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Ces rappels de notions de mathématique le plus souvent enseignées
dans les options scientifiques en fin de lycée sont nécessaires a une
compréhension en profondeur du cours de biophysique (UE7) de PASS.
L’étudiant qui estime avoir besoin de ces rappels est invité a les lire du
début a la fin, de préférence avant l’étude du cours en lui-méme.

A-Fonction, limite et continuité

Nous nous limitons & une fonction f de la variable réelle x définie dans un domaine D de
l‘ensemble des nombres réels R (D c R) avaleurs dans R.

Par définition, une telle fonction est une transformation qui a tout nombre réel x € D associe un
seulnombre réel noté f(x).Onnote: f: D = R, x = f(x).

Pour deux fonctions f et g de la variable réelle x, on appelle fonction composée fo g la
transformation, quand elle existe, qui associe a un nombre réel x le nombre réelf(g(x)).

On dit que la fonction f(x) a pour limite la valeur réelle L lorsque x tend vers la valeur réelle a, et
on note lim f(x) = L sil’on peut rendre f(x) aussi proche qu’on le souhaite de L en choisissant
x—a

n’importe quelle valeur de x € D suffisamment proche de a. Pour qu’une limite existe, ilest donc
nécessaire que f(x) tende vers la méme valeur L quelle que soit la fagon dont x tend vers a (et
en particulier que x tende vers a en restant inférieur ou supérieur a a).

Une fonction f(x) est continue en a € R sila fonction lim f(x) = f(a). Par exemple, la fonction
xX—-a

. (1 . .

f(x) =sin (;) n’est pas continue en x = 0. On peut montrer en revanche (cf. annexe relative aux

fonctions sinus et cosinus) que liné %(x) = 1. La fonction sinc(x) = %(x) n’est pas définie en
X—

x = 0, mais elle peut étre prolongée par continuité en posant sinc(0) &£ 1, ce qui permet de
définir cette fonction sur R et de la rendre continue.



B- Dérivée, différentielle et dérivée partielle

A la base du calcul différentiel et intégral formalisé par Isaac Newton et Gottfried Wilhem Leibniz
dans la seconde partie du XVII°® siecle, les notions et techniques de dérivée et d’intégration ont
révolutionné la physique en ouvrant la voie au développement de modeles mathématiques pour
comprendre les observations du monde dans lequel nous vivons.

la dérivée d’une fonction y = f(x) permet de calculer en un point x donné 'amplitude de la
variation de la valeur prise par cette fonction par rapport a une variation infiniment petite de la
variable x. A titre d’exemple, pour la fonction qui double une variable, y = f(x) = 2.x, si la
variable x augmente d’une quantité infiniment petite dx, la fonction prend la nouvelle valeur
fx+dx)=2.(x+dx) =2.x+ 2.dx = f(x) + 2.dx. Lavaleur de la fonction augmente donc de

df (x) = 2.dx. L’augmentation de la fonction df (x) par rapport a 'augmentation de la variable

dx estdonc %(xx) = 2 :la dérivée de la fonction f(x) = 2.x est la fonction constante y = f'(x) =

2 pour tout x.

Plus généralement, lorsqu’elle existe, on appelle dérivée y’' = f'(x) de lafonctiony = f(x) la
fonction définie par:

i def dy def df(X) def s f(x+dx)_f(x)
flx) & — & —— & [im

dx dx dx—0 dx

La fonction df (x) = f(x + dx) — f(x) est appelée différentielle de f. Elle associe a chaque
variable x ’accroissement de la fonction f lorsque la variable passe de x a une valeur
infiniment proche x + dx, avec dx — 0 (figure A-1).

y = f(x)
[ 4 dx) f-mmmmmmmmemmm e £
. dy =df(x) = f(x + dx) — f(x)
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Figure A-1: dérivée et différentielle d’une fonction

Lorsque dx — 0, ’angle a représenté ci-dessus tend vers la pente de la droite tangente a la
courbe y = f(x) au point x.



Le tableau ci-dessous rappelle quelques regles de calcul de dérivées :

FONCTION DERIVEE
Constante k f)=k f'x)=0
Produit d’une fonction par un réel fx) =k.gx) f'(x) =k.g'(x)
Somme de deux fonctions f(x) =g(x)+ h(x) f'(x)=9"(x)+h'(x)
Produit de deux fonctions fx)=gx).h(x) | f'(x) =g x).h(x) + g(x).h' (x)
Puissance d’une fonction f(x) = g*(x) () =k.g" 1 (x).g'(x)
Quotient de deux fonctions fx) = % f'(x) = g'cx). h(xzzzx%(x). &)
Composition de deux fonctions f(x) = glh(x)] f'(x) = h'(x).g'[h(x)]
Puissance f(x) = x¥ f'(x) = k.xk1

Dans le cas d’une fonction de plusieurs variables réelles a valeur réelle de la forme f(x,y), il est
possible de calculer la dérivée suivant 'une ou l'autre de ces variables, en considérant la variable

parrapport a laquelle on ne dérive pas comme une constante. On parle alors de dérivée partielle
af (x,y) af (x,y)
—_— “or "

) ou plus simplement
X /vy constante

suivant la variable x (par exemple) que ’on note (

Par exemple, pour une onde progressive pure de laforme E(x,t) = A.sin (w. (t - g)) on calcule

. JOE(x,t) _ @ _x OE(x,t) _ _x
facilement: =T .A.cos (w. (t C)) et o = w. A. cos (a). (t C))

Dans un espace euclidien doté d’une base orthonormée (donc de coordonnées cartésiennes), le
vecteur (voir ci-dessous) dont les coordonnées sont données par les dérivées partielles suivant
chacune des coordonnées d’une fonction de plusieurs variables f(x, y) est appelé gradient de f

et est noté Gradf (x, y) ou Vf(x,y) :

o ()
T 2| ortry)
Oy

La lettre V en forme de lettre delta majuscule renversée est connue sous le nom de nabla en
référence a sa forme de harpe et au nom grec correspondant.

C-Intégration

I-Définition

Considérons une fonction f(x) de la variable réelle x définie et continue sur Uintervalle [a, b].
Décomposons cet intervalle en n intervalles disjoints [x;, x;, ] de largeur identique dx, de sorte
que pour tout entier i variantde0an — 1:

__b-a
Xit1 — X =7~

X = a+k.bn;a(doncx0 =aetx, =b)



flx) * f(x)

Xg=a Xy X2 Xyi=1 X= b Xp =a X, X5 Ngq X, =b
Figure A-2 : Intégrale de Riemann

Dans la figure A-2, chacun des rectangles hachurés a une aire de ?.f(xk) pour
k entier variant de 1 a n dans 'image de gauche et de 0 an — 1 dans celle de droite.

. b— b- -
La somme des aires de ces rectangles est A; = Ta.Z’,§=1f(xk) etd, = Ta RSO0,

. b— . R - . .
Sin — oo, alors Ta - 0, et les aires A, et A, tendent vers la méme limite qui mesure laire
délimitée par le graphe de f(x) et le segment [a, b] sur 'axe des x. Cette limite est appelée

. . . ., b
intégrale (au sens de Riemann) de la fonction f entre les bornes a et b et est notée fa f(x).dx:

fb()d | b—ai ( +kb_a)—l' b—az ( +kb—a>
afx.x:nl_)rgn. fla . —nl_)rgn. fla —

Notez que dans l’expression f; f(x).dx, la grandeur x est une grandeur qui indique seulement la

variable sur laquelle la fonction f est sommée, ouintégrée. Elle joue donc un role similaire a celui
de Uentier k dans la somme discréte ).}_; .... Comme cet entier, x peut étre remplacée par
n’importe quelle autre lettre du moment qu’elle n’interfere pas avec les autres variables de

Uintégrale : fff(x).dx = fff(t).dt = fff(u).du etc. On dit que la variable d’intégration est
une variable muette.

Quelques propriétés de l'intégrale découlent directement de sa définition :

Jaf(x).dx =0
Lbf(x).dx = —Laf(x).dx

Lbf(x).dx + chf(x).dx = _ch(x).dx
Lb(f () + g(0)).dx = f fe.ax+ f 900 ax

f:g(t).f(x). dx = g(t). fff(x). dx pour toute une fonction g(t) ne dépendant pas de la variable
X.



lI-Lien entre intégration et dérivation, primitive
Un lien étroit entre dérivation et intégration va nous permettre de calculer de nombreuses
intégrales.

Considérons la fonction g(x) = f;f(t).dt. La variable x détermine ici la limite supérieure de
Uintervalle d’intégration. La dérivée g'(x) de g(x) s’écrit :

gatd) =gt T fO.de- [Fr@de [P0 de
dx = o dx =l dx

9= fim

Calculons Uintégrale f;mxf(t). dt & lim de. =1 f (x + k.%x) : lorsque n —» o, chaque terme
n—oo

F(O).dt = dx. f(x).

d
de la somme tend vers f(x).La somme tend donc vers n. f (x), etdonc f;ﬁ *

f:+dxf(t).dt

=TT = f ().

La dérivée cherchée estdonc g'(x) = dlim
X—

La fonction g(x) = f;f(t). dt admet donc pour dérivée g'(x) = f(x).

En d’autres termes, f(x) est la dérivée de toute fonction de la forme F(x) = g(x) + C ou C est
une constante. Comme F(a) = g(a) + C = faaf(t).dt +C=C,etg(x) = f;f(t).dt =F(x)—
F(a). En particulier, pour tout b réel f; f(t).dt = F(b) — F(a) siladérivée de F est la fonction f.
La fonction F dont la dérivée F' = f est appelée primitive de f. Elle est définie a une constante
additive prés. On la note parfois simplement F(x) = [ f(x).dx ouF = [ f eton utilise souvent la

notation F(b) — F(a) & [F(x)]% . Il s’ensuit une méthode pour calculer les intégrales de
fonctions dont on connait une primitive :

b
f F'(x).dx = [F)1L = F(b) — F(a)

2
Par exemple, puisque f(x) = x est la dérivée de la primitive F(x) = %, f; x.dx = [—] =
a

Une autre astuce permet de calculer certaines intégrales. Elle est fondée sur la relation
précédente et celle évoquée plus haut donnant la dérivée du produit de deux fonctions :

f) =g(x).h(x) = f'(x) = g’'(x). h(x) + g(x). ' (x).

En combinant ces deux relations, on obtient :

fab(g.h)’(x).dx = f;(g’(x).h(x) + g(x).h'(x)).dx = [g(x). h(x)]5 , etdonc :

b b
f g' (). h(x). dx = [g(x). h(x)]g —f 9(x).h'(x).dx

Cette relation dite d’intégration par parties permet par exemple de calculer des intégrales de

. . b _ 1 _ bbb 1 _
produit de fonction de la forme [’ e™**.x.dx = [—/—1.e “.x] —J,—5-e Ax 1.dx.
a
: : © __Ax — _|* ,-2x @ 10 _2x — _[f —A.x]oo 1 [_l —A.x]oo
Enpartlcul|er,f0 e . x.dx [A.e ]0 +/1f0 e . dx 7€ . ta 7€ .



o]
| [ eean]® — g EERTCRL I
Le premier terme [A.e ]0 =0-0=0. Le second vaut —=;.[e™**] "=~ On a donc

: 0 1
finalement [” x.e™**.dx = .

lll-Interprétation
La premiere interprétation d’une intégrale découle directement de la définition que nous en

avons donnée : f:f(x). dx est Uaire limitée par le graphe de la fonction f(x) et le segment [a, b]
sur ’axe des x. Cette approche est utile en particulier pour calculer des surfaces ou des volumes.

En physique, la notion d’intégrale permet aussi et surtout peut-étre de sommer des grandeurs
continues déterminées par les valeurs d’une fonction continue de la variable réelle f(x). La
définition que nous avons donnée de Uintégrale s’écrit en effet sous la forme :

n
1 fb 1
— | f(x).dx ¥ lim —Zf(x )avec x, = a+k.dx etdx =
b—a a n-oo nk=1 k k n

En ce sens, une intégrale est une forme de « somme continue ».

Pour illustrer cette interprétation, considérons la fonction de la variable réelle f(x) = x, et
calculons lasomme discréte Y2_, f(k) =1+2+ 3 +--+n=X}_, k.

On a aussi o f)=n+n—1+n—-2+-+1.

En sommant ces deux équations, on obtient pour tout n entier :

z.z;;zlf(k)=n+1+n+1+n+1+---+n+1=n.(n+1):>%.z;}=1f(k)=”7“.

. : 1 n 1 Pt 1 M1
On peut aussi calculer la «somme continue» — [ x.dx=—|=| =—(—=—=)=
n-171 n-11l21y n-1\2 2

L(nz—l) _L(n—l).(n+1) _n+1

. . 1 1 .
— (=) == > - On obtient bien Eﬂl x.dx = ;.Zﬁﬂ k pour tout n entier.

Une autre illustration est U'établissement de 'équation (43) donnant Uintensité d’une onde
progressive apres diffraction par une fente rectangulaire de largeur b, qui nous a amené a
sommer toutes les ondes progressives sphériques de la forme g:(x) = A,.sin(w.t — @, —
0.x) qui émergent de la fente de diffraction pour des valeurs de x réelles variant continliment

. b b | b
dans Uintervalle [_E' +E]‘ Cette somme s’écrit lim ;Zﬁzlf(xk) avec xp = —- +k.dx et dx =
n—oo

b v 1 +b/2
—et se calcule donc par Uintégrale Zf—b/z ge(x).dx.

Enfin, d’apres ce qui précede, Uintégrale permet aussi de généraliser le calcul d’'une moyenne
arithmétique et de calculer la moyennej_r des valeurs que prend une fonction continue sur un
intervalle [a, b] suivant :

_ 1 P
f=mfaf(x)-dx

A titre d’exemple, pour établir la puissance surfacique moyenne d’un son pur (équation 1-19),
nous avons eu besoin de déterminer la valeur moyenne entre 0 et 2 de la fonction sin?(x). Celle-
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ci est identique a celle de la fonction cos?(x), un cosinus ne se différenciant d’un sinus que par
une translation de U'origine du repéere de g radians (cf. infra). Cette valeur moyenne se calcule en

utilisant la relation sin?(x) + cos?(x) =1 suivant: 31

—_— L 2T . 2 _
Cos = — Jy  sin?(x).dx =
2.

i 20 2 _i 2.1 ) 2 _i 2 —_T[:l
— fo cos®(x).dx = yps fo [sin®(x) + cos“(x)].dx = yp= fo dx = piat

D-Fonctions sinus et cosinus

|-Définitions

Les fonctions sinus et cosinus jouent un réle essentiel en physique car elles permettent de
modéliser tous les phénomeénes périodiques dans le temps ou U'espace (voir le paragraphe
suivant relatif a la transformation de Fourier). Elles sont par ailleurs fort utiles pour calculer les
longueurs des projections d’un segment de droite sur les axes d’un repere orthonormé.

Dans un repére orthonormé (O,x,y), considérons un cercle de rayon 1 centré en l'origine O du
repere. Ce cercle est appelé « cercle trigonométrique ». Chaque point M de ce cercle peut étre
repéré par ’angle orienté w. t que fait le rayon OM avec [’axe horizontal (O,x) du repéere (figure A-
3). Le parameétre w est une constante réelle appelée pulsation propre.

La variable réelle t peut varier de 0 a Uinfini. Pour fixer les idées, supposons que cette variable
modélise le temps. Dans ce cas, la pulsation propre w s’exprime enrad/s.

; 1#=T
t
3
i
2
a(t) = cos(w.t) = sin ( w.t+ 1)
\('.).t— 72 Vs t
\ 7
7
N " >
~ =

Figure A-3: Fonctions sinus et cosinus

On définit le sinus de ’angle w. t, noté sin(w. t), par la longueur de la projection du rayon
OM sur ’axe vertical (O,y). La fonction f(t) = sin(w. t) qui & chaque variable t associe la valeur
de sin(w. t) est représentée dans la partie supérieure de la figure A-3. Elle s’annule pour w.t =



0 (ou 2.7m) radians et w.t = m radians, est maximale a +1 pour w.t = %radians et minimale a -1

3.
pourw.t = —.

2
La projection sur 'axe (Oy) du rayon OM est inchangée si 'angle w.t augmente de 2.7 (ce qui
correspond a un tour complet). En conséquence,

f(t) =sin(w.t) = sin(w.t + 2.7) = sin w<t+2'—n) —f<t+2'_n)
= .t) = . L) = . ” = -

2.1

La fonction sinus est donc périodique de période T = (son graphe pourt € [0,T[ se répéte a

w
Uidentique pourt € [T,2.T[, t € [2.T,3.T| etc). En définissant la fréquence (en s ) par Uinverse

- 1 , 2. . : .
de la période, f & z-ona lesrelations w = Tn = 2.1 f . Lafonction f(t) s’exprime aussi sous la

forme f(t) = sin(w.t) = sin(2.m. f.t) = sin (2.11. %)
Il découle de sa définition que la fonction sinus est impaire : sin(w.t) = — sin(—w. t) pour tout t.

On définit le cosinus de fagon similaire par la longueur de la projection du rayon OM sur
’axe horizontal (O,x). La fonction f(t) = cos(w.t) qui a chaque variable t associe la valeur de
cos(w.t) est représentée dans la partie inférieure de la figure A-3. Elle s’annule pour w.t =
% ou 3'7”, est maximale a +1 pour w.t = 0 ou 2.7 radians et minimale a -1 pour w.t = m radians.
On constate que la fonction cosinus se déduit directement de la fonction sinus en remplagant la
variable w.t par w.t + % : cos(w. t) = sin (w. t+ g) ce qui revient a translater Uorigine du repére
de%radians. Comme la fonction sinus, la fonction cosinus est donc périodique de période T =

f. Sa définition implique que la fonction cosinus est paire : cos(w.t) = cos(—w. t) pour tout t.

Le théoréme de Pythagore montre par ailleurs que cos?(w.t) + sin?(w.t) = 1 pour tout angle
w.t.

Les fonctions sinus et cosinus sont donc analogues. On les qualifie de fonctions circulaires.
Elles ne sont pas linéaires (sin(a + B) # sin(a) + sin(f)), mais de nombreuses équations
(connues sous le nom de formules de trigonométrie) permettent de les manipuler. Les plus
utiles sont les formules d’addition et de factorisation suivantes (cos(a — b), sin(a — b) et
sin(p) — sin(q) s’en déduisent immédiatement en utilisant la parité du cosinus et U'imparité du
sinus):

cos(a + b) = cos(a).cos(b) — sin(a). sin(b) et donc cos(a — b) = cos(a). cos(b) + sin(a).sin(b)

sin(a + b) = sin(a). cos(b) + cos(a).sin(b) et donc sin(a — b) = sin(a). cos(b) — cos(a).sin(b)
+q p—q
) . COS (T)

cos(p) —cos(q) = —2.sin (p ; q) .sin (%)

cos(p) + cos(q) = 2.cos (p

sin(p) + sin(q) = 2.sin (pzﬂ) .COS (pz;q) et donc sin(p) —sin(q) = 2.sin (?) .COS (g) .

Lorsque les arguments angulaires a sont petits, il est possible de donner une approximation
polynomiale des fonctions circulaires (développement de Mac Laurin) suivant :

8



. a a a a—0
COSCZ—].—Z-FZ—E e/
_ a* a® a a-0
Slna—a—§+a—ﬁ+-~—>a

La factorielle de Uentier n étant définie par le produit des n premiers entiers : n! = n.(n — 1).....2.
Une conséquence du développement de la fonction sinus est que la fonction sinus cardinal

notée sinc et définie par sinc(a) & % tend vers 1 quant a — 0, puisqu’au voisinage de 0,

sinc(a) =

QIR

Enfin, pour tout angle w. t différent d’un multiple de g, la droite (OM) intersecte la droite

x=1 (qui est la tangente au cercle trigonométrique passant par le point A(1,0)) en un point T. La
tangente de 'angle w. t est alors définie par la valeur algébrique du segment AT, c’est-a-dire par

la longueur du segment AT affublée du signe de U'ordonnée du point T (cf. figure A-3). Comme

::;((i:?) = % = AT, la fonction tangente qui & chaque angle w.t non multiple de g associe la

sin(w.t)

tangente de cet angle s’identifie a tan(w.t) = Cette fonction s’annule en w.t = 0, puis

cos(w.t)’
croit jusqu’a linfini quant w.t = g La définition tan(w.t) = AT permet de constater que la
fonction tan(w.t) est périodique, de période T' = % Les fonctions sinus et cosinus étant

respectivement impaire et paire, la fonction tangente estimpaire : tan(w.t) = —tan(—w. t) pour
toutt.

[I-Dérivées
d sin(x) — lim sin(x+dx)—sin(x).
dx dx—0 dx

La dérivée de la fonction sinus se calcule suivant sin'(x) = En

utilisant la formula d’addition donnée ci-dessus, on obtient

. d sin(x) li Z-Sin(%)-cos(lx;dx) li sin(%) 2.x+dx dd 0 1 .
=—>== lim = lim —2~. =) n - remier
sin'(x) ™ Jim ™ Jim % cos( > ) Qua x , le premie

facteur est un sinus cardinal qui tend vers 1. Le second tend vers cos(x).La dérivée de la fonction
sinus est la fonction cosinus :

d sin(x)
sin'(x) = —— = cos(x
() = — ()
. (2x+dx\ . (dx . (dx
— —2.5sin|——).sin( — sin| —
De méme cos’(x) = lim costr+dn)—cos®) _ i ( = ) (2) = lim — d(,f) .sin (2'x+dx).
dx—0 dx dx—0 dx dx—0 = 2

Quand dx — 0, le premier facteur tend vers -1. Le second tend vers sin(x).La dérivée de la
fonction cosinus est la fonction moins sinus :
d cos(x)

cos'(x) = TR —sin(x)

Ces résultats s’étendent aux fonctions f(t) = sin(w.t) ou f(t) = cos(w.t) en se souvenant de
la dérivée d’une fonction composée (f o g)'(t) = g'(t).f'[g(t)] avec dans ce cas f = sin ou cos
etg(t) = w.t, soit g'(t) = w. On obtient:

sin'(w.t) = w.cos(w.t)



cos'(w.t) = —w.sin(w.t)

La dérivée de la fonction tan(x) se calcule a partir de la dérivée d’un rapport de deux fonctions :

sin(x))  sin’(x).cos(x) — sin(x) cos'(x) cos?(x) +sin?(x) 1
tan’(x) = <cos(x)> - cos2(x) ST o2 cost(x)
tan'(w.t) = m
FONCTION DERIVEE
Sinus f(x) = sin(x) () = cos(x)
Cosinus f£(x) = cos(x) () = —sin(x)
Tangente fO) =tanG) | f1() = gy = 1+ tan’()

lll-Intégration
Les primitives étant connues pour les fonctions sinus et cosinus, Uintégration de celles-ci est
immeédiate :

¢ 1 Lo
f sin(w. t).dt = [—Zcos(w. t)] == [cos(w.ty) + cos(w. ty)]
£y f1

¢ 1 g

j cos(w. t).dt = [Z sin(w. t)] == [sin(w.t,) + sin(w. t,)]

£ f1

IV-Interprétation géométrique : projections
Les fonctions circulaires sont aussi utiles pour évaluer les longueurs 04, et 04,, de la projection
d’un segmentr = OA sur les axes d’un repére orthonormé (0, x, y) du plan, suivant la figure A-4 :

Ya

Figure A-4 : Interprétation géométrique des fonction sinus et cosinus.
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cos(@) _ sin(@) Il s’ensuit

Dans le triangle (0, A4, A,), le théoréme de Thalés permet d’écrire% ==
x y

immédiatement que :

A, =r.sin(a)

y
A, =r.cos(a)

Dans tout triangle rectangle donc, le sinus (respectivement le cosinus) d’un angle (du
triangle différent de Uangle droit) est égal au rapport du coté opposé (respectivement
adjacent) a ’angle par Uhypoténuse.

E-Série de Fourier

Ce paragraphe constitue un complément plus technique accessible a de bons éleves de
terminale, mais généralement non encore enseigné a ce niveau d’études.

Soit g(t) est une fonction périodique de période T, continue par morceaux (avec un nombre fini de
points de discontinuité sur une période), alors :

ao oo oo .
git) =—+ ay.cos[(n.w).t] + by,.sin[(n. w).t]
2 Z nZl

n=1

gty =—+ Z ay.cos[(n.w).t] + by.sin[(n. w).t]

2 (T 2 (T .
avec a, = ?'fo g(@).cos(n.w.7).dreth, = F'fo g(@).sin(n.w.7).dt.

Cette décomposition de la fonction g(t) en somme de fonctions circulaires est appelée
décomposition en série de Fourier.

Démontrons ce résultat : Pour tout entier p positif ou nul, multiplions les deux membres de
’équation précédente par cos[(pw)t]. Nous obtenons :

a
g(t).cos(pwt) = 70. cos(pwt) + cos(pwt). Z a,.cos(nwt) + cos(pwt). Z b,,.sin(nwt)
= n=

n=1 1

En intégrant les deux membres de cette égalité entre 0 et T, on obtient :
T ao (T had T © T
J g(t).cos(pwt)dt = ?j cos(pwt)dt + Z an.f cos(pwt). cos(nwt)dt + Z bn.f cos(pwt). sin(nwt)dt
0 0 n=1 0 n=1 0

L’intégrale dans le 3° terme de cette somme est toujours nulle :

T T
f cos(pwt).sin(nwt)dt = %f sin[(n — p)wt] + sin[(n + p)wt] dt
0 0

n=p= fOT cos(pwt). sin(nwt)dt = %fOTsin(ant)dt =0.
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T
n+p= f cos(pwt).sin(nwt)dt
0

= %fOT sin[(n — p)wt] dt +%fOT sin[(n + p)wt] dt = 0.
T T
1/ |cos [(n -p) ZTnt] cos [(n +p) ZTnt]
=—= + 5 =0
2 21 T
(n—p)= o (n+p)=

ILs’ensuit que :

T a T it T
f g@).cos(pwt)dt = 70f cos(pwt)dt + Z an.f cos(pwt). cos(nwt)dt
0 0 by 0

Le calcul de Uintégrale du premier terme donne :
T T
p=0= [ cos(pwt)dt = [ dt=T,

etp 0= fOT cos(pwt)dt = [Sm;’;“’t) : — Smp(z’zg))'T] _ ZZZ[% —o.

et celui de la derniere intégrale :

p=n= fOT cos(pwt).cos(nwt)dt = g

etp #n = fOT cos[(pw)t]. cos[(nw)t]dt = 1.f0T [cos[((p +n)w)t] + cos[((p — n)w)t]] dt = 0.

T2

On a donc : p=0= fOTg(t).cos(pwt)dt = fOTg(t).dt = %.T

T T

T

p+0= f g(t).cos(pwt)dt = ap.f cos?(pwt).dt = ap
0 0

Et donc pour tout p entier (éventuellement nul) :

2 T

a, = ?J‘ g(t).cos(pwt)dt
0

Le méme raisonnement, en multipliant cette fois les deux membres de ’équation proposée

par sin(pwt), donne Uexpression attendue des amplitudes b,,.

Une formulation équivalente peut étre déduite de la décomposition en série de Fourier que nous

def

venons de prouver en définissant le nombre A4,, suivanta,, & A,.cos @, eth, & A,.sin@,,.

Dans ces conditions :

sin¢ b
tang, = —— =",
cos ¢n an

a? + b2 = A%.(cos?@, + sin@,) = A% = A, = a2 + b?,
et Y1 n.cos[(n. ). t] + Xozq by.sin[(n. w).t] = Yo=q ap.cos[(n. w).t] + b,.sin[(n. w). t]
En utilisant la relation de trigonométrie cosp .cos q + sinp.sinq = cos(p — q), et en introduisant

la variable 4,,, et le terme sommé s’écrit :
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ay,.cos[(n.w).t] + b,.sin[(n.w).t] = A,. (cos[(n.w).t]. cos ¢, + sin[(n. w).t].sin ¢,)
= A,.cos[(n.w).t — @,].

On obtient donc :
%o Qo
g = >+ E A,.cos[(nw)t — @,] =+ E A,.sin [(nw)t+—— (pn]

Soit puisque w = 2.1.f, g(t) = % + Yoo Ap.cos[(2m. f.n)t + @]

b
avec 4, ¥ /a2 + b2 et tan @,, & tan™?! (a—")
n

On constate donc que toute fonction périodique de période T = iz continue par morceaux, peut

effectivement étre décomposée en une somme de fonctions cosinus (ou sinus) de fréquences
égales a celle de la fonction et a ses multiples. Cette décomposition se généralise facilement a
tout signal physique a support borné (c’est-a-dire nulle en dehors d’un intervalle [0, T]).

F- Fonctions exponentielle et logarithme

Pour tout réel positif non nul (V x € R%), on définit la fonction logarithme népérien (ou en base
. . N o 1.,

e) de x, notée In(x) ou log.(x) la fonction primitive de la fonction inverse x — ~quis annule en

x =1, ce quirevient a écrire :

d ln(x) gor 1
dx x

vV x € R} ln(x)—f ~dtetin'(x) =

. . L 1 .
La fonction In(x) donne donc 'aire sous la courbe de la fonction inverse x — o dans lUintervalle

[1, x]. Elle est strictement croissante sur R}, négative si x < 1 puis positive si x > 1, tendant vers
—oo quand x = 0 etvers +0o0 quand x = +00, suivant le graphe ci-dessous.

6 T T T T

y=e*

$ 4 2 b 2 - §
Figure A-5 : Fonctions logarithme népérien et exponentielle
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De cette définition et de la loi de dérivation de la composition de deux fonctions rappelée ci-
dessus (paragraphe «dérivée, différentielle et dérivée partielle »), on déduit que pour toute

) df )
fonction f(x) & valeurs strictement positives, la dérivée [In(f(x))] = dlna[l’;(x)] = ];((;)) = f‘gc)

soit plus simplementd In[f] = ';—f, un résultat utile pour établir la loi de Weber-Fechner (équation
1-23).

Comme (x.In(x) —x)' = In(x) + g — 1 = In(x), une primitive de la fonction In(x) s’écrit :
[In(x) = x.Inx — x.
Le logarithme népérien vérifie la relation suivante :

In(x.y) = In(x) + In(y)

En effet, pour tout réel k, la dérivée de la fonction f,(x) = In(k.x) est f,' (x) =
k.in'(k.x) = k.i = % = In'(x). Les fonctions In(k. x) et In(x) ont donc méme dérivées
et sont donc égales a une constante additive K prés : In(k.x) = In(x) + K. Pourx =1,
cette relation donne : In(k) = In(1) + K = K, etdonc: In(k.x) = In(x) + In(k).

Il découle de cette relation que pour tout réely : In(xY) = y.In(x) etIn (g) = In(x) — In(y).

Enfin, un logarithme peut aussi étre évaluée dans toute base b, et en particulier en base 10. La
n(x)

(i) (€t Plus généralement,

fonction logarithme en base 10 est définie par log,o(x) =

log,(x) = %). Les régles de calcul évoquées ci-dessus s’appliquent pour des logarithmes de

toute base.

Par définition, la fonction exponentielle, notée exp(x) ou e* est la fonction réciproque de la
fonction In(x) : In(e*) = e™™®) & x Son graphe est donc le symétrique de celui de la fonction
logarithme par rapport a la premiére bissectrice (droite y = x). Il est représenté sur la figure A-5.
La fonction exponentielle est définie sur R ou elle est croissante, tendant vers 0 quand x - —oo
etvers +oo quand x — +o0, en passant par 1 pour x = 0.

def

En dérivant les deux membres de Uéquation définissant U'exponentielle exp(ln(x)) € x on
obtient in’(x).exp’ (In(x)) & 1 = exp’(In(x)) = x. La dérivée de la fonction exponentielle est
donc la fonction réciproque de la fonction In(x). Il s’agit donc de la fonction exp(x) elle-méme :
(e™)' = e*. Cette propriété est spécifique de la fonction exponentielle.

De méme, e* est une primitive de la fonction exponentielle : [ e* = e*
La fonction exponentielle est aussi la seule fonction vérifiant e**Y = e*.eY pourtout x et y réels.
En effet, In(e**Y) = x + y = In(e¥) + In(e?) = In(e*.e?) = e*tY = e*.eY.

Plus généralement, les régles de calculs bien connues pour les puissances s’appliquent a la
fonction exponentielle qui s’identifie a 'élévation a la puissance x d’un nombre réele = 2,72.
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La fonction réciproque de la fonction log,,(x) est la fonction x = 10* = eXIn(10),

FONCTION DERIVEE

Exponentielle f(x)=¢e* f'(x) =e*
Logarithme népérien f(x) = In(x) f'(x) = 1
X

Deux remarques vont mettre en lumiére le grand intérét de lafonction exponentielle en physique :

1- Lorsque la variable x augmente d’une constante additive, x — x + K, Uexponentielle de
cette variable est multipliée par une constante: y = e* - eX.e* = eK.y. Par exemple, si
K = 10, toute augmentation de 10 de la variable conduira & une multiplication par e ~
22 026 de Uexponentielle. C’est ce qui définit une «croissance exponentielle » d’'une
grandeur y par rapport au parametre y qui la définit.

2- Plus important peut-étre est le lien entre exponentielle et modélisation d’'un phénomene
physique aléatoire : chaque fois que des objets physiques (des particules par exemple)
subissent une interaction de fagon aléatoire avec une probabilité proportionnelle a une
certaine grandeur (le temps, la distance parcourue etc.), la mise en équation de ce
phénomeéne conduit a caractériser le nombre d’objets n’ayant pas interagit par une loi
exponentielle décroissante. Le paragraphe 3-H-1V en détaille un exemple a propos de
décroissance radioactive. Une modélisation similaire conduit a la méme loi exponentielle
décroissante par exemple pour linteraction de particules non chargées (photons,
neutrons) avec de la matiére.

G- Vecteur, produit scalaire et produit vectoriel

I-Vecteurs
Commencgons par quelques définitions : de fagon réductrice mais suffisante pour le propos de

cet ouvrage, nous définissons un vecteur V = AB comme un couple de points (ordonné) dans un
espace euclidien. Le point A est appelé origine ou point d’application du vecteur AB. La
direction du vecteur AB est la droite passant par A et par B. Son sens est de A vers B. La
longueur du segment [4, B] est appelée norme du vecteur AB et est notée ||AB|| . Un vecteur de
norme 1 est dit unitaire.

Deuxvecteurs AB et CD sont dits équipollents silafigure (4, B, C, D) forme un parallélogramme,
c’est-a-dire si le milieu du segment [4, C] coincide avec le milieu du segment [B,D]. Deux
vecteurs équipollents ont donc méme direction, méme sens et méme norme et peuvent étre
considérés comme égaux (dans un sens ou l'origine des vecteurs n’est pas prise en compte dans
la relation d’égalité).

La relation de Chasles découle de la définition de la somme de deux vecteurs : AB + BC = AC.
Pour tout point A4, le vecteur A4 =0 est appelé vecteur nul et permet de définir BA = —AB
comme vecteur opposé de AB puisqueﬁ +BA=A44=0=A4B - 4B.
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Pour tout nombre réel x > 0 (respectivement x < 0), le vecteur x.AB est le vecteur de méme

direction, de méme sens (respectivement de sens opposé) que AB et de norme |x|. ||4B]| .

[I-Produit scalaire

Le produit scalaire de deux vecteurs U etV faisant entre eux un angle (l_f, V) est un nombre réel

noté U.V et défini par le produit des normes de ces deux vecteurs et du cosinus de ’angle entre
ces deux vecteurs :

0.7 & ||T]|.|[7]. cos(T, V)
Le produit scalaire de deux vecteurs orthogonaux est donc nul (cos(ﬁ,,\ﬁ)= cos(90°) = 0).

Quelques propriétés du produit scalaire sont notables :

1- Le produit scalaire est commutatif : gv=v.u

= — —

2- Le produit scalaire est associatif pour U'addition vectorielle : U.(V + W) = U.V + U. W

3- Sideuxvecteurs U etV sont orthogonaux, alors cos(l_f, 17) = coSs (E) =0et:

2
ULV=U.V=o.

—

4 0.0 = |U||.]|U]|-cos(T,T) = ||T]|".cos(0) et donc: 0.7 = ||T]|"
5- Unvecteur U de norme 1 est qualifié de vecteur unitaire.

_ 4B o C .
6- Levecteuru = ﬁ est le vecteur unitaire dirigé le long de la droite (A,B) dans le sens de

A vers B. Son produit scalaire ii. AB avec le vecteur AB s’identifie a la norme ||AB|| qui
n’est rien d’autre que la distance de Aa B.

7- si |U| =1, alors U.V = ||I7||.cos(ﬁ) s’identifie a la longueur de la projection du

vecteur V sur la direction qui porte le vecteur unitaire U.

Dans un espace euclidien a 3 dimensions doté d’un repere orthonormé (0, x, y, z) et muni d’une
base de trois vecteurs unitaires orthogonaux (@,@,e_z’), un vecteur quelconque U peut étre
décomposé de fagon unique en une combinaison linéaire des vecteurs de la base suivant U=
Uy.€x + Uy. €, + U,.€,. Le triplet de 3 nombres réels (U,, Uy, U,) définit les coordonnées du

vecteur U dans la base (&, ¢, , ¢;). Ce triplet vérifie U, = U.ey, U, = U.e, etU, = U.¢;.

Dans ces conditions, le produit scalaire de deux vecteurs U(Uy, Uy, U,) et V(V;, V,,V,) s’exprime
sous la forme U.V = (Uy. ey + Uy + U, 8,). (Vo8 + Vy.€) + V,.e,) . En développant, et

—_— EENTY — — —_— .
compte tenu du fait que ||e;||? = ||ey|| = |le;ll*> = 1 etey.e, = ey.e, = e,.e, = 0, on obtient :

U.V = UV, + UV, + U,V
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g —
Dans le cas ouV = U, ce résultat permet de calculer la norme d’un vecteur par rapport a ses

coordonnées : 0.0 = U2 + U2 + U2 = |G| = ||F]| = [vZ + U2 + u2

Enfin, puisque Uv= ||l7|| ||I7|| cos(l_f, 7), Uangle entre deux vecteurs U etV non nuls s’exprime
en fonction de leurs coordonnées suivant :

- =

cos ﬁ) vV UV + UV, + UV,
I U]

J%+@+@JW+W+;

[11-Produit vectoriel
La définition du produit vectoriel nécessite de définir une orientation de Uespace. Considérons

pour cela deux vecteurs U et V dans le plan (0, x,y) faisant entre eux un angle a =
(l_f, 17) compté positivement dans le sens de U vers V: un vecteur dont la direction est

perpendiculaire a UetV peut avoir deux sens opposeés, soit Wf et WZ suivant la partie gauche de
la figure A-6:

rr—(U,V):-O A y

W,

Figure A-6 : Produit vectoriel UAV de deux vecteurs U et V.

Dans cette configuration, on qualifie de direct le trigdre (U,V, W), et d’indirect le triédre
(0.7.7),
On définit le produit vectoriel noté UV deux vecteurs U et V faisant entre eux un angle a =

(17, 17) compté positivement dans le sens de UversV par:

1- UAV est un vecteur perpendiculaire au plan contenant les deux vecteurs UetV
2- Letriedre (U,V,U A V) est direct
3 [T AV] = 0] 17].sin(@ V)

Un moyen pratique permet de déterminer facilement le sens de U AV : il suffit d’imaginer que
’'on se sert d’un tire-bouchon positionné au point d’application commun des vecteurs UetV
pour faire tourner U de maniére a le rapprocher de V. La direction donnée par le déplacement du
tire-bouchon donne le sens de U A V.
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H- Calcul de accélération dans un mouvement circulaire uniforme

Dans un référentiel fixe immobile (F), considérons un objet ponctuel en mouvement sur une
trajectoire circulaire de rayon R a une vitesse angulaire w (enrad/s) constante. La norme de la
vitesse de l'objet est elle-méme constante et vaut v = ||¥]| = R.w. En revanche, la direction de

-

. . . . N N . P . av
cette vitesse varie au fil du temps, ce qui confére a Uobjet une accélération d = - aue nous

allons calculer.

La figure A-7 montre la variation de la direction de la vitesse de Uobjet dv = ¥(t + dt) — v(t)
entre deus instants t et t + dt infiniment proches (dt — 0).

ot + dt)

Figure A-7 : Accélération d’un mobile en mouvement circulaire uniforme.

Lorsque dt — 0, la direction de dv est portée par le rayon de la trajectoire et pointe vers le centre

de la trajectoire. Cette variation de vitesse dans Uintervalle de temps dt crée une accélération

e N — d% . . - - e . . N
centripéte ap = d—:. Les directions des vecteurs v(t + dt) et —v(t) étant perpendiculaires a
celles qui définissent 'angle w.dt, ces deux vecteurs font entre-eux me méme angle w.dt. La

norme du vecteur dv tend donc vers la longueur de U'arc v. w. dt lorsque dt — 0.

ldv]l _ v.w.dt
at ~  dt

Sidt — 0 donc, Uaccélération acp = ||dcpll = =v.w.

. . - v . 12 . .8
Mais la norme de la vitesse v = ||[V|| = R.w = w = = Il s’ensuit que 'accélération centripéte

acp qui permet a Uobjet de suivre une trajectoire circulaire de rayon R a vitesse angulaire
uniforme est :

172

Acp = —
P =g
Dans le modele atomique de Bohr, cette accélération centripete est générée par la force
électrostatique qu’exercent les charges positives des protons du noyau sur un électron atomique
m.v?
-

et dont la norme vaut exactement ||ﬁ|| =m.|ldcpll =

Dans un référentiel mobile lié a Uobjet en rotation, ce dernier est immobile: la force
2

d’accélération centripéte est compensée par une force centrifuge de méme norme

2
N e . v a . . - . ,
correspondant a une accélération acp = 3 de méme direction que a.p mais de sens opposé.
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