = 𝑭(𝒃) − 𝑭(𝒂) 

Par exemple, puisque 𝑓(𝑥) = 𝑥 est la dérivée de la primitive 𝐹(𝑥) = 𝑥2

2
, ∫ 𝑥. 𝑑𝑥
𝑏

𝑎
= [

𝑥2

2
]
𝑎

𝑏

=
𝑏2−𝑎2

2
. 

 

Une autre astuce permet de calculer certaines intégrales. Elle est fondée sur la relation 
précédente et celle évoquée plus haut donnant la dérivée du produit de deux fonctions :  

𝑓(𝑥) = 𝑔(𝑥). ℎ(𝑥) ⟹ 𝑓′(𝑥) = 𝑔′(𝑥). ℎ(𝑥) + 𝑔(𝑥). ℎ′(𝑥).  

En combinant ces deux relations, on obtient :  

∫ (𝑔. ℎ)′(𝑥). 𝑑𝑥
𝑏

𝑎
= ∫ (𝑔′(𝑥). ℎ(𝑥) + 𝑔(𝑥). ℎ′(𝑥)). 𝑑𝑥

𝑏

𝑎
= [𝑔(𝑥). ℎ(𝑥)]𝑎

𝑏  , et donc : 

∫ 𝑔′(𝑥). ℎ(𝑥). 𝑑𝑥
𝑏

𝑎

= [𝑔(𝑥). ℎ(𝑥)]𝑎
𝑏 −∫ 𝑔(𝑥). ℎ′(𝑥). 𝑑𝑥

𝑏

𝑎

 

Cette relation dite d’intégration par parties permet par exemple de calculer des intégrales de 

produit de fonction de la forme ∫ 𝑒−𝜆.𝑥. 𝑥. 𝑑𝑥
𝑏

𝑎
= [−

1

𝜆
. 𝑒−𝜆.𝑥. 𝑥]

𝑎

𝑏
− ∫ −

1

𝜆
. 𝑒−𝜆.𝑥 . 1. 𝑑𝑥

𝑏

𝑎
.  

En particulier, ∫ 𝑒−𝜆.𝑥. 𝑥. 𝑑𝑥
∞

0
= −[

𝑥

𝜆
. 𝑒−𝜆.𝑥]

0

∞
+
1

𝜆
∫ 𝑒−𝜆.𝑥 . 𝑑𝑥
∞

0
= −[

𝑥

𝜆
. 𝑒−𝜆.𝑥]

0

∞
+
1

𝜆
. [−

1

𝜆
. 𝑒−𝜆.𝑥]

0

∞
. 
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Le premier terme −[𝑥
𝜆
. 𝑒−𝜆.𝑥]

0

∞
= 0 − 0 = 0 . Le second vaut − 1

𝜆2
. [𝑒−𝜆.𝑥]

0

∞
=

1

𝜆2
. On a donc 

finalement ∫ 𝑥. 𝑒−𝜆.𝑥 . 𝑑𝑥
∞

0
=

1

𝜆2
. 

 

III-Interprétation 
La première interprétation d’une intégrale découle directement de la définition que nous en 

avons donnée : ∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
 est l’aire limitée par le graphe de la fonction 𝑓(𝑥) et le segment [𝑎, 𝑏] 

sur l’axe des 𝑥. Cette approche est utile en particulier pour calculer des surfaces ou des volumes.  

 

En physique, la notion d’intégrale permet aussi et surtout peut-être de sommer des grandeurs 
continues déterminées par les valeurs d’une fonction continue de la variable réelle 𝑓(𝑥). La 
définition que nous avons donnée de l’intégrale s’écrit en effet sous la forme : 

1

𝑏 − 𝑎
∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎

≝ lim
𝑛→∞

 
1

𝑛
∑𝑓(𝑥𝑘) 𝑎𝑣𝑒𝑐 𝑥𝑘 = 𝑎 + 𝑘. 𝑑𝑥

𝑛

𝑘=1

 𝑒𝑡 𝑑𝑥 =
𝑏 − 𝑎

𝑛
 

En ce sens, une intégrale est une forme de « somme continue ». 

Pour illustrer cette interprétation, considérons la fonction de la variable réelle 𝑓(𝑥) = 𝑥 , et 
calculons la somme discrète  ∑ 𝑓(𝑘) = 1 + 2 +  3 + ⋯+ 𝑛 = ∑ 𝑘𝑛

𝑘=1
𝑛
𝑘=1 . 

On a aussi   ∑ 𝑓(𝑘) = 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1𝑛
𝑘=1 . 

En sommant ces deux équations, on obtient pour tout 𝑛 entier : 

2. ∑ 𝑓(𝑘) = 𝑛 + 1 + 𝑛 + 1 + 𝑛 + 1 +⋯+ 𝑛 + 1 = 𝑛. (𝑛 + 1)𝑛
𝑘=1 ⟹

1

𝑛
. ∑ 𝑓(𝑘) =

𝑛+1

2
𝑛
𝑘=1  . 

On peut aussi calculer la « somme continue » 1

𝑛−1
∫ 𝑥. 𝑑𝑥
𝑛

1
=

1

𝑛−1
[
𝑥2

2
]
1

𝑛

=
1

𝑛−1
(
𝑛2

2
−
1

2
) =

1

𝑛−1
(
𝑛2−1

2
) =

1

𝑛−1

(𝑛−1).(𝑛+1)

2
=
𝑛+1

2
. On obtient bien : 1

𝑛−1
∫ 𝑥. 𝑑𝑥
𝑛

1
=
1

𝑛
. ∑ 𝑘𝑛
𝑘=1  pour tout 𝑛 entier. 

Une autre illustration est l’établissement de l’équation (43) donnant l’intensité d’une onde 
progressive après diffraction par une fente rectangulaire de largeur 𝑏 , qui nous a amené à 
sommer toutes les ondes progressives sphériques de la forme 𝑔𝑡(𝑥) = 𝐴0. sin(𝜔. 𝑡 − 𝜑𝑟 −
Θ. 𝑥) qui émergent de la fente de diffraction pour des valeurs de 𝑥 réelles variant continûment 

dans l’intervalle [− 𝑏
2
, +

𝑏

2
]. Cette somme s’écrit lim

𝑛→∞
 
1

𝑛
∑ 𝑓(𝑥𝑘) 𝑎𝑣𝑒𝑐 𝑥𝑘 = −

𝑏

2
+ 𝑘. 𝑑𝑥𝑛

𝑘=1  𝑒𝑡 𝑑𝑥 =

𝑏

𝑛
 et se calcule donc par l’intégrale 1

𝑏
∫ 𝑔𝑡(𝑥). 𝑑𝑥
+𝑏/2

−𝑏/2
. 

 
Enfin, d’après ce qui précède, l’intégrale permet aussi de généraliser le calcul d’une moyenne 
arithmétique et de calculer la moyenne 𝒇̅ des valeurs que prend une fonction continue sur un 
intervalle [𝑎, 𝑏] suivant : 

𝑓̅ =
1

𝑏 − 𝑎
∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎

 

A titre d’exemple, pour établir la puissance surfacique moyenne d’un son pur (équation 1-19), 
nous avons eu besoin de déterminer la valeur moyenne entre 0 et 2𝜋 de la fonction sin2(𝑥). Celle-
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ci est identique à celle de la fonction cos2(𝑥), un cosinus ne se différenciant d’un sinus que par 
une translation de l’origine du repère de 𝜋

2
 radians (cf. infra). Cette valeur moyenne se calcule en 

utilisant la relation sin2(𝑥) + cos2(𝑥) = 1  suivant : 𝑠𝑖𝑛̅̅ ̅̅ = 𝑐𝑜𝑠̅̅̅̅̅ =
1

2.𝜋
∫ sin2(𝑥) . 𝑑𝑥 =
2.𝜋

0
1

2.𝜋
∫ cos2(𝑥) . 𝑑𝑥
2.𝜋

0
=

1

4.𝜋
∫ [sin2(𝑥) + cos2(𝑥)]. 𝑑𝑥 =

1

4.𝜋
∫ 𝑑𝑥 =

2.𝜋

4.𝜋
=
1

2

2.𝜋

0

2.𝜋

0
. 

 

D-Fonctions sinus et cosinus 
 

I-Définitions 
Les fonctions sinus et cosinus jouent un rôle essentiel en physique car elles permettent de 
modéliser tous les phénomènes périodiques dans le temps ou l’espace (voir le paragraphe 
suivant relatif à la transformation de Fourier). Elles sont par ailleurs fort utiles pour calculer les 
longueurs des projections d’un segment de droite sur les axes d’un repère orthonormé. 

Dans un repère orthonormé (O,x,y), considérons un cercle de rayon 1 centré en l’origine O du 
repère. Ce cercle est appelé « cercle trigonométrique ». Chaque point M de ce cercle peut être 
repéré par l’angle orienté 𝜔. 𝑡 que fait le rayon OM avec l’axe horizontal (O,x) du repère (figure A-
3). Le paramètre 𝜔 est une constante réelle appelée pulsation propre.  

La variable réelle 𝑡 peut varier de 0 à l’infini. Pour fixer les idées, supposons que cette variable 
modélise le temps. Dans ce cas, la pulsation propre 𝝎 s’exprime en rad/s. 

 

Figure A-3 : Fonctions sinus et cosinus 

On définit le sinus de l’angle 𝜔. 𝑡, noté sin(𝜔. 𝑡), par la longueur de la projection du rayon 
OM sur l’axe vertical (O,y). La fonction f(𝑡) = sin(𝜔. 𝑡) qui à chaque variable 𝑡 associe la valeur 
de sin(𝜔. 𝑡) est représentée dans la partie supérieure de la figure A-3. Elle s’annule pour 𝜔. 𝑡 =
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0 (ou 2. 𝜋) radians et 𝜔. 𝑡 = 𝜋 radians, est maximale à +1 pour 𝜔. 𝑡 = 𝜋

2
 radians et minimale à -1 

pour 𝜔. 𝑡 = 3.𝜋

2
. 

La projection sur l’axe (Oy) du rayon OM est inchangée si l’angle 𝜔. 𝑡 augmente de 2. 𝜋 (ce qui 
correspond à un tour complet). En conséquence,  

𝑓(𝑡) = sin(𝜔. 𝑡) = sin(𝜔. 𝑡 + 2. 𝜋) = sin (𝜔. (𝑡 +
2. 𝜋

𝜔
)) =𝑓 (𝑡 +

2. 𝜋

𝜔
) 

La fonction sinus est donc périodique de période 𝑇 = 2.𝜋

𝜔
 (son graphe pour 𝑡 ∈ [0, 𝑇[ se répète à 

l’identique pour 𝑡 ∈ [𝑇, 2. 𝑇[ , 𝑡 ∈ [2. 𝑇, 3. 𝑇[ etc). En définissant la fréquence (en s-1 ) par l’inverse 

de la période, 𝑓 ≝ 1

𝑇
 ,on a les relations 𝝎 = 𝟐.𝝅

𝑻
= 𝟐.𝝅. 𝒇 . La fonction 𝑓(𝑡) s’exprime aussi sous la 

forme 𝒇(𝒕) = 𝐬𝐢𝐧(𝝎. 𝒕) = 𝐬𝐢𝐧(𝟐. 𝝅. 𝒇. 𝒕) = 𝐬𝐢𝐧 (𝟐. 𝝅. 𝒕
𝑻
) .  

Il découle de sa définition que la fonction sinus est impaire : sin(𝜔. 𝑡) = − sin(−𝜔. 𝑡) pour tout 𝑡. 

On définit le cosinus de façon similaire par la longueur de la projection du rayon OM sur 
l’axe horizontal (O,x). La fonction 𝑓(𝑡) = 𝑐𝑜𝑠(𝜔. 𝑡) qui à chaque variable 𝑡 associe la valeur de 
cos(𝜔. 𝑡)  est représentée dans la partie inférieure de la figure A-3. Elle s’annule pour 𝜔. 𝑡 =
𝜋

2
 ou 

3.𝜋

2
, est maximale à +1 pour 𝜔. 𝑡 = 0 ou 2. 𝜋 radians et minimale à -1 pour 𝜔. 𝑡 = 𝜋 radians. 

On constate que la fonction cosinus se déduit directement de la fonction sinus en remplaçant la 

variable 𝜔. 𝑡 par 𝜔. 𝑡 + 𝜋

2
 : cos(𝜔. 𝑡) =  sin (𝜔. 𝑡 + 𝜋

2
), ce qui revient à translater l’origine du repère 

de 𝜋
2

 radians. Comme la fonction sinus, la fonction cosinus est donc périodique de période 𝑇 =
2.𝜋

𝜔
. Sa définition implique que la fonction cosinus est paire : cos(𝜔. 𝑡) = cos(−𝜔. 𝑡) pour tout 𝑡. 

 

Le théorème de Pythagore montre par ailleurs que 𝒄𝒐𝒔𝟐(𝝎. 𝒕) + 𝒔𝒊𝒏𝟐(𝝎. 𝒕) = 𝟏 pour tout angle 
𝜔. 𝑡. 

Les fonctions sinus et cosinus sont donc analogues. On les qualifie de fonctions circulaires. 
Elles ne sont pas linéaires ( sin(𝛼 + 𝛽) ≠ sin(𝛼) + sin(𝛽) ), mais de nombreuses équations 
(connues sous le nom de formules de trigonométrie) permettent de les manipuler. Les plus 
utiles sont les formules d’addition et de factorisation suivantes ( cos(𝑎 − 𝑏) ,  sin(𝑎 − 𝑏)  et 
sin(𝑝) − sin(𝑞) s’en déduisent immédiatement en utilisant la parité du cosinus et l’imparité du 
sinus): 

cos(𝑎 + 𝑏) = cos(𝑎). cos(𝑏) − sin(𝑎). sin(𝑏) et donc cos(𝑎 − 𝑏) = cos(𝑎). cos(𝑏) + sin(𝑎). sin(𝑏) 

sin(𝑎 + 𝑏) = sin(𝑎). cos(𝑏) + cos(𝑎). sin(𝑏) et donc sin(𝑎 − 𝑏) = sin(𝑎). cos(𝑏) − cos(𝑎). sin(𝑏) 

cos(𝑝) + cos(𝑞) = 2. cos (
𝑝 + 𝑞

2
) . cos (

𝑝 − 𝑞

2
) 

cos(𝑝) − cos(𝑞) = −2. sin (
𝑝 + 𝑞

2
) . sin (

𝑝 − 𝑞

2
) . 

sin(𝑝) + sin(𝑞) = 2. sin (
𝑝+𝑞

2
) . cos (

𝑝−𝑞

2
) et donc sin(𝑝) − sin(𝑞) = 2. sin (𝑝−𝑞

2
) . cos (

𝑝+𝑞

2
) . 

Lorsque les arguments angulaires 𝛼  sont petits, il est possible de donner une approximation 
polynomiale des fonctions circulaires (développement de Mac Laurin) suivant : 
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cos𝛼 = 1 −
𝛼2

2!
+
𝛼4

4!
−
𝛼6

6!
+ ⋯

𝛼→0
→  1 

sin𝛼 = 𝛼 −
𝛼3

3!
+
𝛼5

5!
−
𝛼7

7!
+ ⋯

𝛼→0
→  𝛼 

La factorielle de l’entier 𝑛 étant définie par le produit des n premiers entiers : 𝑛! = 𝑛. (𝑛 − 1).… .2. 
Une conséquence du développement de la fonction sinus est que la fonction sinus cardinal 

notée sinc et définie par 𝒔𝒊𝒏𝒄(𝜶) ≝ 𝐬𝐢𝐧𝜶

𝜶
 tend vers 1 quant 𝛼 → 0 , puisqu’au voisinage de 0 , 

𝑠𝑖𝑛𝑐(𝛼) ≈
𝜶

𝜶
. 

Enfin, pour tout angle 𝜔. 𝑡 différent d’un multiple de 𝜋
2
, la droite (OM) intersecte la droite 

x=1 (qui est la tangente au cercle trigonométrique passant par le point A(1,0)) en un point T. La 
tangente de l’angle 𝜔. 𝑡 est alors définie par la valeur algébrique du segment 𝐴𝑇̅̅ ̅̅ , c’est-à-dire par 
la longueur du segment 𝐴𝑇 affublée du signe de l’ordonnée du point T (cf. figure A-3). Comme 
sin(𝜔.𝑡)

cos(𝜔.𝑡)
=
𝐴𝑇̅̅ ̅̅

1
= 𝐴𝑇̅̅ ̅̅ , la fonction tangente qui à chaque angle 𝜔. 𝑡  non multiple de 𝜋

2
 associe la 

tangente de cet angle s’identifie à 𝒕𝒂𝒏(𝝎. 𝒕) = 𝐬𝐢𝐧(𝝎.𝒕)

𝐜𝐨𝐬(𝝎.𝒕)
. Cette fonction s’annule en 𝜔. 𝑡 = 0, puis 

croit jusqu’à l’infini quant 𝜔. 𝑡 → 𝜋

2
. La définition 𝑡𝑎𝑛(𝜔. 𝑡) = 𝐴𝑇̅̅ ̅̅  permet de constater que la 

fonction 𝑡𝑎𝑛(𝜔. 𝑡)  est périodique, de période 𝑇′ = 𝜋

𝜔
. Les fonctions sinus et cosinus étant 

respectivement impaire et paire, la fonction tangente est impaire : 𝑡𝑎𝑛(𝜔. 𝑡) = −𝑡𝑎𝑛(−𝜔. 𝑡) pour 
tout 𝑡. 

 

II-Dérivées 
La dérivée de la fonction sinus se calcule suivant 𝑠𝑖𝑛′(𝑥) = 𝑑 sin(𝑥)

𝑑𝑥
= lim
𝑑𝑥→0

sin(𝑥+𝑑𝑥)−sin(𝑥)

𝑑𝑥
. En 

utilisant la formula d’addition donnée ci-dessus, on obtient 

 𝑠𝑖𝑛′(𝑥) = 𝑑 sin(𝑥)

𝑑𝑥
= lim
𝑑𝑥→0

2.sin(
𝑑𝑥

2
).cos(

2.𝑥+𝑑𝑥

2
)

𝑑𝑥
= lim
𝑑𝑥→0

sin(
𝑑𝑥

2
)

𝑑𝑥

2

. cos (
2.𝑥+𝑑𝑥

2
). Quand 𝑑𝑥 → 0, le premier 

facteur est un sinus cardinal qui tend vers 1. Le second tend vers cos(𝑥).La dérivée de la fonction 
sinus est la fonction cosinus :  

𝑠𝑖𝑛′(𝑥) =
𝑑 sin(𝑥)

𝑑𝑥
= cos(𝑥) 

De même 𝑐𝑜𝑠′(𝑥) = lim
𝑑𝑥→0

cos(𝑥+𝑑𝑥)−cos(𝑥)

𝑑𝑥
= lim
𝑑𝑥→0

−2.sin(
2.𝑥+𝑑𝑥

2
).sin(

𝑑𝑥

2
)

𝑑𝑥
= lim
𝑑𝑥→0

−
sin(

𝑑𝑥

2
)

𝑑𝑥

2

. sin (
2.𝑥+𝑑𝑥

2
). 

Quand 𝑑𝑥 → 0 , le premier facteur tend vers -1. Le second tend vers sin(𝑥) .La dérivée de la 
fonction cosinus est la fonction moins sinus :  

𝑐𝑜𝑠′(𝑥) =
𝑑 cos(𝑥)

𝑑𝑥
= −sin(𝑥) 

Ces résultats s’étendent aux fonctions 𝑓(𝑡) = 𝑠𝑖𝑛(𝜔. 𝑡) ou 𝑓(𝑡) = 𝑐𝑜𝑠(𝜔. 𝑡) en se souvenant de 
la dérivée d’une fonction composée (𝑓 ∘ 𝑔)′(𝑡) = 𝑔′(𝑡). 𝑓′[𝑔(𝑡)] avec dans ce cas 𝑓 = 𝑠𝑖𝑛 ou 𝑐𝑜𝑠 
et 𝑔(𝑡) = 𝜔. 𝑡, soit 𝑔′(𝑡) = 𝜔. On obtient : 

𝑠𝑖𝑛′(𝜔. 𝑡) = 𝜔. cos(𝜔. 𝑡) 
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𝑐𝑜𝑠′(𝜔. 𝑡) = −𝜔. sin(𝜔. 𝑡) 

La dérivée de la fonction 𝑡𝑎𝑛(𝑥) se calcule à partir de la dérivée d’un rapport de deux fonctions : 

𝑡𝑎𝑛′(𝑥) = (
sin(𝑥)

cos(𝑥)
)

′

=
sin′(𝑥). cos(𝑥) − sin(𝑥) cos ′(𝑥)

𝑐𝑜𝑠2(𝑥)
=
𝑐𝑜𝑠2(𝑥) + 𝑠𝑖𝑛2(𝑥)

𝑐𝑜𝑠2(𝑥)
=

1

𝑐𝑜𝑠2(𝑥)
 

𝑡𝑎𝑛′(𝜔. 𝑡) =
𝜔

𝑐𝑜𝑠2(𝜔. 𝑡)
 

FONCTION DERIVEE 

Sinus 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) 𝑓′(𝑥) = 𝑐𝑜𝑠(𝑥) 

Cosinus 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥) 𝑓′(𝑥) = −𝑠𝑖𝑛(𝑥) 

Tangente 𝑓(𝑥) = 𝑡𝑎𝑛(𝑥) 𝑓′(𝑥) =
1

cos2(𝑥)
= 1 + 𝑡𝑎𝑛2(𝑥) 

 

III-Intégration 
Les primitives étant connues pour les fonctions sinus et cosinus, l’intégration de celles-ci est 
immédiate : 

∫ sin(𝜔. 𝑡). 𝑑𝑡 = [−
1

𝜔
cos(𝜔. 𝑡)]

𝑡1

𝑡2

= −
1

𝜔
[cos(𝜔. 𝑡2) + cos(𝜔. 𝑡2)]

𝑡2

𝑡1

 

∫ cos(𝜔. 𝑡). 𝑑𝑡 = [
1

𝜔
sin(𝜔. 𝑡)]

𝑡1

𝑡2

=
1

𝜔
[sin(𝜔. 𝑡2) + sin(𝜔. 𝑡2)]

𝑡2

𝑡1

 

 

IV-Interprétation géométrique : projections 
Les fonctions circulaires sont aussi utiles pour évaluer les longueurs 0𝐴𝑥 et 0𝐴𝑦 de la projection 
d’un segment 𝑟 = 𝑂𝐴 sur les axes d’un repère orthonormé (𝑂, 𝑥, 𝑦) du plan, suivant la figure A-4 :  

 

Figure A-4 : Interprétation géométrique des fonction sinus et cosinus. 
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Dans le triangle (𝑂, 𝐴, 𝐴𝑥), le théorème de Thalès permet d’écrire 1
𝑟
=
𝑐𝑜𝑠(𝛼)

𝐴𝑥
=
sin(𝛼)

𝐴𝑦
. Il s’ensuit 

immédiatement que : 

𝑨𝒚 = 𝒓. 𝐬𝐢𝐧(𝜶) 

𝑨𝒙 = 𝒓. 𝐜𝐨𝐬(𝜶) 

Dans tout triangle rectangle donc, le sinus (respectivement le cosinus) d’un angle (du 
triangle différent de l’angle droit) est égal au rapport du côté opposé (respectivement 
adjacent) à l’angle par l’hypoténuse. 

 

E-Série de Fourier 
 

Ce paragraphe constitue un complément plus technique accessible à de bons élèves de 
terminale, mais généralement non encore enseigné à ce niveau d’études.  
Soit g(t) est une fonction périodique de période T, continue par morceaux (avec un nombre fini de 
points de discontinuité sur une période), alors : 
 
 
 
 
 
 
 
 

avec 𝑎𝑛 =
2

𝑇
. ∫ 𝑔(𝜏). cos(𝑛. 𝜔. 𝜏). 𝑑𝜏
𝑇

0
 et 𝑏𝑛 =

2

𝑇
. ∫ 𝑔(𝜏). sin(𝑛. 𝜔. 𝜏). 𝑑𝜏
𝑇

0
. 

Cette décomposition de la fonction 𝑔(𝑡)  en somme de fonctions circulaires est appelée 
décomposition en série de Fourier. 
 
Démontrons ce résultat : Pour tout entier p positif ou nul, multiplions les deux membres de 
l’équation précédente par 𝑐𝑜𝑠[(𝑝𝜔)𝑡]. Nous obtenons : 

𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡) =
𝑎0
2
. 𝑐𝑜𝑠(𝑝𝜔𝑡) + 𝑐𝑜𝑠(𝑝𝜔𝑡).∑𝑎𝑛. 𝑐𝑜𝑠(𝑛𝜔𝑡)

∞

𝑛=1

+ 𝑐𝑜𝑠(𝑝𝜔𝑡).∑ 𝑏𝑛. 𝑠𝑖𝑛(𝑛𝜔𝑡)

∞

𝑛=1

 

En intégrant les deux membres de cette égalité entre 0 et T, on obtient : 

∫ 𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡
𝑇

0

=
𝑎0
2
.∫ 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡

𝑇

0

+∑𝑎𝑛. ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑐𝑜𝑠(𝑛𝜔𝑡)𝑑𝑡
𝑇

0

∞

𝑛=1

+∑𝑏𝑛. ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑠𝑖𝑛(𝑛𝜔𝑡)𝑑𝑡
𝑇

0

∞

𝑛=1

 

L’intégrale dans le 3° terme de cette somme est toujours nulle :  

∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑠𝑖𝑛(𝑛𝜔𝑡)𝑑𝑡
𝑇

0

=
1

2
∫ sin[(𝑛 − 𝑝)𝜔𝑡] + sin[(𝑛 + 𝑝)𝜔𝑡]𝑑𝑡
𝑇

0

 

𝑛 = 𝑝 ⟹ ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑠𝑖𝑛(𝑛𝜔𝑡)𝑑𝑡
𝑇

0
=
1

2
∫ 𝑠𝑖𝑛(2𝑛𝜔𝑡)𝑑𝑡
𝑇

0
 =0. 

𝑔(𝑡) =
𝑎0
2
+∑𝑎𝑛. cos[(𝑛. 𝜔). 𝑡]

∞

𝑛=1

+∑𝑏𝑛. sin[(𝑛. 𝜔). 𝑡]

∞

𝑛=1

 

𝑔(𝑡) =
𝑎0
2
+∑𝑎𝑛. cos[(𝑛. 𝜔). 𝑡]

∞

𝑛=1

+ 𝑏𝑛. sin[(𝑛. 𝜔). 𝑡] 
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𝑛 ≠ 𝑝 ⟹ ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑠𝑖𝑛(𝑛𝜔𝑡)𝑑𝑡
𝑇

0

 

=
1

2
∫ sin[(𝑛 − 𝑝)𝜔𝑡]𝑑𝑡+
𝑇

0

1

2
∫ sin[(𝑛+ 𝑝)𝜔𝑡]𝑑𝑡 = 0
𝑇

0
. 

= −
1

2
([
𝑐𝑜𝑠 [(𝑛 − 𝑝)

2𝜋
𝑇
𝑡]

(𝑛 − 𝑝)
2𝜋
𝑇

]

0

𝑇

+ [
𝑐𝑜𝑠 [(𝑛 + 𝑝)

2𝜋
𝑇
𝑡]

(𝑛 + 𝑝)
2𝜋
𝑇

]

0

𝑇

) = 0 

Il s’ensuit que :  

∫ 𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡
𝑇

0

=
𝑎0
2
.∫ 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡

𝑇

0

+∑𝑎𝑛 . ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑐𝑜𝑠(𝑛𝜔𝑡)𝑑𝑡
𝑇

0

∞

𝑛=1

 

Le calcul de l’intégrale du premier terme donne : 

𝑝 = 0 ⟹ ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡
𝑇

0
= ∫ 𝑑𝑡 = 𝑇

𝑇

0
, 

et 𝑝 ≠ 0 ⟹ ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡 = [
𝑠𝑖𝑛(𝑝𝜔𝑡)

𝑝𝜔
]
0

𝑇𝑇

0
=
𝑠𝑖𝑛[(𝑝

2𝜋

𝑇
).𝑇]

𝑝.(
2𝜋

𝑇
)

−
𝑠𝑖𝑛[0]

𝑝.(
2𝜋

𝑇
)
= 0. 

et celui de la dernière intégrale :   

𝑝 = 𝑛 ⟹ ∫ 𝑐𝑜𝑠(𝑝𝜔𝑡). 𝑐𝑜𝑠(𝑛𝜔𝑡)𝑑𝑡
𝑇

0
=
𝑇

2
  

𝑒𝑡 𝑝 ≠ 𝑛 ⟹ ∫ 𝑐𝑜𝑠[(𝑝𝜔)𝑡]. 𝑐𝑜𝑠[(𝑛𝜔)𝑡]𝑑𝑡
𝑇

0
=
1

2
. ∫ [𝑐𝑜𝑠[((𝑝 + 𝑛)𝜔)𝑡] + 𝑐𝑜𝑠[((𝑝 − 𝑛)𝜔)𝑡]] 𝑑𝑡
𝑇

0
= 0.  

On a donc :       𝑝 = 0 ⟹ ∫ 𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡
𝑇

0
= ∫ 𝑔(𝑡). 𝑑𝑡

𝑇

0
=
𝑎0

2
. 𝑇 

𝑝 ≠ 0 ⟹ ∫ 𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡
𝑇

0

= 𝑎𝑝. ∫ 𝑐𝑜𝑠2(𝑝𝜔𝑡). 𝑑𝑡
𝑇

0

= 𝑎𝑝
𝑇

2
 

Et donc pour tout 𝑝 entier (éventuellement nul) : 

𝑎𝑝 =
2

𝑇
.∫ 𝑔(𝑡). 𝑐𝑜𝑠(𝑝𝜔𝑡)𝑑𝑡

𝑇

0

 

Le même raisonnement, en multipliant cette fois les deux membres de l’équation proposée 
par 𝑠𝑖𝑛(𝑝𝜔𝑡), donne l’expression attendue des amplitudes 𝑏𝑝. 

Une formulation équivalente peut être déduite de la décomposition en série de Fourier que nous 
venons de prouver en définissant le nombre 𝐴𝑛 suivant 𝑎𝑛 ≝ 𝐴𝑛. cos𝜑𝑛 et 𝑏𝑛 ≝ 𝐴𝑛. sin𝜑𝑛.  

Dans ces conditions : 

tan𝜑𝑛 =
sin𝜑𝑛

cos𝜑𝑛
=
𝑏𝑛

𝑎𝑛
 ,  

𝑎𝑛
2 + 𝑏𝑛

2 = 𝐴𝑛
2 . (𝑐𝑜𝑠2𝜑𝑛 + 𝑠𝑖𝑛

2𝜑𝑛) = 𝐴𝑛
2 ⟹ 𝐴𝑛 = √𝑎𝑛

2 + 𝑏𝑛
2 , 

et ∑ 𝑎𝑛. cos[(𝑛. 𝜔). 𝑡]
∞
𝑛=1 + ∑ 𝑏𝑛. sin[(𝑛. 𝜔). 𝑡]

∞
𝑛=1 = ∑ 𝑎𝑛. cos[(𝑛. 𝜔). 𝑡]

∞
𝑛=1 + 𝑏𝑛. sin[(𝑛. 𝜔). 𝑡] 

En utilisant la relation de trigonométrie cos𝑝 . cos 𝑞 + sin𝑝 . sin 𝑞 = cos(𝑝 − 𝑞), et en introduisant 
la variable 𝐴𝑛, et le terme sommé s’écrit : 
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𝑎𝑛. cos[(𝑛. 𝜔). 𝑡] + 𝑏𝑛. sin[(𝑛. 𝜔). 𝑡] = 𝐴𝑛. (cos[(𝑛. 𝜔). 𝑡]. cos𝜑𝑛 + sin[(𝑛. 𝜔). 𝑡]. sin𝜑𝑛) 

= 𝐴𝑛. cos[(𝑛. 𝜔). 𝑡 − 𝜑𝑛]. 

On obtient donc :  

𝑔(𝑡) =
𝑎0
2
+∑𝐴𝑛. 𝑐𝑜𝑠[(𝑛𝜔)𝑡 − 𝜑𝑛]

∞

𝑛=1

=
𝑎0
2
+∑𝐴𝑛. 𝑠𝑖𝑛 [(𝑛𝜔)𝑡 +

𝜋

2
− 𝜑𝑛]

∞

𝑛=1

 

Soit puisque 𝜔 = 2. 𝜋. 𝑓, 𝑔(𝑡) = 𝑎0

2
+∑ 𝐴𝑛. 𝑐𝑜𝑠[(2𝜋. 𝑓. 𝑛)𝑡 + 𝜑𝑛]

∞
𝑛=1   

avec 𝐴𝑛 ≝ √𝑎𝑛2 + 𝑏𝑛2 𝑒𝑡 tan𝜑𝑛 ≝ tan−1 (
𝑏𝑛

𝑎𝑛
). 

On constate donc que toute fonction périodique de période 𝑇 = 1

𝑓
 , continue par morceaux, peut 

effectivement être décomposée en une somme de fonctions cosinus (ou sinus) de fréquences 
égales à celle de la fonction et à ses multiples. Cette décomposition se généralise facilement à 
tout signal physique à support borné (c’est-à-dire nulle en dehors d’un intervalle [0, 𝑇]). 

 

F- Fonctions exponentielle et logarithme 
 

Pour tout réel positif non nul (∀ 𝑥 ∈ ℝ+∗ ), on définit la fonction logarithme népérien (ou en base 

e) de 𝑥, notée 𝒍𝒏(𝒙) ou 𝒍𝒐𝒈𝒆(𝒙) la fonction primitive de la fonction inverse 𝑥 → 1

𝑥
 qui s’annule en 

𝑥 = 1, ce qui revient à écrire : 

∀ 𝑥 ∈ ℝ+
∗ , 𝑙𝑛(𝑥) = ∫

1

𝑡
𝑑𝑡

𝑥

1
 et 𝑙𝑛′(𝑥) = 𝑑 𝑙𝑛(𝑥)

𝑑𝑥
≝
1

𝑥
 

La fonction 𝑙𝑛(𝑥) donne donc l’aire sous la courbe de la fonction inverse 𝑥 → 1

𝑥
 dans l’intervalle 

[1, 𝑥]. Elle est strictement croissante sur ℝ+∗ , négative si 𝑥 < 1 puis positive si 𝑥 > 1, tendant vers 
−∞ quand 𝑥 → 0 et vers +∞ quand 𝑥 → +∞, suivant le graphe ci-dessous. 

 

Figure A-5 : Fonctions logarithme népérien et exponentielle 
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De cette définition et de la loi de dérivation de la composition de deux fonctions rappelée ci-
dessus (paragraphe « dérivée, différentielle et dérivée partielle »), on déduit que pour toute 

fonction 𝑓(𝑥)  à valeurs strictement positives, la dérivée [𝑙𝑛(𝑓(𝑥))]
′
=
𝑑 𝑙𝑛[𝑓(𝑥)]

𝑑𝑥
=
𝑓′(𝑥)

𝑓(𝑥)
=

𝑑𝑓(𝑥)

𝑑𝑥

𝑓(𝑥)
 

soit plus simplement 𝑑 𝑙𝑛[𝑓] = 𝑑𝑓

𝑓
, un résultat utile pour établir la loi de Weber-Fechner (équation 

1-23). 

 
Comme (𝑥. 𝑙𝑛(𝑥) − 𝑥)′ = 𝑙𝑛(𝑥) + 𝑥

𝑥
− 1 = 𝑙𝑛(𝑥), une primitive de la fonction 𝑙𝑛(𝑥) s’écrit : 

∫ ln(𝑥) = 𝑥. 𝑙𝑛𝑥 − 𝑥. 

Le logarithme népérien vérifie la relation suivante : 

𝑙𝑛(𝑥. 𝑦) = 𝑙𝑛(𝑥) + 𝑙𝑛(𝑦) 

En effet, pour tout réel k, la dérivée de la fonction 𝑓𝑘(𝑥) = 𝑙𝑛(𝑘. 𝑥)  est 𝑓𝑘
′(𝑥) =

𝑘. 𝑙𝑛′(𝑘. 𝑥) = 𝑘.
1

𝑘.𝑥
=
1

𝑥
= 𝑙𝑛′(𝑥). Les fonctions 𝑙𝑛(𝑘. 𝑥) et 𝑙𝑛(𝑥) ont donc même dérivées 

et sont donc égales à une constante additive 𝐾 près : 𝑙𝑛(𝑘. 𝑥) = 𝑙𝑛(𝑥) + 𝐾. Pour 𝑥 = 1, 
cette relation donne : 𝑙𝑛(𝑘) = 𝑙𝑛(1) + 𝐾 = 𝐾, et donc : 𝑙𝑛(𝑘. 𝑥) = 𝑙𝑛(𝑥) + 𝑙𝑛(𝑘). 

Il découle de cette relation que pour tout réel y : 𝑙𝑛(𝑥𝑦) = 𝑦. 𝑙𝑛(𝑥) et 𝑙𝑛 (𝑥
𝑦
) = 𝑙𝑛(𝑥) − 𝑙𝑛(𝑦). 

Enfin, un logarithme peut aussi être évaluée dans toute base b, et en particulier en base 10. La 

fonction logarithme en base 10 est définie par 𝑙𝑜𝑔10(𝑥) =
𝑙𝑛(𝑥)

𝑙𝑛(10)
 (et, plus généralement, 

𝑙𝑜𝑔𝑏(𝑥) =
𝑙𝑛(𝑥)

𝑙𝑛(𝑏)
). Les règles de calcul évoquées ci-dessus s’appliquent pour des logarithmes de 

toute base. 

 

Par définition, la fonction exponentielle, notée 𝒆𝒙𝒑(𝒙) ou 𝒆𝒙  est la fonction réciproque de la 
fonction 𝑙𝑛(𝑥) ∶  𝑙𝑛(𝑒𝑥) = 𝑒𝑙𝑛(𝑥) ≝ 𝑥. Son graphe est donc le symétrique de celui de la fonction 
logarithme par rapport à la première bissectrice (droite 𝑦 = 𝑥). Il est représenté sur la figure A-5. 
La fonction exponentielle est définie sur ℝ où elle est croissante, tendant vers 0 quand 𝑥 → −∞ 
et vers +∞ quand 𝑥 → +∞, en passant par 1 pour 𝑥 = 0. 

En dérivant les deux membres de l’équation définissant l’exponentielle 𝑒𝑥𝑝(𝑙𝑛(𝑥)) ≝ 𝑥  on 
obtient 𝑙𝑛′(𝑥). 𝑒𝑥𝑝′(𝑙𝑛(𝑥)) ≝ 1 ⟹ 𝑒𝑥𝑝′(𝑙𝑛(𝑥)) = 𝑥. La dérivée de la fonction exponentielle est 
donc la fonction réciproque de la fonction 𝑙𝑛(𝑥). Il s’agit donc de la fonction 𝑒𝑥𝑝(𝑥) elle-même : 
(𝑒𝑥)′ = 𝑒𝑥. Cette propriété est spécifique de la fonction exponentielle.  

De même, 𝑒𝑥 est une primitive de la fonction exponentielle : ∫ 𝑒𝑥 = 𝑒𝑥 

La fonction exponentielle est aussi la seule fonction vérifiant 𝑒𝑥+𝑦 = 𝑒𝑥 . 𝑒𝑦 pour tout 𝑥 et 𝑦 réels.  

En effet, 𝑙𝑛(𝑒𝑥+𝑦) = 𝑥 + 𝑦 = 𝑙𝑛(𝑒𝑥) + 𝑙𝑛(𝑒𝑦) = 𝑙𝑛(𝑒𝑥. 𝑒𝑦) ⟹ 𝑒𝑥+𝑦 = 𝑒𝑥. 𝑒𝑦. 

Plus généralement, les règles de calculs bien connues pour les puissances s’appliquent à la 
fonction exponentielle qui s’identifie à l’élévation à la puissance 𝑥 d’un nombre réel 𝑒 ≈ 2,72. 



15 
 

La fonction réciproque de la fonction 𝑙𝑜𝑔10(𝑥) est la fonction 𝑥 → 10𝑥 = 𝑒𝑥.𝑙𝑛(10). 

FONCTION DERIVEE 

Exponentielle 𝑓(𝑥) = 𝑒𝑥 𝑓′(𝑥) = 𝑒𝑥 

Logarithme népérien 𝑓(𝑥) = 𝑙𝑛(𝑥) 𝑓′(𝑥) =
1

𝑥
 

 

Deux remarques vont mettre en lumière le grand intérêt de la fonction exponentielle en physique : 

1- Lorsque la variable x augmente d’une constante additive, 𝑥 → 𝑥 + 𝐾, l’exponentielle de 
cette variable est multipliée par une constante∶ 𝑦 = 𝑒𝑥 → 𝑒𝐾 . 𝑒𝑥 = 𝑒𝐾 . 𝑦. Par exemple, si 
𝐾 = 10, toute augmentation de 10 de la variable conduira à une multiplication par 𝑒10 ≈
22 026  de l’exponentielle. C’est ce qui définit une « croissance exponentielle » d’une 
grandeur 𝑦 par rapport au paramètre 𝑦 qui la définit. 

2- Plus important peut-être est le lien entre exponentielle et modélisation d’un phénomène 
physique aléatoire : chaque fois que des objets physiques (des particules par exemple) 
subissent une interaction de façon aléatoire avec une probabilité proportionnelle à une 
certaine grandeur (le temps, la distance parcourue etc.), la mise en équation de ce 
phénomène conduit à caractériser le nombre d’objets n’ayant pas interagit par une loi 
exponentielle décroissante. Le paragraphe 3-H-IV en détaille un exemple à propos de 
décroissance radioactive. Une modélisation similaire conduit à la même loi exponentielle 
décroissante par exemple pour l’interaction de particules non chargées (photons, 
neutrons) avec de la matière.  

 

G- Vecteur, produit scalaire et produit vectoriel 
 

I-Vecteurs 
Commençons par quelques définitions : de façon réductrice mais suffisante pour le propos de 
cet ouvrage, nous définissons un vecteur 𝑉⃗ = 𝐴𝐵⃗⃗⃗⃗  ⃗ comme un couple de points (ordonné) dans un 
espace euclidien. Le point  𝐴  est appelé origine ou point d’application du vecteur 𝐴𝐵⃗⃗⃗⃗  ⃗ . La 
direction du vecteur 𝐴𝐵⃗⃗⃗⃗  ⃗  est la droite passant par 𝐴  et par 𝐵 . Son sens est de 𝐴  vers 𝐵 . La 
longueur du segment [𝐴, 𝐵] est appelée norme du vecteur 𝐴𝐵⃗⃗⃗⃗  ⃗ et est notée ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ . Un vecteur de 
norme 1 est dit unitaire. 

Deux vecteurs 𝐴𝐵⃗⃗⃗⃗  ⃗ et 𝐶𝐷⃗⃗⃗⃗  ⃗ sont dits équipollents si la figure (𝐴, 𝐵, 𝐶, 𝐷) forme un parallélogramme, 
c’est-à-dire si le milieu du segment [𝐴, 𝐶]  coïncide avec le milieu du segment [𝐵, 𝐷] . Deux 
vecteurs équipollents ont donc même direction, même sens et même norme et peuvent être 
considérés comme égaux (dans un sens où l’origine des vecteurs n’est pas prise en compte dans 
la relation d’égalité). 

La relation de Chasles découle de la définition de la somme de deux vecteurs : 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐶⃗⃗⃗⃗  ⃗ = 𝐴𝐶⃗⃗⃗⃗  ⃗. 
Pour tout point 𝐴, le vecteur 𝐴𝐴⃗⃗⃗⃗  ⃗ = 0⃗  est appelé vecteur nul et permet de définir 𝐵𝐴⃗⃗⃗⃗  ⃗ = −𝐴𝐵⃗⃗⃗⃗  ⃗ 
comme vecteur opposé de 𝐴𝐵⃗⃗⃗⃗  ⃗ puisque 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐴⃗⃗⃗⃗  ⃗ = 𝐴𝐴⃗⃗⃗⃗  ⃗ = 0⃗ = 𝐴𝐵⃗⃗⃗⃗  ⃗ − 𝐴𝐵⃗⃗⃗⃗  ⃗. 
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Pour tout nombre réel 𝑥 > 0 (respectivement 𝑥 < 0), le vecteur 𝑥. 𝐴𝐵⃗⃗⃗⃗  ⃗  est le vecteur de même 
direction, de même sens (respectivement de sens opposé) que 𝐴𝐵⃗⃗⃗⃗  ⃗ et de norme |𝑥|. ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ . 

 

II-Produit scalaire 
Le produit scalaire de deux vecteurs 𝑈⃗⃗  et 𝑉⃗  faisant entre eux un angle (𝑈⃗⃗ , 𝑉⃗ )̂  est un nombre réel 

noté 𝑈⃗⃗ . 𝑉⃗  et défini par le produit des normes de ces deux vecteurs et du cosinus de l’angle entre 
ces deux vecteurs : 

𝑈⃗⃗ . 𝑉⃗ ≝  ‖𝑈⃗⃗ ‖. ‖𝑉⃗ ‖. cos(𝑈⃗⃗ , 𝑉⃗ )̂   

Le produit scalaire de deux vecteurs orthogonaux est donc nul (𝑐𝑜𝑠(𝑢⃗  , 𝑣 ̂ )= 𝑐𝑜𝑠(90°) = 0). 

Quelques propriétés du produit scalaire sont notables : 

1- Le produit scalaire est commutatif : 𝑈⃗⃗ . 𝑉⃗ = 𝑉⃗ . 𝑈⃗⃗  
 

2- Le produit scalaire est associatif pour l’addition vectorielle : 𝑈⃗⃗ . (𝑉⃗ + 𝑊⃗⃗⃗ ) = 𝑈⃗⃗ . 𝑉⃗ + 𝑈⃗⃗ . 𝑊⃗⃗⃗  
 

3- Si deux vecteurs 𝑈⃗⃗  et 𝑉⃗  sont orthogonaux, alors cos(𝑈⃗⃗ , 𝑉⃗ )̂ = cos (
𝜋

2
) = 0 et :  

𝑈⃗⃗ ⊥ 𝑉⃗ ⟹ 𝑈⃗⃗ . 𝑉⃗ = 0. 
 

4- 𝑈⃗⃗ . 𝑈⃗⃗ =  ‖𝑈⃗⃗ ‖. ‖𝑈⃗⃗ ‖. cos(𝑈⃗⃗ , 𝑈⃗⃗ )̂ = ‖𝑈⃗⃗ ‖
2
. cos(0) et donc : 𝑈⃗⃗ . 𝑈⃗⃗ = ‖𝑈⃗⃗ ‖

2
 

 
5- Un vecteur  𝑢⃗  de norme 1 est qualifié de vecteur unitaire. 

 

6- Le vecteur 𝑢⃗ = 𝐴𝐵⃗⃗ ⃗⃗  ⃗

‖𝐴𝐵⃗⃗ ⃗⃗  ⃗‖
 est le vecteur unitaire dirigé le long de la droite (A,B) dans le sens de 

A vers B. Son produit scalaire 𝑢⃗ . 𝐴𝐵⃗⃗⃗⃗  ⃗  avec le vecteur 𝐴𝐵⃗⃗⃗⃗  ⃗  s’identifie à la norme ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ qui 
n’est rien d’autre que la distance de A à B. 
 

7- si ‖𝑈⃗⃗ ‖ = 1 , alors 𝑈⃗⃗ . 𝑉⃗ =  ‖𝑉⃗ ‖. cos(𝑈⃗⃗ , 𝑉⃗ )̂  s’identifie à la longueur de la projection du 

vecteur 𝑉⃗  sur la direction qui porte le vecteur unitaire 𝑈⃗⃗ . 

 
Dans un espace euclidien à 3 dimensions doté d’un repère orthonormé (0, 𝑥, 𝑦, 𝑧) et muni d’une 
base de trois vecteurs unitaires orthogonaux (𝑒𝑥⃗⃗⃗⃗ , 𝑒𝑦⃗⃗⃗⃗  , 𝑒𝑧⃗⃗  ⃗), un vecteur quelconque 𝑈⃗⃗  peut être 

décomposé de façon unique en une combinaison linéaire des vecteurs de la base suivant 𝑈⃗⃗ =
𝑈𝑥 . 𝑒𝑥⃗⃗⃗⃗ + 𝑈𝑦. 𝑒𝑦⃗⃗⃗⃗ + 𝑈𝑧. 𝑒𝑧⃗⃗  ⃗. Le triplet de 3 nombres réels (𝑈𝑥 , 𝑈𝑦 , 𝑈𝑧)  définit les coordonnées du 

vecteur 𝑈⃗⃗  dans la base (𝑒𝑥⃗⃗⃗⃗ , 𝑒𝑦⃗⃗⃗⃗  , 𝑒𝑧⃗⃗  ⃗). Ce triplet vérifie 𝑈𝑥 = 𝑈⃗⃗ . 𝑒𝑥⃗⃗⃗⃗ , 𝑈𝑦 = 𝑈⃗⃗ . 𝑒𝑦⃗⃗⃗⃗  et 𝑈𝑧 = 𝑈⃗⃗ . 𝑒𝑧⃗⃗  ⃗.  

Dans ces conditions, le produit scalaire de deux vecteurs 𝑈⃗⃗ (𝑈𝑥 , 𝑈𝑦, 𝑈𝑧) et 𝑉⃗ (𝑉𝑥 , 𝑉𝑦, 𝑉𝑧) s’exprime 

sous la forme 𝑈⃗⃗ . 𝑉⃗ = (𝑈𝑥 . 𝑒𝑥⃗⃗⃗⃗ + 𝑈𝑦. 𝑒𝑦⃗⃗⃗⃗ + 𝑈𝑧. 𝑒𝑧⃗⃗  ⃗). (𝑉𝑥 . 𝑒𝑥⃗⃗⃗⃗ + 𝑉𝑦. 𝑒𝑦⃗⃗⃗⃗ + 𝑉𝑧. 𝑒𝑧⃗⃗  ⃗) . En développant, et 

compte tenu du fait que ‖𝑒𝑥⃗⃗⃗⃗ ‖2 = ‖𝑒𝑦⃗⃗⃗⃗ ‖
2
= ‖𝑒𝑧⃗⃗  ⃗‖

2 = 1 et 𝑒𝑥⃗⃗⃗⃗ . 𝑒𝑦⃗⃗⃗⃗ = 𝑒𝑥⃗⃗⃗⃗ . 𝑒𝑧⃗⃗  ⃗ = 𝑒𝑦⃗⃗⃗⃗ . 𝑒𝑧⃗⃗  ⃗ = 0, on obtient : 

𝑈⃗⃗ . 𝑉⃗ = 𝑈𝑥𝑉𝑥 + 𝑈𝑦𝑉𝑦 + 𝑈𝑧𝑉𝑧. 
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Dans le cas où 𝑉⃗ = 𝑈⃗⃗ , ce résultat permet de calculer la norme d’un vecteur par rapport à ses 

coordonnées : 𝑈⃗⃗ . 𝑈⃗⃗ = 𝑈𝑥2 + 𝑈𝑦2 + 𝑈𝑧2 = ‖𝑈⃗⃗ ‖
2
⇒ ‖𝑈⃗⃗ ‖ = √𝑈𝑥

2 + 𝑈𝑦
2 + 𝑈𝑧

2 

Enfin, puisque 𝑈⃗⃗ . 𝑉⃗ =  ‖𝑈⃗⃗ ‖. ‖𝑉⃗ ‖. cos(𝑈⃗⃗ , 𝑉⃗ )̂ , l’angle entre deux vecteurs 𝑈⃗⃗  et 𝑉⃗  non nuls s’exprime 
en fonction de leurs coordonnées suivant : 

cos(𝑈⃗⃗ , 𝑉⃗ )
̂ =

𝑈⃗⃗ . 𝑉⃗ 

‖𝑈⃗⃗ ‖. ‖𝑉⃗ ‖
=

𝑈𝑥𝑉𝑥 + 𝑈𝑦𝑉𝑦 + 𝑈𝑧𝑉𝑧

√𝑈𝑥
2 + 𝑈𝑦

2 + 𝑈𝑧
2. √𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2

 

III-Produit vectoriel 
La définition du produit vectoriel nécessite de définir une orientation de l’espace. Considérons 
pour cela deux vecteurs 𝑈⃗⃗  et 𝑉⃗  dans le plan (𝑂, 𝑥, 𝑦)  faisant entre eux un angle 𝛼 =

(𝑈⃗⃗ , 𝑉⃗ )
̂  compté positivement dans le sens de  𝑈⃗⃗  vers 𝑉⃗ : un vecteur dont la direction est 

perpendiculaire à 𝑈⃗⃗  et 𝑉⃗  peut avoir deux sens opposés, soit 𝑊1⃗⃗ ⃗⃗  ⃗ 𝑒𝑡 𝑊2⃗⃗ ⃗⃗  ⃗ suivant la partie gauche de 
la figure A-6 : 

  

 

Figure A-6 : Produit vectoriel  𝑈⃗⃗ ⋀𝑉⃗  de deux vecteurs 𝑈⃗⃗  𝑒𝑡 𝑉⃗ . 

Dans cette configuration, on qualifie de direct le trièdre (𝑈⃗⃗ , 𝑉⃗ ,𝑊1⃗⃗ ⃗⃗  ⃗) , et d’indirect le trièdre 

(𝑈⃗⃗ , 𝑉⃗ ,𝑊2⃗⃗ ⃗⃗  ⃗). 

On définit le produit vectoriel noté 𝑼⃗⃗ ⋀𝑽⃗⃗  deux vecteurs 𝑈⃗⃗  et 𝑉⃗  faisant entre eux un angle 𝛼 =

(𝑈⃗⃗ , 𝑉⃗ )̂  compté positivement dans le sens de 𝑈⃗⃗  vers 𝑉⃗  par : 

1- 𝑈⃗⃗ ⋀𝑉⃗  est un vecteur perpendiculaire au plan contenant les deux vecteurs 𝑈⃗⃗  et 𝑉⃗  
2- Le trièdre (𝑈⃗⃗ , 𝑉⃗ , 𝑈⃗⃗ ∧ 𝑉⃗ ) est direct 

3- ‖𝑈⃗⃗ ∧ 𝑉⃗ ‖ =  ‖𝑈⃗⃗ ‖. ‖𝑉⃗ ‖. sin(𝑈⃗⃗ , 𝑉⃗ )̂   

Un moyen pratique permet de déterminer facilement le sens de 𝑈⃗⃗ ∧ 𝑉⃗  : il suffit d’imaginer que 
l’on se sert d’un tire-bouchon positionné au point d’application commun des vecteurs 𝑈⃗⃗  et 𝑉⃗  
pour faire tourner 𝑈⃗⃗  de manière à le rapprocher de 𝑉⃗ . La direction donnée par le déplacement du 
tire-bouchon donne le sens de 𝑈⃗⃗ ∧ 𝑉⃗ . 
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H- Calcul de l’accélération dans un mouvement circulaire uniforme 
 

Dans un référentiel fixe immobile (F), considérons un objet ponctuel en mouvement sur une 
trajectoire circulaire de rayon R à une vitesse angulaire 𝜔 (en 𝑟𝑎𝑑/𝑠) constante. La norme de la 
vitesse de l’objet est elle-même constante et vaut 𝑣 = ‖𝑣 ‖ = 𝑅.𝜔. En revanche, la direction de 

cette vitesse varie au fil du temps, ce qui confère à l’objet une accélération 𝑎 = 𝑑𝑣⃗ 

𝑑𝑡
 que nous 

allons calculer.  

La figure A-7 montre la variation de la direction de la vitesse de l’objet 𝑑𝑣 = 𝑣 (𝑡 + 𝑑𝑡) − 𝑣 (𝑡) 
entre deus instants 𝑡 et 𝑡 + 𝑑𝑡 infiniment proches (𝑑𝑡 → 0). 

 

Figure A-7 : Accélération d’un mobile en mouvement circulaire uniforme. 

Lorsque 𝑑𝑡 → 0, la direction de 𝑑𝑣  est portée par le rayon de la trajectoire et pointe vers le centre 
de la trajectoire. Cette variation de vitesse dans l’intervalle de temps 𝑑𝑡 crée une accélération 

centripète 𝑎𝐹⃗⃗ ⃗⃗ =
𝑑𝑣⃗ 

𝑑𝑡
. Les directions des vecteurs 𝑣 (𝑡 + 𝑑𝑡)  et −𝑣 (𝑡)  étant perpendiculaires à 

celles qui définissent l’angle 𝜔. 𝑑𝑡, ces deux vecteurs font entre-eux me même angle 𝜔. 𝑑𝑡. La 
norme du vecteur 𝑑𝑣  tend donc vers la longueur de l’arc 𝑣.𝜔. 𝑑𝑡 lorsque 𝑑𝑡 → 0.  

Si 𝑑𝑡 → 0 donc, l’accélération 𝑎𝐶𝑃 = ‖𝑎 𝐶𝑃‖ =
‖𝑑𝑣⃗ ‖

𝑑𝑡
=
𝑣.𝜔.𝑑𝑡 

𝑑𝑡
= 𝑣. 𝜔. 

Mais la norme de la vitesse 𝑣 = ‖𝑣 ‖ = 𝑅.𝜔 ⟹ 𝜔 =
𝑣

𝑅
. Il s’ensuit que l’accélération centripète 

𝑎𝐶𝑃 qui permet à l’objet de suivre une trajectoire circulaire de rayon 𝑅  à vitesse angulaire 
uniforme est : 

𝑎𝐶𝑃 =
𝑣2

𝑅
 

Dans le modèle atomique de Bohr, cette accélération centripète est générée par la force 
électrostatique qu’exercent les charges positives des protons du noyau sur un électron atomique 

et dont la norme vaut exactement ‖𝐹 ‖ = 𝑚. ‖𝑎 𝐶𝑃‖ =
𝑚.𝑣2

𝑅
. 

Dans un référentiel mobile lié à l’objet en rotation, ce dernier est immobile : la force 

d’accélération centripète est compensée par une force centrifuge de même norme 𝑚.𝑣
2

𝑅
 

correspondant à une accélération 𝑎𝐶𝐹 =
𝑣2

𝑅
 de même direction que 𝑎 𝐶𝑃 mais de sens opposé.  


