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« Le penseur de Tobyl ».  

Région de Qostanaï, Kazakhstan. 
Musée national de la République du Kazakhstan. 

 

 

L’auteur de cette sculpture arpentait la steppe 
kazakhe au 3° ou au 2° millénaire avant notre ère. 

Il exprime un sentiment toujours présent chez 
l’homme moderne qui lève ses yeux vers les 

cieux : celui d’un rêve mêlé de perplexité, puis, 
très vite, du désir de comprendre, selon les mots 

de Lucrèce, d’où proviennent les choses. 

Prête au vrai maintenant une oreille attentive, 
Quod super est, vacuas auris animumque sagacem 

Nette de tout souci, aiguise ton esprit, 
semotum a curis adhibe veram ad rationem, 

Et mes dons, apprêtés avec un soin fidèle, 
ne mea dona tibi studio disposta fideli, 

Garde d’en faire fi avant d’y rien comprendre, 
intellecta prius quam sint, contempta relinquas. 

Car je vais t’exposer les hautes lois du ciel 
nam tibi de summa caeli ratione deumque 

Et des dieux, dévoiler d’où procèdent les choses, 
disserere incipiam et rerum primordia pandam. 

 
Lucrèce. De la nature des choses, Chant 1, vers 50-55 

Traduction d’Olivier Sers, Belles lettres, Paris, 2012 
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INTRODUCTION  
La physiologie, l'imagerie médicale, la radiothérapie ou les techniques de laboratoire sont des 
disciplines fondées sur une physique qui ne s'est développée qu'à partir de la fin du XIX° siècle. 
Celle-ci fut élaborée au moyen de modèles et d’outils mathématiques qui ne constituent pas un 
héritage commun aux étudiants se destinant à une profession de santé. 
Or limiter pour ceux-ci l’étude de la physique à quelques recettes, ou pire à un formulaire 
indigeste, ne permettrait pas à l’étudiant de fonder ses connaissances sur les bases solides 
nécessaires à un exercice raisonné d’une profession de santé comme à la prise en main de 
techniques thérapeutiques nouvelles tout au long de la vie professionnelle. Pire, cela conduirait 
à reléguer des faits scientifiques indiscutablement établis à un certain degré de précision au rang 
d’opinions subjectives dépendant de l’individu, du temps ou du lieu où elles sont énoncées. La 
notion même de science s’y dissoudrait, et la physique passerait pour une discipline ésotérique. 
 
Le cours que nous proposons est donc fondé sur deux partis pris pédagogiques : 

1- A de très rares exceptions près, les lois de physique qui font l’objet de ce cours seront 
systématiquement démontrées pas à pas, ou au minimum justifiées dans le cadre d’un 
modèle et d’hypothèses clairement énoncées. 

2- Cette justification ne s’appuiera pas sur des notions de mathématiques qui sortent du 
programme enseigné en lycée. Au besoin, une second polycopié proposé aux étudiants 
rappelle toutes les bases de mathématique nécessaires. 

 
L’objectif de ce cours est de fournir à l’étudiant une compréhension suffisante de la physique 
atomique et nucléaire et de celle des rayonnements pour exercer une activité de soins.  
 
Cela nécessitera de commencer par définir et modéliser une onde, puis sa propagation au moyen 
d’un principe de moindre action que nous justifierons. Les exemples des ondes sonores et 
électromagnétiques permettront à l’étudiant de comprendre d’une part le fonctionnement et 
les pathologies de la vision et de l’audition humaine, et d’autre part les techniques de 
radiothérapie et d’imagerie utilisées dans les centres de soins.  
L’étude des ondes stationnaires constituera une première approche de la quantification des 
grandeurs physiques. Celle d’une onde traversant un orifice en diffractant et en produisant des 
interférences permettra de définir la résolution d’un appareil d’imagerie médicale. 
Ces éléments amèneront à une modélisation duale, onde-particule, de la nature. Après un 
détour dans le monde de la relativité restreinte pour justifier la relativité de l’écoulement du 
temps et l’énergie qui associée à une masse au repos (𝐸 = 𝑚. 𝑐²), nous expliquerons pourquoi 
l’énergie d’un photon est proportionnelle à la fréquence de cette onde (𝐸 = ℎ. 𝑓). Un retour sur 
les expériences de diffraction permettra de comprendre l’origine des phénomènes aléatoires qui 
régissent le comportement d’une particule élémentaire, et justifient les relations d’incertitudes 
d’Heisenberg. Enfin, la notion d’onde stationnaire décrite précédemment éclairera le concept 
de quantification des grandeurs physiques associées aux particules élémentaires. Dans les pas 
du physicien Niels Bohr, nous établirons un modèle d’atome où les électrons atomiques se 
répartissent sur des couches énergétiques discrètes. Ce modèle, et ses améliorations 
ultérieures est à la base de toute la chimie moderne mais aussi des sources de rayonnement 
ionisants utilisés en imagerie ou dans les laboratoires d’analyse médicale. Nous nous 
intéresserons enfin au noyau atomique, pour décrire les réactions de désintégrations 
radioactives qui sont exploitées par les médecins nucléaires en diagnostic et en thérapie.  
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CHAPITRE 1 : PHYSIQUE DES ONDES 
 
Présentation : Ce chapitre commence de façon un peu formelle par définir et modéliser la notion 
d’onde progressive et les grandeurs physiques fondamentales qui lui sont associées. Cela 
permettra de justifier un des principes de base de la radioprotection. On explique ensuite 
pourquoi toute onde progressive périodique est la superposition d’ondes progressives 
sinusoïdales, ce qui permettra de limiter la suite de l’exposé au cas simple de ces ondes. Ce 
modèle sera exploité pour justifier le principe de moindre action et expliquer par exemple 
pourquoi un rayon lumineux se propage en ligne droite dans un milieu homogène.  

Pour ancrer ces concepts un peu abstraits dans la réalité physique, on décrira ensuite deux types 
d’ondes particulièrement utiles aux soignants : l’onde sonore d’abord en explicitant ses 
caractéristiques utiles à l’étude de l’audition, puis les ondes électromagnétiques au moyen d’un 
formalisme minimal pour permettre à des soignants de les exploiter au mieux.  

La notion d’onde stationnaire ouvrira à une première approche de la quantification que nous 
utiliserons pour établir les fondements de la mécanique ondulatoire. Ce chapitre se terminera en 
traitant du comportement d’une onde à la traversée d’un orifice (diffraction) et des phénomènes 
d’interférences qui s’ensuivent, ce qui permettra de définir la résolution d’un appareil d’imagerie, 
comment numériser une image ou comment déterminer la géométrie d’une molécule. 

 

A- Onde progressive : définitions et caractéristiques 
 

I- Définitions 
 

1- Une onde progressive est la propagation dans un milieu donné (matériel ou vide) d'une 
perturbation entretenue d'une ou plusieurs caractéristiques physiques de ce milieu (par 
exemple, une position de particules, une pression, une température, un champ 
électrique ou magnétique etc.). La vitesse de propagation de cette perturbation est 
appelée célérité de l'onde.  
 

2- Une onde progressive est scalaire lorsque la grandeur physique perturbée est quantifiée 
par un nombre réel, vectorielle lorsqu'elle est quantifiée par un vecteur.  
 

3- Une onde progressive est longitudinale lorsque la grandeur est perturbée dans la 
direction de propagation de l'onde, transversale lorsque la grandeur est perturbée dans 
la direction orthogonale à la propagation de l'onde. 
 

4- Dans le cas d'une onde progressive vectorielle, l’onde est polarisée rectilignement si la 
grandeur physique vectorielle perturbée garde une direction constante durant la 
propagation de l'onde. Si ce vecteur tourne avec une vitesse angulaire constante 
perpendiculairement à la direction de propagation sans changer de norme, on parlera de 
polarisation circulaire. Le terme de polarisation elliptique sera réservé à un vecteur 
décrivant une ellipse le long de sa direction de propagation. 
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II- Exemples 
 

La figure 1 donne un exemple d’une onde sonore générée par une corde ou une surface vibrante 
telle que la membrane d’un haut-parleur (HP). Il s’agit d’une onde progressive scalaire 
longitudinale de vibration où la grandeur physique perturbée est la position de molécules d’air  
selon une direction notée x.  La mise en vibration de proche en proche des particules du milieu 
de propagation est assurée par une onde de surpression locale créée par un rapprochement 
périodique de ces particules (cf. paragraphe 1-C). 
 

 
Figure 1 : Onde sonore produite par la mise en oscillation de proche en proche de molécules d’air au 

moyen d’une corde (violon…) ou d’une surface (tambour, haut-parleur, cordes vocales) vibrante.  
 

La figure 2 constitue un autre exemple d’onde progressive scalaire, transversale cette fois. La 
grandeur physique perturbée est la position suivant une direction verticale de portions d’une 
corde tendue par une force de tension 𝑇 . La propagation se fait le long de cette corde qui 
constitue le milieu de propagation, dans une direction horizontale. La source de l’onde est une 
baguette fixée à une extrémité de la corde qui lui impose mouvement oscillant. 
 

 
Figure 2 : Propagation d’une onde progressive transversale de vibration  

le long d’une corde tendue, ou de la surface d’un plan d’eau. 
 
La figure 3 donne un dernier exemple concernant cette fois une onde vectorielle transversale. La 
grandeur physique perturbée est ici un champ électrique ou magnétique polarisé rectilignement 
suivant une direction perpendiculaire à la direction de propagation de l’onde (𝑥) et dont la norme 
varie périodiquement avec le temps. Ce champ induit l’apparition retardée d’un champ analogue 
de proche en proche (cf. paragraphe 1-D). 
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Figure 3 : Propagation d’une onde vectorielle transversale (électromagnétique par exemple). 

 
 

III- Modélisation 
On modélise la grandeur physique associée à une onde qui se propage dans le sens des 𝑥 > 0 à 
la célérité 𝑐 par une fonction 𝑔(𝑡, 𝑥) continue et deux fois dérivable par rapport à chacune de ses 
deux variables 𝑡 et 𝑥. La figure 4 représente une grandeur physique 𝑔(𝑡, 0) perturbée en 𝑥 = 0 et 
𝑔(𝑡, 𝑥) en un point 𝑥 > 0. 
 

 
Figure 4 : Modélisation d’une onde progressive sinusoïdale 

 

Dans ces conditions, pour tout instant 𝜏, 𝑔 (𝜏 + 𝑥

𝑐
, 𝑥) = 𝑔(𝜏, 0). En posant 𝑡 = 𝜏 + 𝑥

𝑐
, on a : 

 
 
 

  (1) 
 

 
Si l’onde progressive se déplaçait dans le sens des x négatifs, on aurait de même : 
 
 
 

  (2) 
 
 

𝑔(𝑡, 𝑥) = 𝑔 (𝑡 −
𝑥

𝑐
, 0) 

𝑔𝑥(𝑡) = 𝑔0 (𝑡 −
𝑥

𝑐
) 

𝑔(𝑡, 𝑥) = 𝑔 (𝑡 +
𝑥

𝑐
, 0) 

𝑔𝑥(𝑡) = 𝑔0 (𝑡 +
𝑥

𝑐
) 
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IV- Décomposition en série de Fourier 
 

Considérons une fonction 𝑔0(𝑡)  périodique de période 𝑇 ≝ 2𝜋

𝜔
 (ou de durée finie 𝑇 ) et 

raisonnablement régulière (continue par morceaux avec un nombre fini de points de 
discontinuités sur une période). Dans ces conditions, le théorème de décomposition en série 
de Fourier (cf. rappels de mathématique) affirme que moyennant le calcul de : 
 
 
 

(3) 
 
 
 
 

(4) 
 
 
La fonction 𝑔0(𝑡) s’exprime sous la forme d’une somme de fonctions circulaires (sinus ou 

cosinus) de fréquences 0, 𝑓, 2. 𝑓, 3. 𝑓, …  multiples de 𝑓 ≝ 𝜔

2𝜋
≝

1

𝑇
 suivant :  

 
 
 

(5) 
 
 
 
 

La fréquence de la fonction 𝑔0, 𝑓 = 1

𝑇
=

𝜔

2.𝜋
,  est la fréquence fondamentale en hertz (Hz = s-1), et 

𝜔 = 2𝜋. 𝑓 est la pulsation propre fondamentale en (rad/s).  
 
Les fonctions cosinus (ou sinus) de fréquences multiples de la fréquence fondamentale 𝑓 sont 
appelées des harmoniques d’ordre 1,2,3, … Les harmoniques de plus hautes fréquences 
représentent dans cette décomposition les variations les plus rapides de la fonction 𝑔0 sur une 
période. Pour des ondes ayant une réalité physique, il existe une valeur maximale à la variation 
de la fonction 𝑔0 en fonction du temps, ce qui limite le nombre d’harmoniques à une valeur finie.  
 

𝑔0(𝑡) =
𝑎0
2
+∑𝐴𝑛. 𝑐𝑜𝑠[(𝑛𝜔)𝑡 − 𝜑𝑛]

∞

𝑛=1

=
𝑎0
2
+∑𝐴𝑛. 𝑠𝑖𝑛 [(𝑛𝜔)𝑡 +

𝜋

2
− 𝜑𝑛]

∞

𝑛=1

 

𝑔0(𝑡) =
𝑎0
2
+∑𝐴𝑛. 𝑐𝑜𝑠[(2𝜋. 𝑓. 𝑛)𝑡 − 𝜑𝑛]

∞

𝑛=1

 

 

 

𝐴𝑛 ≝ √𝑎𝑛
2 + 𝑏𝑛

2 𝑒𝑡 tan𝜑𝑛 ≝ tan
−1 (

𝑏𝑛
𝑎𝑛
) 

 

𝑎𝑛 ≝
2

𝑇
.∫ 𝑔0(𝜏). cos(𝑛. 𝜔. 𝜏). 𝑑𝜏

𝑇

0

  

𝑏𝑛 ≝
2

𝑇
.∫ 𝑔0(𝜏). sin(𝑛. 𝜔. 𝜏). 𝑑𝜏

𝑇

0
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Figure 5 : Exemple d’une fonction périodique (de période 2. 𝜋 ) décomposable en somme de 
fonctions sinus ou cosinus au moyen de 7 harmoniques. Ici 𝑔0(𝑡) = 1 + 1,3. cos(𝑡) +

0,4. cos (3. 𝑡 +
𝜋

2
) + 0,3. cos(5. 𝑡) + 0,2. cos (7. 𝑡 −

𝜋

2
) = 1 + 1,3. sin (𝑡 +

𝜋

2
) + 0,4. sin(3. 𝑡 + 𝜋) +

0,3. sin (5. 𝑡 +
𝜋

2
) + 0,2. sin(7. 𝑡) puisque cos(𝑡) ≝ sin (𝑡 + 𝜋

2
).  

 
Les graphes représentant 𝐴𝑛 et 𝜑𝑛 en fonction des fréquences harmoniques 𝑛. 𝑓 (figure 6) sont 
appelés spectres en amplitude et en phase (ou transformée de Fourier) de la fonction 𝑔0. Ils la 
définissent complètement.  
 

 
Figure 6 : Spectres en amplitude (𝐴, à gauche) et en phase (𝜑, à droite) de la fonction 𝑔0(𝑡) = 1 +

1,3. cos(𝑡) + 0,4. cos (3. 𝑡 +
𝜋

2
) + 0,3. cos(5. 𝑡) + 0,2. cos (7. 𝑡 −

𝜋

2
) . La valeur 𝑛  en abscisse 

représente le numéro de l’harmonique, donc la fréquence 𝑛. 𝑓.  
 
Cette possibilité de décomposer une perturbation source d’une onde progressive 𝑔0(𝑡)  en 

somme de fonctions cosinus s’étend à la fonction 𝑔𝑥(𝑡) = 𝑔0 (𝑡 −
𝑥

𝑐
) et donc au modèle d’onde 

progressive que nous avons établi. Sans perte de généralité, l’étude des ondes progressives peut 
donc se limiter au cas d’un type d’onde progressive particulière que nous qualifierons de pure, 
de sinusoïdale, de monochromatique, ou encore de radiation (tous ces termes sont 
synonymes) et qui consiste en une onde progressive créée par une perturbation 𝑔0(𝑡) dont le 
spectre ne contient qu’une seule fréquence.  
Une onde dont le spectre contient plus d’une fréquence sera qualifiée d’one polychromatique, 
ou complexe et peut donc être décomposée en une superposition d’ondes monochromatiques, 
si bien que les résultats que nous obtiendrons dans le cas simplifié de ces dernières pourront 
aussi s’appliquer aux ondes complexes. 
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V- Caractéristiques d’une onde progressive monochromatique 
 

Une onde progressive monochromatique se propageant dans la direction 𝑥 > 0 à la célérité c, 
produite par une perturbation localisée au point 𝑥 = 0 sera donc de la forme : 

𝑔(𝑡, 𝑥) = 𝑔(0, 𝑥) + 𝐴. 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐
)] 

où 𝑔(0, 𝑥) est la valeur de la grandeur physique observée en tout point x avant toute perturbation 
par l’onde progressive. Pour éviter de surcharger les notations par ce terme additif, on supposera 
dans la suite que 𝑔(0, 𝑥) = 0 pour toute position x, et l’on notera : 

 
(6) 

 
Dans cette dernière expression : 

A est l’amplitude de l’onde (de même unité que la grandeur physique perturbée g),  

ω ≝ 2πf ≝
2π

T
 est la pulsation propre (en radians par seconde) et f la fréquence de 

l’onde (en Hertz), deux grandeurs représentant la même réalité physique avec deux unités 
différentes,  
T est la période (pour la variable temporelle, en seconde).  

 
L’onde progressive monochromatique 𝑔(𝑡, 𝑥)  présente deux périodes, l’une pour la variable 
temporelle (𝑇), l’autre suivant la variable d’espace : 
 
En tout point 𝑥 fixé,  𝑔(𝑡 + 𝑇, 𝑥) = 𝐴. 𝑠𝑖𝑛 [

2π

T
. (𝑡 + 𝑇 −

𝑥

𝑐
)] = 𝐴. 𝑠𝑖𝑛 [

2π

T
. (𝑡 −

𝑥

𝑐
) + 2𝜋] = 𝑔(𝑡, 𝑥) 

 
A tout instant 𝑡 fixé,  𝑔(𝑡, 𝑥) = 𝑔(𝑡 − 𝑇, 𝑥) = 𝐴. 𝑠𝑖𝑛 [𝜔. (𝑡 − 𝑇 −

𝑥

𝑐
)] = 𝐴. 𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑐𝑇+𝑥

𝑐
)] = 𝑔(𝑡, 𝑥 + 𝑐. 𝑇) 

 
La période spatiale 𝜆 ≝ 𝑐. 𝑇  parcourue par l’onde en une période temporelle 𝑇  est appelée 
longueur d’onde et est notée  (en mètre) : 
 

(7) 
 

 
Figure 7 : Période et longueur d’onde 

 
Quelques définitions : 
 

La phase est le terme indépendant du temps 𝜙 = 𝜔𝑥

𝑐
 de la relation 𝑔(𝑡, 𝑥) = 𝐴. 𝑠𝑖𝑛 [𝜔. 𝑡 + 𝜔𝑥

𝑐
], 

complété éventuellement d’autres termes indépendants du temps. 

𝑔(𝑡, 𝑥) = 𝐴. 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐
)] 

𝜆 ≝ 𝑐. 𝑇 ≝
𝑐

𝑓
≝
2𝜋𝑐

𝜔
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Une surface d’onde est une surface connexe contenant l’ensemble des points de même phase. 
 
Dans le cas d’une source ponctuelle isotrope positionnée en un point C de l’espace, les surfaces 
d’ondes sont constituées de sphères concentriques centrées en C et de rayons 𝑥, associées à 
des phases identiques 𝜙 = 𝜔𝑥

𝑐
. Ce type d’onde est qualifiée d’onde sphérique. A distance de la 

source C et localement, ces surfaces d’ondes sont proches des plans tangents aux cercles et 
peuvent autoriser une approximation locale d’une onde sphérique par une onde plane (Figure 8). 

 
Figure 8 : Exemple de surfaces d’ondes sphériques Si (en pointillés) 

 

En tout point atteint par une onde, le vecteur d’onde, 𝑘⃗ , est un vecteur dont la direction est 
normale aux surfaces d’ondes, le sens identique à celui de la propagation de l’onde, et de norme 

‖𝑘⃗ ‖ ≝
𝜔

𝑐
.  Pour un modèle à 1 dimension, on a : 

 
 (8) 

 
 
Deux ondes progressives de même longueur d’onde définies par les fonctions 𝑔1(𝑡, 𝑥) =

𝐴. 𝑠𝑖𝑛[𝜔. 𝑡 − 𝑘. 𝑥 − 𝜙1]  et 𝑔2(𝑡, 𝑥) = 𝐴. 𝑠𝑖𝑛[𝜔. 𝑡 − 𝑘. 𝑥 − 𝜙2] , avec  𝜔 = 2𝜋𝑐

𝜆
 sont qualifiées 

d’ondes cohérentes si la différence de phase 𝜙1 − 𝜙2 reste constante dans le temps.  
  
Principe fondamental de la radioprotection : Considérons une source ponctuelle de 
rayonnement émettant de façon isotrope une puissance 𝑃 (en watt, 𝑊). A une distance 𝑑 de la 
source, cette puissance se répartit de façon homogène sur l’ensemble de la surface d’une sphère 
de rayon 𝑑, donc de surface 4𝜋𝑑². La puissance surfacique I (en 𝑊/𝑚²) reçue dans chaque 𝑚² 
de cette surface est donc inversement proportionnelle au carré de la distance séparant la source 
de la sphère où cette puissance surfacique est évaluée, et s’écrit : 

 
(9) 

 
 
Un patient ou un soignant exposant la surface de son corps à une source de rayonnement recevra 
donc une puissance par unité de surface corporelle inversement proportionnelle au carré de la 
distance qui le sépare de la source. Cette loi « en 1/d²»  est une des 3 règles fondamentales 
permettant de se protéger de rayonnements dangereux (avec la limitation du temps d’exposition 
et l’utilisation d’écrans atténuant le rayonnement). Elle fonde de nombreuses pratiques et 
réglementations en matière de radioprotection. 

𝑔(𝑡, 𝑥) = 𝐴. 𝑠𝑖𝑛[𝜔. 𝑡 − 𝑘. 𝑥] 

𝐼(𝑊/𝑚2) =
𝑃

4𝜋

1

𝑑2
 

Surface d’onde 
(Points d’amplitude maximale) 

Plan tangent 
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B- Propagation d’une onde : du principe d’Huygens au principe de 
moindre action 

 
Le principe de Huygens découle directement de la modélisation et des exemples que nous 
avons donné d’une onde progressive. Il stipule que tout point atteint par une onde issue d’une 
source se comporte comme une nouvelle source ponctuelle, et réémet ainsi de façon 
isotrope une onde sphérique, qui atteindra à son tour un point voisin, permettant ainsi une 
propagation de l’onde de proche en proche.  
 
Considérons un rayon lumineux se propageant d’un point 𝑆 à un point 𝑆’. Si l’on considère que le 
point S a été atteint par l’onde, puis réémet, suivant le principe de Huygens, une onde sphérique 
isotrope, une infinité de trajectoires 𝐶𝑖 de longueurs 𝑥𝑖reliant 𝑆 à 𝑆’ (en pointillés sur la figure 9) 
peuvent a priori être envisagées, en plus de la ligne droite 𝐶𝑑. 
 

 
Figure 9 : Illustration de quatre des différents chemins a priori possibles pour une onde 
lumineuse entre deux points S et S’. Chaque pointillé se comporte comme une source 

secondaire d’ondes sphériques dont certaines directions construisent un chemin de 𝑆 à 𝑆’. 
 

En 𝑆’, toutes les ondes issues de 𝑆 ayant suivi tous les chemins 𝐶𝑖 passant par 𝑆’ s’additionnent, 
et l’onde en 𝑆’ s’écrit, suivant (6) : 
 

(10) 
 

La pulsation propre de l’onde est de l’ordre de 1014 rad/s par exemple pour une radiation 
lumineuse dans le spectre visible par un être humain.  
 
Si le temps de propagation 𝑡𝑖 ne varie pas infiniment peu entre deux chemins possibles rejoignant 
𝑆 et 𝑆’, alors le terme de phase 𝜔. 𝑡𝑖  dans l’expression (10) prend des valeurs très variables d’un 
chemin à un autre chemin voisin, générant dans la somme, pour tout instant t, des valeurs de la 
fonction sinus réparties de façon uniforme entre -1 et +1. Une fois ces sinus sommés, ces valeurs 
se compensent, et la somme présente dans l’équation (10) est nulle.  
L’onde en 𝑆’, 𝑔(𝑡, 𝑆′), ne sera produite que par une composante sinusoïdale dans la somme de 
l’équation (10) obtenue pour un chemin 𝐶𝑑  pour lequel le temps de trajet 𝑡𝑑  entre 𝑆 et 𝑆’ varie 
infiniment peu entre 𝐶𝑑 et un autre chemin voisin. Cette condition de stationnarité du temps de 
trajet suppose que 𝑡𝑑 soit un extremum (un minimum, un maximum ou une plage constante) de 
la fonction exprimant le temps de trajet en fonction du chemin emprunté.  
 
Ce résultat est un cas particulier d’un principe physique beaucoup plus général que le 
raisonnement heuristique qui précède, dû au physicien Robert Feynman (1918-1988), justifie : 

𝑔(𝑡, 𝑆′) = 𝐴. ∑ 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥𝑖
𝑐
)] = 𝐴. ∑ 𝑠𝑖𝑛[𝜔. 𝑡 − 𝜔. 𝑡𝑖] 𝑜ù 𝑡𝑖 =

𝑥𝑖
𝑐

𝑐ℎ𝑒𝑚𝑖𝑛𝑠 𝐶𝑖𝑐ℎ𝑒𝑚𝑖𝑛𝑠 𝐶𝑖
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Principe de moindre action de Fermat (pour un rayon lumineux, 1657) : La trajectoire suivie par 
une onde lumineuse est celle que cette onde peut parcourir en un extremum de temps.  
 
Dans un milieu homogène où la vitesse de propagation de l’onde est constante, sans miroir, cet 
extremum correspond à un minimum et tous les rayons ayant suivi des chemins autres que celui 
parcouru en un minimum de temps produisent des ondes qui se détruisent par interférences. 
Seul subsiste, in fine, le rayon qui s’est propagé en ligne droite entre 𝑆 et 𝑆’.  

 
Des trajectoires correspondant à un temps de parcours constant ou maximal peuvent survenir 
dans certaines configurations, avec un rayon lumineux se réfléchissant sur un miroir elliptique 
ou sphérique par exemple : 
 

Cas d’un miroir elliptique. La figure 10 illustre le cas d’un rayon lumineux issu d’un foyer 
𝐹1 d’un miroir elliptique se réfléchissant sur ce miroir en un point 𝑀𝑖 avant d’atteindre le 
second foyer 𝐹2. La définition d’une ellipse garantit que pour tout point 𝑀𝑖, la longueur de 
la trajectoire (𝐹1,𝑀𝑖 , 𝐹2)  , donc le temps de trajet pour parcourir cette trajectoire est 
constant. Tous les rayons issus de 𝐹1  qui se réfléchissent en un point quelconque du 
miroir elliptique convergent donc vers 𝐹2. 

 

 
Figure 10 : Exemple de temps de trajet constants de rayons lumineux issus d’un foyer 

et se réfléchissant sur un miroir elliptique. 
 

- Cas d’un miroir sphérique. Plaçons dans le vide un miroir sphérique de rayon 1 centré à 
l’origine d’un repère (0, 𝑥, 𝑦, 𝑧) et considérons un rayon lumineux issu du point 𝐴(−1,0,0) 
qui se réfléchit sur le miroir en 𝑀(𝑥 − 1, 𝑦, 0) puis atteint le point 𝐶(1,0,0) suivant la figure 
11. 

 
Figure 11 : Exemple de temps de trajet maximal d’un rayon lumineux  

après réflexion sur un miroir sphérique.  
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Le théorème de Pythagore permet de calculer la longueur 𝐿(𝐴,𝑀, 𝐶) de la trajectoire du rayon 
issu de 𝐴, se réfléchissant en 𝑀 et atteignant 𝐶. On pourra facilement vérifier que L(A,M, C) =

√2. x + √2. (2 − x) = √2. (√x + √2 − x). L’étude de cette fonction de 𝑥  pour 𝑥 ∈ [0,2] retrouve 
une fonction croissante puis décroissante, avec un maximum atteint en 𝑥 = 1, c’est-à-dire au 
point 𝐵(0,1,0) qui satisfait à la loi de Descartes sur la réflexion. Dans cet exemple donc, le trajet 
effectivement suivi par un rayon lumineux issu de 𝐴, se réfléchissant sur le miroir sphérique avant 
d’atteindre 𝐶 est donc la trajectoire (𝐴, 𝐵, 𝐶) qui correspond à un maximum de temps de trajet. 
 
L’application du principe de Huygens et une construction graphique simple mettant en jeu une 
onde plane ou sphérique se propageant de proche en proche permet aussi de comprendre 
pourquoi la forme des surfaces d’ondes (des plans ou des sphères) se conserve au fil de la 
propagation de l’onde dans un milieu homogène. 
 

 
 

Figure 12 : Application du principe de Huygens pour comprendre la conservation des surfaces 
d’ondes (planes à gauche ou sphériques à droite) au fil d la propagation d’une onde. Les 
surfaces d’ondes représentées sur la figure concernent dans cet exemple des points au 

maximum d’intensité à un instant t donné. 
 

Considérons par exemple l’onde plane représentée dans la partie gauche de la figure 12 et un 
point 𝑃 situé dans un plan d’onde associé (à l’instant de la figure) à un maximum de vibration. La 
superposition des ondes sphériques émises par le point 𝑃  et ses voisins produit un unique 
maximum situé à une longueur d’onde à droite de 𝑃. Il en est de même des points situés au-
dessus et au-dessous de 𝑃, ce qui conduit à une nouvelle surface d’onde constituée par un plan 
à une longueur d’onde de la surface d’onde précédente, et parallèle à celle-ci. Le même 
raisonnement sur des surfaces d’ondes sphériques (schéma de droite de la figure 12) conduit de 
même à la propagation de surfaces d’ondes sphériques sous la forme de sphères de rayons 
croissants centrées sur la source ponctuelle de l’onde.  
 

 

C- Premier exemple d’onde progressive : l’onde sonore 
 

I- Onde de (sur)pression acoustique, impédance acoustique et célérité du son 
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La figure 13 illustre les oscillations de deux particules gazeuses mises en vibration autour de leurs 
positions de repos 𝑥1 et 𝑥2 par un haut-parleur avec un déphasage 𝑥2−𝑥1

𝑐
.  

Au fil du temps, on constate que les particules 1 et 2 s’éloignent puis se rapprochent suivant une 
période identique à celle de l’onde de vibration. La densité de particules en 𝑥 , suit de ce fait aussi 
une loi périodique de même période que le mouvement vibratoire. Il s’ensuit une surpression 
locale périodique apportée par la propagation du son à la pression initiale du milieu. 
 

 
Figure 13 : illustration du mouvement vibratoire déphasé de deux particules situées à des 

distances x1 < x2 de la membrane d’un haut-parleur, source d’une onde sonore. 
 
Pour aller au-delà, on définit le coefficient de compressibilité 𝝌  (en Pa-1) par la diminution 
relative d’un volume de matière (un gaz le plus souvent) qui passe d’un volume 𝑉 à un volume 
𝑉 + Δ𝑉, avec Δ𝑉 < 0, sous l’effet d’une surpression 𝑃 : 
 

(11) 
 
 
Dans le cas simple de la propagation d’une onde sonore suivant une seule direction 𝑥, dans le 
sens des 𝑥 positifs, considérons deux particules du milieu de propagation positionnées au repos, 
avant l’arrivée de l’onde sonore (𝑡 = 0), en des abscisses 𝑥 et 𝑥 + 𝜕𝑥 (figure 14).  

 
Figure 14 : modélisation de l’onde de surpression acoustique 

 

Dans ce cas à une dimension 𝜒 = − 1

𝑃
.
∂𝐸

𝜕𝑥
⇒  𝑃 = −

1

𝜒
.
∂[𝐴.𝑠𝑖𝑛(𝜔.(𝑡−

𝑥

𝑐
))]

𝜕𝑥
=
𝐴.𝜔

𝜒.𝑐
. 𝑐𝑜𝑠 (𝜔. (𝑡 −

𝑥

𝑐
)) 

La vitesse de vibration des particules 𝑣 est : 

𝜒 = −
1

𝑃
.
Δ𝑉

𝑉
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𝑣 =
∂E

𝜕𝑡
=
∂ [𝐴. 𝑠𝑖𝑛 (𝜔. (𝑡 −

𝑥
𝑐
))]

𝜕𝑡
= 𝐴.𝜔. 𝑐𝑜𝑠 (𝜔. (𝑡 −

𝑥

𝑐
)) 

et donc :            

            (12) 
 

𝒁 =
𝑷

𝒗
=

𝟏

𝝌.𝒄
 est appelé impédance acoustique et s’exprime donc en 𝑘𝑔.𝑚−2. 𝑠−1. 

 
Pour contourner la difficulté de mesurer la compressibilité de certains milieux non gazeux, 
considérons un petit élément de volume 𝜕𝑥. 𝑑𝑆  de masse 𝑚 = 𝜌. 𝜕𝑥. 𝑑𝑆  au sein du milieu de 
masse volumique 𝜌 où se propage un son (figure 15). 

 
Figure 15 : Elément de volume d’un milieu de propagation d’un son constitué de deux faces de 

surfaces 𝑑𝑆 séparées d’une distance 𝜕𝑥 
 
La relation fondamentale de la dynamique sur ce petit élément de volume s’écrit :  

𝑚.
𝜕𝑣

𝜕𝑡
= 𝐹1 − 𝐹2 = [𝑃(𝑥) − 𝑃(𝑥 + 𝜕𝑥)]. 𝑑𝑆 = −

𝜕𝑃

𝜕𝑥
. 𝜕𝑥. 𝑑𝑆 

Or 𝑃 = 𝑍. 𝑣 = 𝑍. 𝐴. 𝜔. 𝑐𝑜𝑠 (𝜔. (𝑡 − 𝑥

𝑐
)) ⟹

𝜕𝑃

𝜕𝑥
=
𝜕[𝑍.𝐴.𝜔.𝑐𝑜𝑠(𝜔.(𝑡−

𝑥

𝑐
))]

𝜕𝑥
=
𝑍.𝐴.𝜔2

𝑐
. 𝑠𝑖𝑛 (𝜔. (𝑡 −

𝑥

𝑐
)). 

Donc 𝑚. 𝜕𝑣
𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
. 𝜕𝑥. 𝑑𝑆 = −

𝑍.𝐴.𝜔2

𝑐
. 𝑠𝑖𝑛 (𝜔. (𝑡 −

𝑥

𝑐
)) . 𝜕𝑥. 𝑑𝑆 

Comme 𝑣 =
∂[𝐴.𝑠𝑖𝑛(𝜔.(𝑡−

𝑥

𝑐
))]

𝜕𝑡
= 𝐴.𝜔. 𝑐𝑜𝑠 (𝜔. (𝑡 −

𝑥

𝑐
)) ⟹

∂𝑣

∂t
= −𝐴.𝜔2. 𝑠𝑖𝑛 (𝜔. (𝑡 −

𝑥

𝑐
)), on obtient : 

−𝑚.𝐴.𝜔2. 𝑠𝑖𝑛 (𝜔. (𝑡 −
𝑥

𝑐
)) = −

𝑍.𝐴.𝜔2

𝑐
. 𝑠𝑖𝑛 (𝜔. (𝑡 −

𝑥

𝑐
)) . 𝜕𝑥. 𝑑𝑆 ⟹ 𝑚 = 𝜌. 𝜕𝑥. 𝑑𝑆 =

𝑍

𝑐
. 𝜕𝑥. 𝑑𝑆, soit : 

 
(13) 

 
Les relations (12) et (13) combinées permettent d’établir la loi de Laplace qui détermine la 
célérité du son:  

 
(14) 

 
 
Dans un gaz réel, par exemple pour de l’air à 20°C, χ ≈ 6,53.10−6 Pa−1  et ρ ≈ 1,3 kg.m−3 . La 
relation (14) donne alors une célérité du son estimée à 𝑐 ≈ 343 𝑚. 𝑠−1  

𝑃 =
1

𝜒. 𝑐
. 𝑣 ≝ 𝑍. 𝑣 

𝑍 = 𝜌. 𝑐 

𝑍 = 𝜌. 𝑐 =  
1

𝜒. 𝑐
⟹ 𝑐 =

1

√𝜒. 𝜌
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Dans l’approximation d’un gaz parfait, des considérations de thermodynamique montrent que la 
loi de Laplace prend une forme remarquablement simple où 𝑐 ne dépend que de la température : 
 
             (15) 
 
Dans un fluide, Pour de l’eau salée à 37°C, ρ ≈ 1030 kg.m−3 mais χ ≈ 4,18.10−10 Pa−1 est très 
faible, ce qui donne 𝑐 ≈ 1524 𝑚. 𝑠−1.  
 
Dans un solide, le module de Young Y est défini par le rapport entre une contrainte de pression 

𝑃 =
𝐹

𝑆
 exercée sur la face du solide et le raccourcissement relatif −Δ𝐿

𝐿
 de ce solide sous cette 

contrainte. Dans ces conditions, 𝐹

𝑆
≝ 𝑃 = −𝑌.

Δ𝐿

𝐿
⟹

1

𝑌
= −

1

𝑃
.
Δ𝐿

𝐿
 permet de définir la 

compressibilité d’un solide comme 1
𝑌

. La relation de Laplace pour un solide s’écrit alors :  

 
(16) 

 

 

Dans de l’os cortical à 37°C, Y = 15. 109 Pa et ρ = 1900 kg.m−3, et 𝑐 ≈ 2810 𝑚. 𝑠−1. 

Ces estimations de la célérité du son permettent de constater que les impédances acoustiques 
varient beaucoup dans les différents milieux d’un organisme humain : 
 

 ρ (kg.m−3) c (m. 𝑠−1) Z (kg.m−2. 𝑠−1) = 𝜌. 𝑐 
Air à 20°C 1,3 343 446 
Eau salée à 37°C 1030 1524 1,6.106 

Os cortical humain à 37°C 1900 2810 5,3.106 

 
Ce point qui justifie chez l’homme l’existence de l’oreille moyenne (Cf. cours de DFGSM2). 
 

D- Second exemple d’onde progressive : l’ondes électromagnétique 
 

I- Rappels d’électrostatique et de magnétostatique 
 
La justification de ces rappels repose sur les équations de Maxwell (cf. paragraphe 1-D-II).  
 
Par définition, on qualifie de statique un champ vectoriel (électrique ou magnétique) créé par 
une source (charge ou courant électrique) dont l’intensité est constante au fil du temps.  
 

Une charge électrique q’ constante dans le temps, positionnée en un point O de l’espace, 

crée en tout point M distinct de O de l’espace un vecteur champ électrostatique 𝐸(𝑟)⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ 
caractérisé par la relation : 

 
(17) 

 

où  𝑟 = 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ,   𝑟 = ‖𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ‖,   𝑢𝑟⃗⃗⃗⃗ =  
𝑟 

‖𝑟 ‖
  le vecteur unitaire (de norme 1) dirigé de 0 vers M. 

 

𝑐 = 20.√𝑇(𝐾𝑒𝑙𝑣𝑖𝑛) = 20.√𝜃(° 𝐶𝑒𝑙𝑠𝑖𝑢𝑠) + 273 

𝑐 =
1

√1
𝑌
. 𝜌

= √
𝑌

𝜌
 

𝐸(𝑟)⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ =
1

4. 𝜋. 𝜀
.
𝑞′

𝑟2
𝑢𝑟⃗⃗⃗⃗  
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La permittivité du milieu 𝜀, en Farad/mètre (r 1 F = 1 A.s.V-1) se décompose comme le produit de 
la permittivité relative du milieu 𝜺𝒓 par la permittivité du vide 𝜀0 ≝ 8,85. 10−12𝐹/𝑚. 
 

(18) 
 
 
Dans un tel espace, une seconde charge q placée au point M est soumise à une force 

électrostatique 𝐹(𝑟)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ proportionnelle au champ électrostatique, suivant la loi de Coulomb :  
 
 

(19) 
 
 
Cette force sera donc répulsive (dirigée de O vers M comme 𝑢𝑟⃗⃗⃗⃗  ) pour la charge q si 𝑞. 𝑞’ > 0, donc 
si 𝑞 et 𝑞’ sont de même signe, et attractive dans le cas contraire. 

 
Figure 16 : illustration de la création d’un champ électrostatique et d’une force de Coulomb par 

une charge électrique négative d’intensité constante dans le temps. 
 

Un fil électrique rectiligne parcouru par une intensité de courant constante I crée en tout 

point M éloigné d’une distance 𝑟 ≠ 0 du fil, champ magnétostatique 𝐵(𝑟)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ caractérisé par la loi 
de Biot et Savart (Cf. figure 17 pour la définition du vecteur unitaire 𝑢𝜃⃗⃗ ⃗⃗  ) : 
 
 

(20) 
 
 

La perméabilité du milieu 𝜇 , en Henry/mètre (1 H = 1 V.A-1.s) se décompose comme le produit 
de la perméabilité relative du milieu 𝝁𝒓 par la perméabilité du vide 𝜇0 ≝ 4. 𝜋. 10−7𝐻/𝑚. 
 
 

(21) 

 
Figure 17 : illustration de la création d’un champ magnétostatique et d’une force de Lorentz par 

un courant électrique d’intensité constante dans le temps. 
 

𝜀 ≝ 𝜀𝑟. 𝜀0 = 𝜀𝑟 . 8,854. 10
−12  ≈  

1

36. 𝜋
. 10−9 𝐹/𝑚 

𝐹(𝑟)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑞. 𝐸(𝑟)⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ =
1

4. 𝜋. 𝜀

𝑞. 𝑞′

𝑟2
𝑢𝑟⃗⃗⃗⃗  

𝐵(𝑟)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝜇

2. 𝜋
.
𝐼

𝑟
𝑢𝜃⃗⃗ ⃗⃗  

 

𝜇 ≝ 𝜇𝑟. 𝜇0 = 𝜇𝑟  .4. 𝜋. 10
−7 𝐻/𝑚 



17 
 

Sous l’effet de 𝐵(𝑟)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ , une charge 𝑞  qui se déplace avec une vitesse 𝑉⃗  dans le référentiel du 
laboratoire subit une force de Lorentz qui va courber sa trajectoire et dont on peut montrer 
qu’elle s’exprime suivant (cf. rappels de mathématique) : 
 

(22) 
 

 
Considérons maintenant le montage présenté en figure 18. Dès que l’on fait glisser la 

barre conductrice sur le cadre conducteur en forme de U, on constate qu’un courant 
(d’électrons) y apparait, ce qui nécessite l’existence d’une force de type Lorentz ou Coulomb de 
la forme 𝐹 = −𝑒. (𝐸⃗ + 𝑉⃗ ∧  𝐵⃗ ) , sous réserve de l’existence de champs électrostatique 𝐸⃗  ou 
magnétostatique 𝐵⃗ .  
Dans le référentiel R fixe par rapport à ce montage, il n’y a pas de champ électrique, mais un 
électron de charge −𝑒 de la barre se déplace dans un champ magnétostatique et subit donc une 
force de Lorentz  𝐹 = −𝑒. 𝑉⃗ ∧  𝐵⃗  qui explique le courant. 
Dans le référentiel R’ lié à la baguette métallique, cette dernière est immobile, mais les électrons 

restent en mouvement, mus par une force 𝐹′⃗⃗  ⃗ = 𝐹  qui ne peut être que de type Lorentz, de la forme  

𝐹′⃗⃗  ⃗ = −𝑒. 𝐸′⃗⃗⃗⃗ . Un champ 𝐸′⃗⃗⃗⃗ = 𝑉⃗ ∧ 𝐵⃗  apparait donc dans R‘, en lieu et place du champ 𝐵⃗   dans R. 
 

 
Figure 18 : Modèle d’un fil conducteur en forme de lettre U, placé dans un champ 

magnétostatique 𝐵⃗ , sur lequel glisse une barre conductrice à la vitesse 𝑉⃗ . 
 
La circulation d’un courant électrique est donc vue comme l’effet d’un champ magnétostatique 
dans le repère fixe, et d’un champ électrostatique dans un repère mobile. Ces deux champs 
relèvent d’une même grandeur physique, vue sous des référentiels différents. C’est ce lien intime 
entre champs électrique et magnétique que la théorie de Maxwell va nous permettre d’explorer, 
mais pour cela, il va falloir généraliser et considérer la possibilité de sources (charges ou 
courants) dont l’intensité varie avec le temps.  
 

  

𝐹 = 𝑞. 𝑉⃗ ∧  𝐵⃗  
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II- Équations de Maxwell et caractéristiques d’une onde électromagnétique  
 
Dans un milieu conducteur contenant n charges 𝑞 /m3 se déplaçant à la vitesse 𝑉⃗ , on définit : 

- Densité de charge  𝜌 ≝ 𝑛. 𝑞 en C.m-3 
- Densité de courant  𝑗 ≝ 𝑛. 𝑞. 𝑉⃗  en A.m-2. 

 
Les quatre équations de Maxwell (1864) s’écrivent sous une forme simplifiée : 
 

(23) 
 
 
(24) 
 

 
 
 
(25) 

 
 
 
 
 

(26) 
 

 
 
Les deux dernières équations de Maxwell (25 et 26) caractérisent le couplage entre champs 
électrique et magnétique qui constituent (dans le cas de sources variables dans le temps) deux 
grandeurs indissociables que nous appellerons désormais un champ électromagnétique. 
Ces équations se démontrent en théorie des champs classiques en se fondant sur la relativité 
restreinte et le principe de moindre action, mais cette démonstration sort du cadre de ce cours. 
Nous nous limitons à explorer les conséquences de ces équations sur un exemple simple. 
 
Soit le champ électrique 𝐸⃗ = (𝐸𝑥 , 𝐸𝑦, 𝐸𝑧) = (0,0, 𝐸𝑧 = 𝐸𝑧(𝑥, 𝑡)) dans un milieu sans densité de 
courant (𝑗 = 0). Supposons que la composante 𝐸𝑧(𝑥, 𝑡)  corresponde à une onde progressive 
sinusoïdale de pulsation 𝜔 se déplaçant dans le sens des 𝑥 > 0 à la célérité 𝑐𝑛 suivant (6) : 
 

 
(27) 

 
 
La relation de Maxwell (25) permet de finir d’expliciter le champ magnétique : 
 
𝜕𝐵𝑦

𝜕𝑡
=
𝜕𝐸𝑧

𝜕𝑥
⟹

𝜕𝐵𝑦

𝜕𝑡
= −

𝜔

𝑐𝑛
. 𝐸0. 𝑐𝑜𝑠 [𝜔. (𝑡 −

𝑥

𝑐𝑛
)] et donc 𝐵𝑦 = −

𝐸0

𝑐𝑛
. 𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑥

𝑐𝑛
)]. 

 

𝐸⃗ (𝑡, 𝑥) = (
0
0
𝐸𝑧

) = (

0
0

𝐸0. 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐𝑛
)]
) 

 

𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧
𝜕𝑧

=
𝜌

𝜀
 

𝜕𝐵𝑥
𝜕𝑥

+
𝜕𝐵𝑦

𝜕𝑦
+
𝜕𝐵𝑧
𝜕𝑧

= 0 

(

 
 
 
 

𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑧
𝜕𝐸𝑥
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑥

𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥
𝜕𝑦 )

 
 
 
 

= −

(

 
 
 

𝜕𝐵𝑥
𝜕𝑡
𝜕𝐵𝑦

𝜕𝑡
𝜕𝐵𝑧
𝜕𝑡 )

 
 
 

 

(

 
 
 
 

𝜕𝐵𝑧
𝜕𝑦

−
𝜕𝐵𝑦

𝜕𝑧
𝜕𝐵𝑥
𝜕𝑧

−
𝜕𝐵𝑧
𝜕𝑥

𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥
𝜕𝑦 )

 
 
 
 

= 𝜀. 𝜇.

(

 
 
 

𝜕𝐸𝑥
𝜕𝑡
𝜕𝐸𝑦

𝜕𝑡
𝜕𝐸𝑧
𝜕𝑡 )

 
 
 

+ 𝜇.(

𝑗𝑋
𝑗𝑦
𝑗𝑧

) 

Une densité de charge crée un champ 
électrique 𝐸⃗ = (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧). 
 

Il n’existe pas de charges 
magnétiques. 

 

Un champ magnétique variable dans 
le temps crée (induit) un champ 
électrique (également variable dans 
le temps). 

 

Un courant électrique 𝑗 = (𝑗𝑥 , 𝑗𝑦, 𝑗𝑧) , 
mais aussi un champ électrique 
variable dans le temps crée (induit) 
un champ magnétique.  
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Une onde électrique de la forme (27) génère donc une autre onde progressive, de nature 
magnétique cette fois, perpendiculaire et en phase avec 𝐸⃗ (𝑡, 𝑥), de même fréquence, de même 
célérité, de la forme : 

𝐵⃗ (𝑡, 𝑥) = (

0

−𝐵0. 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐𝑛
)]

0

), en notant 𝐵0 =
𝐸0

𝑐𝑛
.  

Les ondes magnétique 𝐵⃗ (𝑡, 𝑥) et électrique 𝐸⃗ (𝑡, 𝑥) sont couplées. Elles ne forment qu’une seule 
grandeur physique, appelée onde électromagnétique.  
 
En manipulant de façon plus technique les équations de Maxwell, il est possible d’étendre les 
résultats obtenus sur notre exemple simple et de montrer qu’en toute généralité, les vecteurs 𝐸⃗  
et 𝐵⃗  constituant une onde électromagnétique sont liés au vecteur unitaire (de norme 1) 𝑢⃗  porté 
par la direction de propagation suivant les relations équivalentes :  
 

 
(28) 

 
 

Comme 𝐵𝑦 = −
𝐸0

𝑐𝑛
. 𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑥

𝑐𝑛
)] et 𝐸𝑧 = 𝐸0. 𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑥

𝑐𝑛
)], l’équation (26) donne :  

𝜕𝐵𝑦

𝜕𝑥
= 𝜀. 𝜇.

𝜕𝐸𝑧
𝜕𝑡

⟹ −
𝐸0
𝑐𝑛

𝜕 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥
𝑐𝑛
)]

𝜕𝑥
= 𝜀. 𝜇. 𝐸0.

𝜕 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥
𝑐𝑛
)]

𝜕𝑡
⟹
𝜔.𝐸0

𝑐𝑛
2 = 𝜀. 𝜇. 𝐸0. 𝜔 

 
On en déduit l’expression de la célérité de l’onde électromagnétique : 
 

(29) 
 
 

Compte tenu des relations (18) et (21), la célérité est 𝑐𝑛 =
1

√𝜀.𝜇
=

1

√𝜀𝑟.𝜇𝑟√𝜀0.𝜇0
=

1

√𝜀𝑟.𝜇𝑟
.

1

√𝜀0.𝜇0
. 

Le terme 1

√𝜀0.𝜇0
 n’est autre que la célérité c d’une onde électromagnétique dans le vide. En 

utilisant les valeurs données en (18) et (21), 𝑐 = 1

√𝜀0.𝜇0
≈

1

√4.𝜋.10−7.
1

36.𝜋
.10−9

= 3. 108 𝑚/𝑠.  

Le terme √𝜀𝑟. 𝜇𝑟 est appelé indice de réfraction du milieu de propagation, et est noté 𝒏 : 
 

(30) 
 

La célérité d’une onde électromagnétique dans un milieu d’indice de réfraction 𝑛 est donc : 
 

(31) 
 
 

La période temporelle  𝑇 =
1

𝑓
  d’une onde progressive pure est la même dans le vide et dans un 

milieu d’indice de réfraction n, mais pas sa longueur d’onde puisque  𝜆𝑛 = 𝑐𝑛. 𝑇 =
𝑐

𝑛
. 𝑇 =

𝜆

𝑛
.  

 

𝑛 ≝ √𝜀𝑟. 𝜇𝑟 > 1 

𝑐𝑛 =
𝑐

𝑛
< 𝑐 ≈ 3. 108 𝑚/𝑠 

𝑐𝑛 =
1

√𝜀. 𝜇
 

𝐵⃗ =
1

𝑐𝑛
𝑢⃗ ∧ 𝐸⃗ ⟺ 𝐸⃗ = −𝑐𝑛. 𝑢⃗ ∧ 𝐵⃗  
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Une onde électromagnétique (𝑬⃗⃗ , 𝑩⃗⃗ )  est donc constituée de deux ondes progressives 
vectorielles couplées, perpendiculaires entre-elles et avec leur direction de propagation 
commune 𝒖⃗⃗ , vibrant en phase, à la même fréquence et se propageant à la même célérité cn 
= c/n dans un milieu d’indice de réfraction n. (Fig. 1-20) 

 
Une classification des ondes électromagnétiques sera donnée au paragraphe 2-C.  
 
 

E- Lois de Snell-Descartes de la réflexion et de la réfraction 
 

I- Chemin optique 
Compte-tenu de l’équation (31), le temps mis par une onde électromagnétique pour se propager 
du point A au point B distants de 𝑑(𝐴, 𝐵) dans un milieu d’indice de réfraction 𝑛 est : 
 
 

(32) 
 
 

(33)  
 
 
Le chemin optique 𝑳(𝑨 → 𝑩) entre les points A et B dans un milieu d’indice de réfraction 𝑛 est la 
distance parcourue dans le vide dans le même temps que 𝑑(𝐴, 𝐵) dans un milieu d’indice 𝑛 : 
 

(34) 
 
L’équation (34) s’écrit de façon équivalente (cf. rappels de mathématique) : 
 
 

(35) 
 
 

Le principe de moindre action nous a appris que l’onde suit entre A et B le chemin qui minimise 
le temps de trajet. Les équations (33) et (34) permettent de le reformuler suivant : 
 
Principe de moindre action de Fermat : Entre deux points A et B de l’espace, une onde suit la 
trajectoire associée à un chemin optique L(A → B) extrémal.  
 

𝐿(𝐴 → 𝐵) ≝ 𝑛. 𝑑(𝐴, 𝐵) 

𝑡𝑛 =
𝑛. 𝑑(𝐴, 𝐵)

𝑐
 

𝐿(𝐴 → 𝐵) ≝ 𝑛. 𝑢⃗ . 𝐴𝐵⃗⃗⃗⃗  ⃗ où 𝑢⃗ =
𝐴𝐵⃗⃗⃗⃗  ⃗

‖𝐴𝐵⃗⃗⃗⃗  ⃗‖
 

Figure 20 : Illustration de la propagation d’une onde 
électromagnétique monochromatique polarisée 

rectilignement (𝐸⃗ , 𝐵⃗ ). Durant leurs propagations suivant l’axe 

x, les champs 𝐸⃗  et 𝐵⃗  varient en norme en restant en phase. 
Notez que, sur ce schéma, la norme de 𝐵⃗  a été fortement 

exagérée par rapport à celle de 𝐸⃗ , pour des raisons de lisibilité. 
 

𝑡𝑛 =
𝑑(𝐴, 𝐵)

𝑐𝑛
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Cela revient à dire que pour une onde issue de A atteignant B, la variation de chemin optique est 
infiniment petite (𝑑𝐿 ⟶ 0)  si le point B est déplacé sur une distance infiniment petite (𝑑𝐵 ⟶ 0). 

 
Figure 19 : illustration de la variation infinitésimale de chemin optique 𝑑𝐿(𝐴 → 𝐵) provoquée par 

un déplacement infinitésimal dB du point B. 
 
Pour deux points A et B distants, lorsque le B se déplace en B’ suivant un vecteur infiniment petit 

𝑑𝐵⃗⃗⃗⃗  ⃗ = 𝐵𝐵′⃗⃗⃗⃗⃗⃗  ⃗, le vecteur unitaire 𝑢′⃗⃗  ⃗ = 𝐴𝐵′⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝐴𝐵′⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 est en première approximation peu différent de  𝑢⃗ = 𝐴𝐵⃗⃗ ⃗⃗  ⃗

‖𝐴𝐵⃗⃗ ⃗⃗  ⃗‖
 

et le chemin optique entre les points A et B devient L(A → B′) = 𝑛. 𝑢⃗ . 𝐴𝐵′⃗⃗⃗⃗⃗⃗  ⃗. 

D’après la relation de Chasles : L(A → B′) = 𝑛. 𝑢⃗ . (𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝑑𝐵⃗⃗⃗⃗  ⃗) = L(A → B) + 𝑛. 𝑢⃗ . 𝑑𝐵⃗⃗⃗⃗  ⃗. Le chemin 

optique a donc varié de 𝑑𝐿(A → B) = n. 𝑢⃗ . 𝑑𝐵⃗⃗⃗⃗  ⃗, le produit de 𝑛 par la longueur de la projection du 

vecteur 𝑑𝐵⃗⃗⃗⃗⃗⃗   sur la direction portée par le vecteur 𝑢⃗ . Pour un rayon lumineux joignant les points A 
et B, le principe de moindre action s’écrit donc : 

 
(36) 
 

II- Loi de Snell-Descartes pour la réflexion 
 
La figure 20 montre un rayon lumineux issu du point A (dans un milieu d’indice de réfraction 𝑛1) 

qui se réfléchit sur un miroir au point M puis atteint le point B. Notons 𝑢𝑖⃗⃗  ⃗ =
𝐴𝑀⃗⃗ ⃗⃗ ⃗⃗  

‖𝐴𝑀⃗⃗ ⃗⃗ ⃗⃗  ‖
 , 𝑢𝑟⃗⃗⃗⃗ =

𝑀𝐵⃗⃗⃗⃗⃗⃗  ⃗

‖𝑀𝐵⃗⃗⃗⃗⃗⃗  ⃗‖
. 𝑖 et 

𝑟 les angles d’incidence et de réflexion (par rapport à la normale au miroir en M) : 

 
Figure 20 : Réflexion d’un rayon lumineux par un miroir. 

 

Pour un petit déplacement 𝑑𝑀⃗⃗⃗⃗⃗⃗  du point M, 𝑑𝐿(A → M → B) = 0.  
Cela nécessite que les points A, M et B soient coplanaires. 

Par ailleurs, si M est translaté de 𝑑𝑀⃗⃗⃗⃗ ⃗⃗  ⃗ en se rapprochant de B la relation (36) donne : 

𝑑𝐿(A → M → B) = 𝑑𝐿(A → M) + 𝑑𝐿(M → B) = 𝑛1𝑢𝑖⃗⃗  ⃗. 𝑑𝑀⃗⃗⃗⃗⃗⃗ − 𝑛1𝑢𝑟⃗⃗⃗⃗ . 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 0 
Il s’ensuit que 𝑛1𝑢𝑖⃗⃗  ⃗. 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 𝑛1𝑢𝑟⃗⃗⃗⃗ . 𝑑𝑀⃗⃗⃗⃗⃗⃗ ⟹ 𝑛1𝑑𝑀. cos 𝑖

′ = 𝑛1. 𝑑𝑀. cos 𝑟′. 

𝑑𝐿(A → B) = 𝑛. 𝑢⃗ . 𝑑𝐵⃗⃗⃗⃗  ⃗ = 0 
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Or cos 𝑖′ = cos 𝑟′ ⟹ sin 𝑖 = sin 𝑟 ⟹ 𝑖 = 𝑟 puisque les angles i et r varient entre 0 et 90°. 
 
D’où les lois de Snell-Descartes pour la réflexion  

1- Les rayons incidents et réfléchis sont coplanaires, 
2- L’angle d’incidence 𝑖 est égal à l’angle de réflexion r. 

 

III- Loi de Snell-Descartes pour la réfraction 
 
Le figure 21 montre le trajet d’un rayon émis en A, atteignant en M une interface entre deux milieux 

d’indices 𝑛1 et 𝑛2, et réfracté dans le second milieu sous l’angle 𝑡. Pour un petit déplacement 𝑑𝑀⃗⃗⃗⃗⃗⃗  
du point M, 𝑑𝐿(A → M → C) = 0, ce qui nécessite que les points A, M et C soient coplanaires. On 
a par ailleurs :  
 
𝑑𝐿(A → M → C) = 𝑑𝐿(A → M) + 𝑑𝐿(M → C) = 𝑛1𝑢𝑖⃗⃗  ⃗. 𝑑𝑀⃗⃗⃗⃗⃗⃗ − 𝑛2𝑢𝑡⃗⃗  ⃗. 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 0 ⟹ 𝑛1. sin 𝑖 = 𝑛2. sin 𝑡 

 

 
Figure 21 : Réfraction d’un rayon lumineux à travers une interface P. 

 
 
D’où les lois de Snell-Descartes pour la réfraction : 

1- Les rayons incidents et réfractés sont coplanaires, 
2- L’angle d’incidence i et l’angle de réfraction t sont liés par la relation 𝑛1. sin 𝑖 = 𝑛2. sin 𝑡 

 
La fonction sinus étant croissante sur l’intervalle [0,90°],  𝑡 >  𝑖  si  𝑛2  <  𝑛1  (et  𝑡 <  𝑖 sinon) 
Lorsque 𝑛2  <  𝑛1 (milieu d’émergence est moins réfringent que le milieu d’incidence), il existe 
un angle d’incidence limite 𝑖𝑚𝑎𝑥 au-delà duquel 𝑡 > 90°: le rayon est intégralement réfléchi, et 
plus du tout transmis par réfraction dans le second milieu. Cet angle d’incidence limite se calcule 

facilement : 𝑛1
𝑛2
. sin 𝑖 = 𝑠𝑖𝑛 𝑡 < 1 ⟹ 𝑖 < 𝑖𝑚𝑎𝑥 = arcsin (

𝑛2

𝑛1
) 

Cette réflexion totale est utilisée dans les fibres optiques où le rayon laser constituant le signal 
arrive sur la face interne de la fibre avec un angle d’incidence 𝑖 > 𝑖𝑚𝑎𝑥 de manière à assurer une 
réflexion totale de ce rayon et sa propagation à l’intérieur de la fibre (figure 22).  
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Figure 22 : Réflexion totale d’un rayon laser dans une fibre optique. 

 
Notons enfin que, compte tenu de la relation (31) suivant laquelle l’indice de réfraction 𝑛 = 𝑐

𝑐𝑛
, 

la loi de Descartes pour la réfraction s’écrit aussi de façon équivalente 1
𝑐1
. sin 𝑖 =

1

𝑐2
. sin 𝑡. Sous 

cette forme, elle est aussi applicable à une onde sonore réfractée par une interface séparant 
deux milieux d’impédances acoustiques différentes. 

 

F- Optique géométrique et dioptrique oculaire 
 

I- Définition et hypothèses.  
 

- Dioptre : surface séparant deux milieux transparents d’indices de réfraction différents.  
o Sphérique : si la surface du dioptre est une portion de sphère. 

- Lentille : succession de deux dioptres.  
- Système optique : milieu transparent contenant des miroirs ou des dioptres.  

o Dioptrique s’il ne contient que des dioptres,  
o Catadioptrique s’il contient aussi des miroirs.  
o Centré s’il est invariant par rotation autour d’un axe (de révolution). 

▪ Satisfaisant à l’approximation de Gauss si les angles entre les rayons 
lumineux et l’axe de révolution sont assez petits pour approximer le sinus 
de ces angles par leur valeur en radians. 

• Stigmate si l’image de tout point objet lumineux est un point 
image, astigmate sinon. 

• Aplanétique si l’image de tout segment lumineux perpendiculaire 
à l’axe optique est un segment qui reste perpendiculaire à cet axe. 

- Espace objet : en amont du dioptre (par rapport au sens de propagation des rayons).  
- Espace image : en aval du dioptre.  

-  
Figure 23 : Illustration, dans l’approximation de Gauss (<<1), d’un système optique centré 

constitué d’une lentille, stigmate et aplanétique. 
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II- Relation de conjugaison d’un dioptre, construction des images. 
 
La figure 24 illustre la déviation d’un rayon lumineux issu d’un point objet 𝐴 au travers d’un dioptre 
sphérique séparant deux milieux d’indices de réfraction 𝑛 et 𝑛’ et contenu dans une sphère de 
centre 𝐶 et de rayon 𝑆𝐶. Le point 𝑆, intersection du dioptre avec l’axe optique est appelé sommet 
du dioptre. Après réfraction au point 𝑃 , le rayon incident 𝐴𝑃  est dévié et converge sur l’axe 
optique en un point 𝐴’, image du point 𝐴.  
Par convention, l’axe des abscisses est orienté positivement dans le sens de propagation de la 
lumière. Les arcs et les angles sont mesurés positifs dans le sens trigonométrique. On rappelle 
que la mesure algébrique du bipoint 𝐴𝐵̅̅ ̅̅  est la distance de 𝐴 à 𝐵  dotée d’un signe suivant ces 
conventions.  
La somme des angles d’un triangle valant  radians : 

Dans le triangle (A,P,C), 𝜋 − 𝑖 + 𝜔 + 𝛼 = 𝜋 ⟹ 𝑖 = 𝜔 + 𝛼, 
Et dans le triangle (A’,P,C), 𝜋 − 𝜔 + 𝑖′ + 𝛼′ = 𝜋 ⟹ 𝑖′ = 𝜔 − 𝛼′. 

Dans l’approximation de Gauss, la loi de Snell-Descartes pour la réfraction s’écrit : 
𝑛. 𝑖 = 𝑛′. 𝑖′ ⟹ 𝑛. (𝜔 + 𝛼) = 𝑛′. (𝜔 − 𝛼′) ⟹ (𝑛′ − 𝑛).𝜔 = 𝑛. 𝛼 + 𝑛′. 𝛼′. 

En exprimant les angles 𝛼 = 𝑆𝑃̅̅̅̅

𝑆𝐴̅̅ ̅̅
= −

𝑃𝑆̅̅̅̅

𝑆𝐴̅̅ ̅̅
 ;  𝛼′ =

𝑃𝑆̅̅̅̅

𝑆𝐴′̅̅ ̅̅ ̅  ;  𝜔 =
𝑃𝑆̅̅̅̅

𝑆𝐶̅̅̅̅
, on obtient : 

(𝑛′ − 𝑛).
𝑃𝑆̅̅̅̅

𝑆𝐶̅̅̅̅
= −𝑛.

𝑃𝑆̅̅̅̅

𝑆𝐴̅̅̅̅
 + 𝑛′.

𝑃𝑆̅̅̅̅

𝑆𝐴′̅̅ ̅̅
 ⟹

𝑛′ − 𝑛

𝑆𝐶̅̅̅̅
=
𝑛′

𝑆𝐴′̅̅ ̅̅
−
𝑛

𝑆𝐴̅̅̅̅
  

 

 
Figure 24 : Illustration de la déviation d’un rayon lumineux par un dioptre sphérique 

et de la formation de l’image A’ d’un point objet A. 
 
D’où la localisation de l’image 𝐴′ par la formule de conjugaison du dioptre sphérique :   
 
 

(37) 
 
 
La puissance ou vergence du dioptre sphérique𝚷  est une grandeur algébrique et additive 
caractéristique du dioptre qui s’exprime en dioptrie (Dp), avec par définition 1 𝐷𝑝 ≝ 1 𝑚−1. 
Le dioptre sera qualifié de convergent si Π > 0, et de divergent si Π < 0.  
 
Si le point objet A est infiniment éloigné du dioptre 𝑆𝐴̅̅̅̅ ⟶ −∞, alors l’angle 𝛼 tend vers 0 et le 
rayon lumineux prend une direction parallèle à l’axe optique avant d’atteindre le dioptre. Ces 

Π ≝
𝑛′ − 𝑛

𝑆𝐶̅̅̅̅
=
𝑛′

𝑆𝐴′̅̅ ̅̅
−
𝑛

𝑆𝐴̅̅̅̅
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rayons convergent en un point image appelé foyer image 𝑭’ du dioptre. La relation de 
conjugaison (37) permet d’en préciser la position : 
 

(38) 
 
 
Ajouter aux hypothèses la condition d’aplanétisme permet de compléter le modèle et de l’utiliser 
pour construire l’image par un dioptre sphérique de tout objet lumineux constitué d’un segment 
𝐴𝐵 perpendiculaire à l’axe optique dont le point 𝐴 est sur cet axe. Il suffit pour cela : 

1- De localiser l’image 𝐴’ du point 𝐴 en utilisant la relation de conjugaison (37), 
2- De remarquer qu’un rayon issu du point objet 𝐵 et dont la direction incidente passe par le 

centre du dioptre sphérique 𝐶 arrive sur le dioptre sous une incidence normale et n’est 
donc pas dévié. 

3- La condition d’aplanétisme impose que l’image du point 𝐵 se trouve à l’intersection de la 
droite (𝐵𝐶) et de la droite perpendiculaire à l’axe optique passant par 𝐴’ . 

  
Figure 25 : Image d’un segment lumineux AB par un dioptre sphérique convergent. 

 
Pour un dioptre convergent, on constate sur figure 25 que l’image A’B’ du segment AB se forme 
dans l’espace image. On qualifie cette image d’image réelle. 
Le cas d’un dioptre sphérique divergent est illustré en figure 26 : Limage 𝐴’𝐵’  se forme dans 
l’espace objet. Elle est de ce fait qualifiée d’image virtuelle. 

 
Figure 26 : Image d’un segment lumineux AB par un dioptre sphérique divergent. 

𝑆𝐴̅̅̅̅ ⟶ −∞⟹ Π ≝
𝑛′ − 𝑛

𝑆𝐶̅̅̅̅
=
𝑛′

𝑆𝐹′̅̅ ̅̅
⟹ 𝑆𝐹′̅̅ ̅̅ ̅ =

𝑛′

Π
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III- Introduction à la dioptrique oculaire et aux amétropies sphériques 
 

L’œil humain est un système optique centré constitué de 4 dioptres formant deux lentilles, la 
cornée et le cristallin (partie supérieure de la figure 27).  
Le premier de ces dioptres, le dioptre cornéen antérieur, de rayon 7,8 mm sépare l’air ambiant du 
tissu cornéen d’indice de réfraction 1,377. Le deuxième dioptre, de rayon 6,8 mm, sépare la 
cornée de la chambre antérieure de l’œil emplie d’un liquide, l’humeur aqueuse, d’indice 1,34. 
La puissance de la cornée est la somme des puissances de ces deux dioptres : 

Π𝑐𝑜𝑟𝑛é𝑒 =
1,377−1

7,8.10−3
+
1,34−1,377

6,8.10−3
= 42,9 𝐷𝑝  

Un diaphragme, l’iris, sert à limiter l’intensité de la lumière transmise. On trouve ensuite le 
cristallin (indice de l’ordre de 1,40) dont les dioptres antérieur et postérieur ont des rayons de 
courbure au repos, lors d’une vision de loin, de 10 et -6 mm respectivement (en vision de près, 
ces rayons varient pour assurer une accommodation). 
En aval du cristallin, la chambre postérieure est remplie d’un liquide, l’humeur vitrée d’indice 
de réfraction n’=1,336. La puissance du cristallin au repos est donc :  

Π𝑐𝑟𝑖𝑠𝑡𝑎𝑙𝑙𝑖𝑛 =
1,40−1,34

10.10−3
+
1,336−1,40

−6.10−3
= 17 𝐷𝑝. 

La chambre postérieure est tapissée d’un tissu constitué de cellules nerveuses photosensibles, 
la rétine, et de neurones dont les axones forment le nerf optique. C’est au sein ce dernier que le 
signal lumineux, transformé en signal électrique, est transmis au cortex occipital pour analyse et 
intégration. 
La puissance totale d’un œil humain au repos en vision de loin est la somme des puissances des 
deux lentilles : Π = Π𝑐𝑜𝑟𝑛é𝑒 +Π𝑐𝑟𝑖𝑠𝑡𝑎𝑙𝑙𝑖𝑛 = 60 𝐷𝑝 , dont de 48 𝐷𝑝  proviennent du seul dioptre 
antérieur de la cornée. 
 

 
Figure 27 : Représentation schématique d’un œil humain (partie supérieure)  

et modélisation fonctionnelle dite de « l’œil réduit » 
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Les amétropies sphériques sont des défauts de courbure du dioptre antérieur de la cornée qui 
n’affectent pas sa sphéricité. Elles conduisent à une image floue sur la rétine. 

Dans la myopie, l’image d’un objet éloigné se forme dans un plan focal en amont de la 
rétine, du fait soit un rayon de courbure 𝑆𝐶̅̅̅̅  trop faible (donc une courbure trop forte), soit 
une profondeur SR du globe oculaire trop élevée (figure 28, partie médiane). Cette 
amétropie se corrige en soustrayant la puissance en excès au moyen de verres 
divergents. 
Dans l’hypermétropie, l’image d’un objet éloigné se forme dans un plan focal en aval de 
la rétine, du fait soit un rayon de courbure 𝑆𝐶̅̅̅̅  trop grand, soit une profondeur SR du globe 
oculaire trop faible (figure 28, partie inférieure). Cette amétropie se corrige en ajoutant la 
puissance manquante au moyen de verres convergents. 

 
 
Figure 28 : Comparaison de la position de l’image d’un objet éloigné dans le cas d’un œil sain, 
d’un œil myope (image du milieu) et d’un œil hypermétrope (ou hyperope, image du bas) 
 
Des corrections analogues à celles que nous venons d’évoquer peuvent être proposées à des 
patients présentant des amétropies non sphériques (astigmatisme), c’est-à-dire des défauts de 
convergence qui concernent de la cornée de façon moins uniforme, avec par exemple des 
dioptres non sphériques de puissances différentes sur les méridiens verticaux et horizontaux. 
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G- Onde stationnaire et quantification 
 

I- Réflexion normale 
 

Une onde progressive 𝑔𝑖(𝑡, 𝑥) = 𝐴𝑖. 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐1
)] qui atteint sous une incidence normale une 

interface P positionnée en 𝑥 = 0 , perpendiculaire à l’axe des 𝑥  génère une onde réfléchie 

𝑔𝑟(𝑡, 𝑥) = 𝐴𝑟. 𝑠𝑖𝑛 [𝜔. (𝑡 +
𝑥

𝑐1
)] et une onde réfractée 𝑔𝑡(𝑡, 𝑥) = 𝐴𝑡 . 𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑥

𝑐2
)]. 

 

 
Figure 29 : Réflexion et réfraction d’une onde progressive 𝑔𝑖(𝑡, 𝑥) atteignant, sous une incidence 

normale, une interface P séparant deux milieux d’indices n1 et n2. 
 
La grandeur physique étant continue sur l’interface : 𝑔𝑖(𝑡, 0) + 𝑔𝑟(𝑡, 0) = 𝑔𝑡(𝑡, 0) pour tout 𝑡, soit 
𝐴𝑖 . 𝑠𝑖𝑛[𝜔. 𝑡] + 𝐴𝑟. 𝑠𝑖𝑛[𝜔. 𝑡] = 𝐴𝑡 . 𝑠𝑖𝑛[𝜔. 𝑡], ce qui nécessite d’avoir 𝐴𝑖 + 𝐴𝑟 = 𝐴𝑡. 
 
La continuité de la dérivée de la grandeur physique au niveau de l’interface donne, pour tout 𝑡 : 
𝜕𝑔𝑖

𝜕𝑥
(𝑡, 0) +

𝜕𝑔𝑟

𝜕𝑥
(𝑡, 0) =

𝜕𝑔𝑡

𝜕𝑥
(𝑡, 0) ⟹ −

𝜔

𝑐1
𝐴𝑖 . 𝑐𝑜𝑠[𝜔. 𝑡] +

𝜔

𝑐1
𝐴𝑟 . 𝑐𝑜𝑠[𝜔. 𝑡] = −

𝜔

𝑐2
𝐴𝑡 . 𝑐𝑜𝑠[𝜔. 𝑡] , ce qui 

nécessite − 𝜔

𝑐1
𝐴𝑖 +

𝜔

𝑐1
𝐴𝑟 = −

𝜔

𝑐2
𝐴𝑡, soit 𝐴𝑖 − 𝐴𝑟 =

𝑐1

𝑐2
𝐴𝑡. 

En combinant ces deux résultats, il vient : 

𝐴𝑖 − 𝐴𝑟 =
𝑐1
𝑐2
𝐴𝑡 =

𝑐1
𝑐2
(𝐴𝑖 + 𝐴𝑟) ⟹ 1 −

𝐴𝑟
𝐴𝑖
=
𝑐1
𝑐2
(1 +

𝐴𝑟
𝐴𝑖
) ⟹

𝐴𝑟
𝐴𝑖
=
𝑐2 − 𝑐1
𝑐2 + 𝑐1

=

𝑐
𝑛2
 −  

𝑐
𝑛1

𝑐
𝑛2
 +  

𝑐
𝑛1

=
𝑛1 − 𝑛2
𝑛1 + 𝑛2

 

Le coefficient de réflexion en amplitude est donc : 
 

(39) 
 
 

De même, 𝐴𝑡 = 𝐴𝑖 + 𝐴𝑟 = 𝐴𝑖 + 𝑟𝐴. 𝐴𝑖 ⟹
𝐴𝑡

𝐴𝑖
= 1 + 𝑟𝐴 = 1 +

𝑛1−𝑛2

𝑛1+𝑛2
=

2.𝑛1

𝑛1+𝑛2
, soit  

 
(40) 

 
A titre d’exemple, pour une lentille en verre d’indice de réfraction 𝑛2 = 1,5, placée dans de l’air 

(𝑛1 ≈ 1) :  𝑟𝐴 = |
1−1,5

1+1,5
| =

1

5
 et 𝑡𝐴 =

2

1+1.5
=
4

5
.  

 
En termes d’intensité transmise, on peut montrer que dans le milieu incident, l’intensité 
lumineuse est proportionnelle au carré des amplitudes : 
 

(41) 

𝑟𝐴 ≝
𝐴𝑟
𝐴𝑖
=
𝑛1 − 𝑛2
𝑛1 + 𝑛2

 

 

𝑡𝐴 ≝
𝐴𝑡
𝐴𝑖
=

2. 𝑛1
𝑛1 + 𝑛2

 

 

𝑟𝐼 ≝
𝐼𝑟
𝐼𝑖
= (

𝑛1 − 𝑛2
𝑛1 + 𝑛2

)
2
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Le coefficient de transmission en intensité se calcule simplement en remarquant que 𝐼𝑖 = 𝐼𝑟 +
𝐼𝑡, et que donc 𝑟𝐼 + 𝑡𝐼 = 1, soit  

(42) 
 
 

Dans l’exemple précédent, on trouve 𝑟𝐼 =
1

52
= 4% et 𝑡𝐼 = (

4.1,5

2,5
)
2

= 96% : l’intensité lumineuse 

est donc principalement transmise à travers le verre étudié. 
 

II- Onde stationnaire et première approche de quantification 
 
Reprenons l’exemple précédent en supposant que l’onde est intégralement réfléchie par 
l’interface (Fig. 1-31 avec 𝑛2 ≫ 𝑛1, de sorte que 𝑟𝐼 = 1 et 𝑡𝐼 = 0 ) . 
En 𝑥 = 0, 𝑔(𝑡, 0) = 𝐴𝑖 . 𝑠𝑖𝑛[𝜔. (𝑡)] + 𝐴𝑟. 𝑠𝑖𝑛[𝜔. (𝑡)] = 0 pour 𝑡, ce qui implique 𝐴𝑟 = −𝐴𝑖. 
En amont de P (pour 𝑥 < 0), les ondes progressives 𝑔𝑖 et 𝑔𝑟s’additionnent et créent une onde : 

𝑔(𝑡, 𝑥) = 𝐴𝑖 . 𝑠𝑖𝑛 [𝜔. (𝑡 −
𝑥

𝑐1
)] + 𝐴𝑟 . 𝑠𝑖𝑛 [𝜔. (𝑡 +

𝑥

𝑐1
)] = 𝐴𝑖 . [𝑠𝑖𝑛 [𝜔. (𝑡 −

𝑥

𝑐1
)] − 𝑠𝑖𝑛 [𝜔. (𝑡 +

𝑥

𝑐1
)]] 

Compte-tenu de la relation de factorisation 𝑠𝑖𝑛(𝑝) − 𝑠𝑖𝑛(𝑞) = 2. 𝑠𝑖𝑛 (𝑝−𝑞
2
) 𝑐𝑜𝑠 (

𝑝+𝑞

2
) : 

𝑔(𝑡, 𝑥) = [−2.𝐴𝑖. 𝑠𝑖𝑛 (
𝜔𝑥

𝑐1
)] 𝑐𝑜𝑠(𝜔. 𝑡) = 𝐴(𝑥). 𝑐𝑜𝑠(𝜔. 𝑡) 

 
L’onde de type 𝑐𝑜𝑠(𝜔. 𝑡), sans terme de retard de la forme 𝜔. 𝑥

𝑐1
 est qualifié d’onde stationnaire : 

tous les points de l’espace sont dans le même état vibratoire à chaque instant (ils vibrent en 
phase, mais avec une amplitude 𝐴(𝑥) variable entre 0 et 2. 𝐴𝑖).  

Lorsque 𝜔𝑥
𝑐1
=
2𝜋.𝑥

𝜆1
 est un multiple de 𝜋, c’est-à-dire lorsque 𝑥 est un multiple de 𝜆1

2
, 𝐴(𝑥) = 0 et 

l’onde disparait à tout instant. On qualifiera ces points de nœuds de vibration.  

D’autres points pour lesquels 𝜔𝑥
𝑐1
=
2𝜋.𝑥

𝜆1
 est un multiple impair de 𝜋

2
, soit quand 𝑥 est un multiple 

impair de 𝜆1
4

, verront une onde d’amplitude maximale 2. 𝐴𝑖. On qualifie ces points de ventres de 
l’onde stationnaire (Figure 30). 

 
Figure 30 : Onde stationnaire obtenue par réflexion normale complète d’une onde progressive. 

 
Une onde stationnaire de longueur d’onde 1 peut ainsi être maintenue et amplifiée dans une 
cavité résonnante constituée de deux miroirs P et P’ positionnés sur deux nœuds de vibration, 
suivant la figure 31, à condition donc que la distance L qui sépare ces deux miroirs soit un 
multiple de 1/2. Cette distance ne peut donc pas prendre n’importe quelle valeur, mais 
seulement des valeurs parmi 1/2, 1, 3.1/2, 1 etc. On dira que cette distance est quantifiée. 
Cette remarque sera essentielle pour comprendre les bases de la mécanique quantique. 
 

𝑡𝐼 ≝
𝐼𝑡
𝐼𝑖
= 1 − 𝑟𝐼 =

4. 𝑛1. 𝑛2
(𝑛1 + 𝑛2)

2
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Figure 31 : Illustration d’une onde stationnaire au sein d’une cavité résonnante. 

 
 

H- Diffraction et interférences.  
 

I- Interférences après diffraction 
 

On considère une onde plane progressive pure qui se propage à travers un orifice percé dans un 
écran opaque. Si l’orifice est petit (par rapport à la longueur d’onde) un seul point au sein de 
l’orifice réémet en aval de l’orifice une seule onde sphérique suivant le principe de Huygens 
(figure 32-a). Si l’orifice est plus large, plusieurs sources ponctuelles au sein de l’orifice 
réémettent des ondes sphériques qui vont s’additionner algébriquement en aval de celui-ci 
(figure 32-b). Dans les deux cas, le changement de direction du vecteur d’onde au passage de 
l’orifice est qualifié de diffraction. Dans le second cas, on appelle interférences la sommation 
des ondes sphériques émergentes. 
 

 
Figure 32 : Illustration de la diffraction d’une onde stationnaire plane 

 à travers un orifice percé dans un écran opaque. 
 
Calculons d’abord l’onde progressive qui se forme sur un écran distant par interférences à partir 
de deux sources ponctuelles espacées d’une distance 𝑏 dans le vide (figure 33). 
Dans une direction 𝜃 ≪ 1 peu inclinée par rapport à l’horizontale, le chemin optique d’un des 
deux rayons est majoré de la valeur 𝐷 = 𝑏. sin 𝜃  par rapport à l’autre rayon (figure 33), ce qui 

conduit à un déphasage entre les deux rayons de 𝜑 = 𝜔

𝑐
. 𝐷 =

2𝜋

𝜆
. 𝐷 = 2𝜋

𝑏.sin𝜃

𝜆
 . 
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Figure 33 : Interférence de deux ondes sphériques. 

 
L’onde 𝑔(𝑡, 𝑟) mesurée en un point M sur un écran distant de 𝑟 de la source s’écrit : 

𝑔(𝑡, 𝑟) = 𝐴0. [sin (𝜔. 𝑡 −
𝜔. 𝑟

𝑐
) + sin (𝜔. 𝑡 −

𝜔. 𝑟

𝑐
− 𝜑)] 

En se souvenant de la relation de factorisation sin𝑝 + sin 𝑞 = 2. sin (𝑝+𝑞
2
) . cos (

𝑝−𝑞

2
), il vient : 

𝑔(𝑡, 𝑟) = 2. 𝐴0. cos (
𝜑

2
) . sin (𝜔. 𝑡 −

𝜔. 𝑟

𝑐
−
𝜑

2
) = 2.𝐴0. cos (

𝜑

2
) . sin(𝜔. 𝑡 −

𝜔

𝑐

(2. 𝑟 − 𝐷)

2
) 

Il s’agit d’une onde progressive apparaissant sur l’écran (à la distance moyenne de 𝑟+
(𝑟−𝐷)

2
) avec 

une amplitude 2. 𝐴0. cos (
𝜑

2
) = 2. 𝐴0. cos (𝜋

𝑏.sin𝜃

𝜆
) qui est extrémale lorsque 𝑏.sin𝜃

𝜆
 est un entier 𝑘, 

et qui s’annule lorsque 𝑏.sin𝜃
𝜆

 est un multiple impair de 1
2

.  Il apparait donc sur l’écran une 

succession de bandes claires (𝜃 tels que sin 𝜃 = 𝑘. 𝜆
𝑏
, 𝑘 entier), et de bandes sombres (𝜃 tels que 

sin𝜃 = (𝑘 +
1

2
) .
𝜆

𝑏
). On parlera dans le premier cas d’une interférence constructive (les deux 

ondes sont en phase et se renforcent en s’additionnant), et dans le second d’une interférence 
destructive (les deux ondes s’annulent en s’additionnant). Pour des angles 𝜃 ≪ 1, les centres 

des bandes claires (comme ceux des bandes sombres) sont espacés d’un angle de valeur 𝜆
𝑏

.  

 
Généralisons au cas d’une fente de diffraction rectangulaire de largeur 𝑏 centrée à l’origine d’un 
repère (𝑥, 𝑦) (Figure 34).  

 
Figure 34 : Interférence après diffraction par une fente rectangulaire de hauteur b. 
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Pour deux points de la fente rectangulaire distants de 𝑥, le déphasage des ondes diffractés dans 

une direction 𝜃 est 𝑑𝜑 = 𝜔

𝑐
𝑑𝐷 =

2𝜋

𝜆
𝑑𝐷 =

2𝜋.sin𝜃

𝜆
𝑥 = Θ.x en notant Θ ≝ 2𝜋.sin𝜃

𝜆
. 

 
L’onde observée dans la direction 𝜃 après diffraction est donc, en notant 𝜑𝑟 =

𝜔.𝑟

𝑐
 (cf. rappels de 

mathématique) :  

𝑔(𝑡, 𝑟) =
1

𝑏
∫ 𝐴0. sin(𝜔. 𝑡 − 𝜑𝑟 − Θ. 𝑥). 𝑑𝑥
+𝑏/2

−𝑏/2

⟹𝑔(𝑡, 𝑟) =
𝐴0
𝑏
.
1

Θ
. [cos(𝜔. 𝑡 − 𝜑𝑟 −Θ. 𝑥)]

−
𝑏
2

𝑏
2  

⟹ 𝑔(𝑡, 𝑟) =
𝐴0
𝑏
.
1

Θ
. {cos (𝜔. 𝑡 − 𝜑𝑟 −Θ.

𝑏

2
) − cos (𝜔. 𝑡 − 𝜑𝑟 + Θ.

𝑏

2
)} 

En utilisant la formule de factorisation cos 𝑝 − cos 𝑞 = −2 sin 𝑝−𝑞
2
sin

𝑝+𝑞

2
:  

𝑔(𝑡, 𝑟) = −
𝐴0
𝑏
.
2

Θ
. sin (−

Θ. 𝑏

2
) sin(𝜔. 𝑡 − 𝜑𝑟) =

sin (
Θ. 𝑏
2 )

(
Θ. 𝑏
2
)
𝐴0. sin(𝜔. 𝑡 − 𝜑𝑟) 

En introduisant la fonction sinus cardinal définie pour tout 𝑥 ≠ 0 par sinc(𝑥) = sin𝑥

𝑥
 et sinc(0) =

1, et en remplaçant Θ par sa valeur 2𝜋.sin𝜃
𝜆

, on obtient : 

𝑔(𝑡, 𝑟) = sinc (
𝜋. 𝑏. sin𝜃

𝜆
) . 𝐴0. sin(𝜔. 𝑡 − 𝜑𝑟) 

 
On retrouve une onde progressive dont l’amplitude est modifiée par un facteur 𝐴(𝜃) =

sinc (
𝜋.𝑏.sin𝜃

𝜆
). L’intensité lumineuse étant proportionnelle au carré des amplitudes, l’intensité 

qui se projette sur l’écran dans la direction 𝜃 est donc modulée par la fonction 𝐼(𝜃) = 𝐴(𝜃)2 : 
 

            (43) 
 

Cette fonction I(𝜃) s’annule lorsque son argument est un multiple de 𝜋 , soit lorsque sin 𝜃 = 𝑘. 𝜆
𝑏

 

avec 𝑘 entier. Pour des angles 𝜃 petits devant l’unité, sin 𝜃 ≈ 𝜃 et l’on observe sur un écran placé 

en aval de la fente des bandes sombres pour les valeurs de 𝜃  multiples de 𝜆
𝑏

. De même, I(𝜃) 

présentera un maximum absolu pour 𝜃 =  0, dans la direction du rayon incident en aval de la 

fente, et des maxima relatifs pour sin𝜃 = (2.𝑘+1
2
) .
𝜆

𝑏
, avec 𝑘 entier non nul, formant des bandes 

plus claires entre deux bandes sombres (figure 35). 

 
Figure 35 : Graphe de la fonction 𝐼(𝜃) = sinc2 (𝜋.𝑏.sin𝜃

𝜆
) en fonction de . sin 𝜃. 

𝐼(𝜃) = sinc2 (
𝜋.𝑏.sin𝜃

𝜆
)   
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La valeur 𝜆
𝑏

 définissant la position du 1° minimum, 𝜃𝑚𝑖𝑛 = sin−1 (
𝜆

𝑏
) ≈

𝜆

𝑏
, correspond aussi à une 

bonne approximation près à la largeur (en radians) de la bande claire principale mesurée entre 
les deux points définissant la moitié de son intensité (figure 35). On qualifiera cette largeur de 

Largeur à Mi-Hauteur angulaire (LMHa = 𝜆
𝑏

 , ou FWHMa, Full Width at Half maximum en anglais) 

de la réponse impulsionnelle de l’appareil d’optique utilisé. 
 
Dans le cas d’un orifice de diffraction circulaire de diamètre 𝑑, le calcul de la figure d’interférence 
et plus complexe, mais aboutit à un résultat similaire à un facteur 1,22 près, avec des minima 

locaux observés pour des angles vérifiant sin 𝜃𝑚𝑖𝑛 = 1,22. 𝑘.
𝜆

𝑏
 avec 𝑘 entier et une largeur à mi-

hauteur de la frange lumineuse principale de l’ordre de 𝐿𝑀𝐻𝑎 = 1,22.
𝜆

𝑏
. 

 

II- Résolution des appareils d’imagerie 
 
Dans le vide, la réponse impulsionnelle d’un système d’imagerie est l’image d’une source 
ponctuelle et éloignée de rayonnement qui se forme sur un écran placé dans le plan focal d’un 
système optique après diffraction à travers l’orifice circulaire de diamètre 𝑑  qui en constitue 
l’entrée, puis interférences (figure 36).  
 

 
 

Figure 36 : Réponse impulsionnelle d’un appareil d’imagerie  
 

La largeur à mi-hauteur LMH de la réponse impulsionnelle de ce système d’imagerie est : 

𝐿𝑀𝐻 = 𝑓. 𝜃𝑚𝑖𝑛 = 1,22. 𝑓.
𝜆

𝑑
= 1,22. 𝜆. 𝑁 ≝ 𝑅 𝑜ù 𝑁 ≝

𝑓

𝑑
 

Définitions : Nombre d’ouverture. : N ≝ 𝑓

𝑑
 

Résolution angulaire : 𝜃𝑚𝑖𝑛 (en radians) 
Résolution spatiale : 𝑹 ≝ 𝐿𝑀𝐻 = 𝑓. 𝜃𝑚𝑖𝑛  (en unité de longueur), 

En utilisant le petit angle 𝛼 défini dans la figure 36, on a sin 𝛼 ≈ tan𝛼 = 𝑑

2.𝑓
⟹𝑁 ≝

𝑓

𝑑
≈

1

2.sin𝛼
  

Si le milieu en aval de l’orifice de diffraction est caractérisé par un indice de réfraction 𝑛 supérieur 

à l’unité, alors la longueur d’onde du rayonnement s’écrit 𝜆𝑛 = 𝑐𝑛. 𝑇 =
𝑐

𝑛
. 𝑇 =

𝜆

𝑛
.  

 
Dans le cas le plus général, la résolution spatiale d’un objectif de longueur focale 𝑓, de diamètre 

𝑑 et de nombre d’ouverture 𝑁 ≝ 𝑓

𝑑
, dans un milieu d’indice de réfraction 𝑛 est donc : 

 
(44) 

 
 
En microscopie optique, le terme n. sin𝛼 est appelé ouverture numérique . 

𝑅 ≝ 𝐿𝑀𝐻 = 𝑓. 𝜃𝑚𝑖𝑛 = 1,22.
𝜆

𝑛
.
𝑓

𝑑
= 1,22.

𝜆

𝑛
. 𝑁 = 0,61

𝜆

n. sin 𝛼
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Si 𝜆 n’est pas négligeable par rapport à 𝑑, du simple fait de la diffraction par l’orifice d’entrée d’un 
système optique (et d’autres artefacts), l’image d’un objet ponctuel n’est donc pas un point, mais 
une tache dont l’intensité décroit du centre vers la périphérie. L’équation 1-52 montre que les 
meilleurs appareils d’imagerie devront exploiter des optiques de grand diamètre (larges lentilles 
et miroirs des télescopes en astronomie), des longueurs d’ondes les plus petites possibles 
(intérêt des rayons X en imagerie électromagnétique), et baigner dans des milieux d’indice élevés 
(intérêt d’une goutte d’huile transparente interposée dans un microscope).  
 
 Dans un œil humain, l’iris constitue un diaphragme de diamètre 𝑑 ≈ 5 𝑚𝑚. L’indice de réfraction 
de l’humeur aqueuse est 𝑛 = 1,34. Pour une radiation bleue de longueur d’onde dans le vide de 
𝜆 = 500 𝑛𝑚, l’équation 1-52 donne une résolution dans le plan focal de la rétine (𝑓 = 22 𝑚𝑚) de 

𝑅 = 1,22.
500.10−9

1.34
.
22

5
= 2. 10−6 𝑚 = 2 𝜇𝑚. 

 

III- Pouvoir séparateur des appareils d’imagerie 
 
Dans la figure 37, on représente l’acquisition d’une image de deux sources ponctuelles de 
rayonnement 𝑆 et 𝑆’ séparées par une distance 𝑥.  
 

 
Figure 37 : Pouvoir séparateur d’un appareil d’imagerie 

 
On constate que si 𝑥 ≤ 𝑅 = 𝐿𝑀𝐻, Les deux réponses impulsionnelles produites fusionnent en 

une seule image, l’intensité de l’image entre les deux maxima correspondant aux images de chacun 

des objets ponctuels dépassant le niveau de ses maxima. Les deux images ne sont individualisables 

que si 𝑥 > 𝑅 = 𝐿𝑀𝐻 : la résolution est aussi le pouvoir séparateur de l’appareil d’imagerie. 
 

Une image ne peut contenir que de composantes dont la période 1
𝑓
> 𝑅, donc dont la fréquence 

(en 𝑚−1)  𝑓 < 1

𝑅
. Dans la décomposition en série de Fourier de l’image (cf. paragraphe 1-A-IV), il 

existe donc une composante harmonique de fréquence maximale 𝑓𝑚𝑎𝑥 =
1

𝑅
. 
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IV- Théorème d’échantillonnage de Shannon et numérisation des images 
 
Considérons l’image de deux objets ponctuels séparés par une distance à peine supérieure à la 
résolution 𝑅, donc dont les images n’ont pas encore fusionné.  Etudions la taille des pixels à 
utiliser pour numériser cette image sans perte. On constate sur la figure 38 que choisir des pixels 
de dimension 𝑅 ne permet pas d’échantillonner la discrète diminution d’intensité qui, sur l’image 
analogique, permet d’identifier deux images à peine discernables.   
 

 
Figure 38 : Illustration heuristique du théorème d’échantillonnage sur un signal 

 

Pour que cela soit possible, il faut utiliser des pixels de taille 𝑑 = 𝑅

2
, ce qui revient à échantillonner 

avec une fréquence d’échantillonnage 𝑓𝑒 =
1

𝑑
=
2

𝑅
. Ce résultat obtenu ici de manière intuitive 

porte le nom de théorème d’échantillonnage de Shannon.  
 

(45) 
 
 

V- Application à l’étude de la structure tridimensionnelle des molécules 
 
Lors d’une expérience de diffraction des rayons X par un réseau cristallin constitué de molécules 

biologiques déshydratées (𝜆 𝑒𝑡 𝑏 ≈ 10−10 𝑚 ≝ 1Å), la mesure de 𝜆
𝑏

 sur un écran distant permet 

de déterminer les distances 𝑏 caractérisant les cristaux qui ont provoqué la diffraction. Dans le 
cas d’un cristal d’ADN, la figure de diffraction est plus complexe qu’un sinus cardinal, mais elle 
a permis en mai 1952 à R. Gosling, étudiant en thèse sous la direction de la biophysicienne 
Rosalind Franklin, d’élucider la structure en double hélice de la molécule d’ADN (figure 39).  

 

  

𝑑 =
𝑅

2
⟺ 𝑓𝑒 ≝

1

𝑑
= 2. 𝑓𝑚𝑎𝑥 = 2.

1

𝑅
 

Figure 39 : Image de diffraction des rayons X 
par une molécule d’ADN (« photographie 
51 »). Son analyse montre la structure en 

double hélice de l’ADN, détermine son 
diamètre (20 Å), la période de l’hélice (34 Å), 

l’espacement entre les bases (3,4 Å ) et la 
pente de l’hélice (40°).  
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CHAPITRE 2 : INITIATION A LA MECANIQUE ONDULATOIRE  
 

Présentation : Ce chapitre propose une approche raisonnée aussi simple que possible des 
fondements de la mécanique ondulatoire (mécanique quantique) qui permettra au chapitre 
suivant de proposer une modélisation de l’atome et du noyau atomique suffisante pour la plupart 
des besoins des professionnels de santé. Nous commencerons par appliquer le principe de 
moindre action à une onde et à une particule pour établir la relation de Louis de Broglie et 
proposer une modélisation duale, corpusculaire et ondulatoire, de la nature. Pour aller au-delà, 
un détour par quelques éléments de relativité restreinte sera nécessaire : la prise de conscience 
d’un écoulement variable du temps en fonction du mouvement de l’observateur qui le mesure 
permettra d’établir la célébrissime relation d’Einstein (E=mc²), de calculer l’énergie d’une 
particule de masse au repos nulle, puis d’en déduire la relation qui relie l’énergie d’un photon à 
la fréquence de l’onde électromagnétique qui lui est associée. Cela permettra de préciser le 
spectre de toutes les radiations électromagnétiques. Une approche très simple fondée sur une 
modélisation corpusculaire et ondulatoire du phénomène de diffraction permettra ensuite de 
justifier les inégalités d’Heisenberg, de comprendre pourquoi la notion de trajectoire perd toute 
signification physique à l’échelle des particules élémentaires et d’où provient le caractère 
probabiliste de la théorie quantique. Nous terminerons ce chapitre en revenant sur la notion 
d’onde progressive pour comprendre pourquoi les grandeurs physiques associées aux particules 
élémentaires (quantité de mouvement, énergie…) ne peuvent pas prendre des valeurs continues 
mais seulement certaines valeurs discrètes bien déterminées (quantification).  
 

A- Approche par principe de moindre action : relation de Louis de 
Broglie 

 
D’après le principe de moindre action de Fermat (cf. paragraphe 1-E-I), une onde pure se propage 
entre deux points A et B en suivant un chemin optique 𝐿 extrémal (figure 40). Ce chemin optique 
est la somme de chemins optiques élémentaires 𝑑𝐿 = 𝑛. 𝑑𝑠 sur chaque portion infinitésimale de 
trajectoire 𝑑𝑠 dans un milieu d’indice 𝑛 =

𝑐𝑚𝑎𝑥

𝑐𝑛
 (𝑐𝑚𝑎𝑥 = 𝑐 si l’onde est électromagnétique). Cette 

somme 𝐿 = ∫ 𝑑𝐿 =
𝐵

𝐴 ∫ 𝑛. 𝑑𝑠
𝐵

𝐴
 peut s’exprimer en fonction du vecteur d’onde 𝑘⃗  et du vecteur 𝑑𝑠⃗⃗⃗⃗ =

𝑑𝑠. 𝑢⃗   suivant : 
 

𝐿 = ∫ 𝑛. 𝑑𝑠
𝐵

𝐴

= ∫
𝑐𝑚𝑎𝑥
𝑐𝑛

. 𝑑𝑠
𝐵

𝐴

= ∫
𝑐𝑚𝑎𝑥
𝑐𝑛

.
𝜔

𝜔
𝑑𝑠

𝐵

𝐴

=
𝑐𝑚𝑎𝑥
𝜔

∫
𝜔

𝑐𝑛
. 𝑑𝑠 =

𝑐𝑚𝑎𝑥
𝜔

∫ ‖𝑘⃗ ‖. 𝑑𝑠
𝐵

𝐴

=
𝑐𝑚𝑎𝑥
𝜔

∫ 𝑘⃗ . 𝑢⃗ . 𝑑𝑠 =
𝑐𝑚𝑎𝑥
𝜔

∫ 𝑘⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝐵

𝐴

𝐵

𝐴

𝐵

𝐴

 

 
Comme 𝑐𝑚𝑎𝑥

𝜔
 ne dépend pas de la trajectoire suivie entre 𝐴 et 𝐵, le principe de moindre action de 

Fermat impose que la grandeur 𝐶𝑘 = ∫ 𝑘⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝐵

𝐴
 soit extrémale. 
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Figure 40 : Illustration d’une modélisation ondulatoire (vecteur d’onde 𝑘⃗ ) et corpusculaire 
(quantité de mouvement 𝑝 ) d’un déplacement du point 𝐴 vers le point 𝐵. 

 
Supposons maintenant qu’une particule de quantité de mouvement 𝑝   suive la même trajectoire 
de 𝐴 à  𝐵 que l’onde précédente.  Le principe de moindre action (dit de Maupertuis) appliqué à 
cette particule exige que le temps de trajet soit extrémal. On peut montrer que cela revient à 

exiger que la grandeur 𝐶𝑝 = ∫ 𝑝 . 𝑑𝑠⃗⃗⃗⃗ 
𝐵

𝐴
 soit extrémale. La démonstration de ce principe est un peu 

technique, mais on peut le justifier facilement dans le cas d’une particule non relativiste se 
déplaçant à une vitesse constante :  

𝐶𝑝 = ∫ 𝑝 . 𝑑𝑠⃗⃗⃗⃗ 
𝐵

𝐴

= ∫ 𝑝. 𝑑𝑠
𝐵

𝐴

= ∫ 𝑚. 𝑣. 𝑑𝑠
𝐵

𝐴

= ∫ 𝑚. 𝑣.
𝑑𝑠

𝑑𝑡
. 𝑑𝑡

𝐵

𝐴

= ∫ 𝑚. 𝑣2. 𝑑𝑡
𝐵

𝐴

= 2. 𝐸𝑐 . (𝑡𝐵 − 𝑡𝐴) 

Si la durée du trajet  𝑡𝐵 − 𝑡𝐴 entre 𝐴 à 𝐵 est extrémale, il en est donc de même de 𝐶𝑝.  
 
Un cadre théorique commun à une modélisation à la fois ondulatoire et corpusculaire de la 
nature nécessite de satisfaire le principe de moindre action à la fois dans sa formulation 
ondulatoire (principe de Fermat) et dans sa formulation corpusculaire (principe de Maupertuis). 

Il faut donc que les deux grandeurs 𝐶𝑘 = ∫ 𝑘⃗ . 𝑑𝑠⃗⃗⃗⃗ 
𝐵

𝐴
 et 𝐶𝑝 = ∫ 𝑝 . 𝑑𝑠⃗⃗⃗⃗ 

𝐵

𝐴
 soit toutes deux extrémales sur 

la trajectoire effectivement suivie par l’onde et la particule, entre les points 𝐴 et 𝐵. Il suffit pour 

cela d’imposer une proportionnalité entre le vecteur d’onde 𝑘⃗  et la quantité de mouvement 𝑝 . En 
notant ℏ  (« h barre ») le coefficient de proportionnalité, on obtient un lien entre modélisation 
ondulatoire et modélisation corpusculaire : 
 

(46) 
 
La constante ℏ est appelée constante de Planck réduite. 
 

En prenant les normes de ces vecteurs, on a : 𝑝 = ℏ. 𝑘⃗ ⟹ 𝑝 = ℏ.
𝜔

𝑐𝑛
= ℏ.

2.𝜋.𝑓

𝑐𝑛
= ℏ.

2.𝜋

𝑇.𝑐𝑛
=
2.𝜋.ℏ

𝜆
. En 

définissant la constante de Planck 𝒉 par 𝒉 ≝ 𝟐.𝝅. ℏ, on obtient la relation de Louis de Broglie 
qui relie la quantité de mouvement (𝑝) d’une particule et la longueur d’onde 𝜆 de l’onde qui lui est 
associée :  

(47) 
 
 
La constante de Planck a pu être évaluée expérimentalement à 𝒉 = 𝟔, 𝟔𝟐𝟔. 𝟏𝟎−𝟑𝟒 𝑱. 𝒔. 
 
Pour une personne de masse 70 kg se déplaçant à une vitesse de 10 km/h, la une quantité de 

mouvement  𝑝 = 𝑚. 𝑣 = 70. 10000
3600

= 194,4 𝑘𝑔.𝑚. 𝑠−1 est donc associée à une onde de longueur 

𝑝 = ℏ. 𝑘⃗  

𝜆 =
ℎ

𝑝
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d’onde 𝜆 = ℎ

𝑝
=
6,626.10−34

194,4
= 3,4. 10−36 𝑚 . Pour l’observer, il faudrait la faire diffracter sur des 

objets de cet ordre de grandeur en dimension, ce qui n’est pas possible (le diamètre d’un électron 
est de l’ordre de 10−18 𝑚). A cette échelle donc, la dualité onde-corpuscule n’est pas observable, 
et sort donc du domaine de la physique. 
En revanche, un électron de masse 𝑚 = 0,9. 10−31𝑘𝑔  et de charge 𝑒 = −1,6. 10−19𝐶  accéléré 

sous une différence de potentiel de 𝑉 = 100 𝑉 acquiert une énergie cinétique de 1
2
. 𝑚. 𝑣2 = 𝑒. 𝑉 

ce qui conduit à une quantité de mouvement 𝑝 = 𝑚. 𝑣 = √2.𝑚. 𝑒. 𝑉 = 5,4. 10−24𝑘𝑔.𝑚. 𝑠−1 et à 

une longueur d’onde de l’onde associée 𝜆 = ℎ

𝑝
=
6,626.10−34

5,4.10−24
= 1,2. 10−10 𝑚 = 1,2 Å , de l’ordre de 

grandeur de la dimension d’un atome. On vérifie expérimentalement que des cristaux bombardés 
par un faisceau d’électrons produisent effectivement une figure de diffraction identique à celle 
observée avec des rayons X.  
 
Un électron, de même que toute particule élémentaire, se comporte ainsi à la fois comme une 
onde (qui diffracte, permet de concevoir des microscopes électroniques à forte résolution 
suivant la relation 1-52), et comme une particule (capable de chocs). A l’échelle des particules 
élémentaires, la description de la nature doit donc être duale, particulaire et ondulatoire. 
Symétriquement, la relation (47) permet d’associer à toute onde une particule. Pour décrire la 
particule associée à une onde électromagnétique, il va falloir mieux cerner ce qu’est la quantité 
de mouvement d’une particule de lumière, un photon… 
 

B- Temps, énergie et quantité de mouvement en relativité restreinte 
 
Dans les équations de Maxwell (paragraphe 1-D-II), la vitesse de la lumière dans le vide apparait 
comme une constante universelle de la physique qui ne dépend pas de l’observateur et de sa 
vitesse relative par rapport à une source lumineuse. Ce résultat théorique surprenant a été 
confirmé par des mesures expérimentales réalisées à la fin du XIX° siècle. En 1905, Albert 
Einstein en a tiré toutes les conséquences… 
 
Dans un repère R’ (un observateur) lié à un train qui se déplace à la vitesse constante 𝑉 , 
l’intervalle de temps nécessaire à un rayon lumineux pour venir se réfléchir sur un miroir situé à 
une distance de 𝐿/2  au-dessus de la source lumineuse, puis pour y retourner s’y faire détecter 
est 𝑑𝑡′ = 𝐿/𝑐 (Figure 41, partie haute).  
 
Calculons ce même intervalle 𝑑𝑡 mais par rapport à un repère R (un observateur) fixe sur le quai. 
Le trajet « aller » de la source au miroir dure 𝑑𝑡/2. Pendant cet intervalle de temps, le train s’est 
déplacé de la distance 𝑉. 𝑑𝑡/2 et le rayon a parcouru la distance 𝑐. 𝑑𝑡/2, puisque 𝑐  n’est pas 
modifié par le déplacement du train. Le trajet retour dure de même 𝑑𝑡/2, durée pendant laquelle 
le rayon parcourt de nouveau la distance 𝑐. 𝑑𝑡/2 et le train la distance 𝑉. 𝑑𝑡/2 (Figure 41, partie 
basse). 

D’après le théorème de Pythagore :  (𝑐. 𝑑𝑡
2
)
2
= (𝑉.

𝑑𝑡

2
)
2
+ (

𝐿

2
)
2
⟹ (𝑐2 − 𝑉2). 𝑑𝑡2 = 𝐿2. 

Mais 𝐿2 = 𝑐2. 𝑑𝑡′2, donc (𝑐2 − 𝑉2). 𝑑𝑡2 = 𝑐2. 𝑑𝑡′2, ce qui s’écrit : 
 
 

(48) 
 

𝑑𝑡 =
𝑑𝑡′

√1 −
𝑉2

𝑐2

= 𝛾. 𝑑𝑡′ 𝑎𝑣𝑒𝑐  𝛾 ≝
1

√1 −
𝑉2

𝑐2

=
𝑑𝑡

𝑑𝑡′
≥ 1 
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Figure 41 : La mesure d’un intervalle de temps 𝑑𝑡 ou 𝑑𝑡′ dépend du référentiel choisi. 

 

Par exemple : 𝑉 = 87% 𝑑𝑒 𝑐 ⟹ 𝛾 =
1

√1−0,872
= 2 et 𝑑𝑡 = 2. 𝑑𝑡′ : un voyageur à l’intérieur du train 

voit passer un intervalle de temps 𝑑𝑡′ pendant que l’observateur immobile sur le quai voit lui 
passer un intervalle de temps 𝑑𝑡 = 2. 𝑑𝑡′ deux fois plus long : si une personne pouvait voyager 
dans un tel train, elle vieillirait donc deux fois moins vite qu’une autre personne restée sur la quai.  
 
Pour une particule en mouvement, le temps 𝑡′  de l’équation (48) mesuré par rapport à un 
référentiel lié à la particule est appelé le temps propre de la particule et définit la vitesse de la 

particule suivant 𝑑𝑥
𝑑𝑡′

.   

Si cette vitesse vaut 𝑣 = 𝑑𝑥

𝑑𝑡
 dans un référentiel fixe 𝑅, alors, d’après (48) :   

𝑑𝑥

𝑑𝑡′
=
𝑑𝑥

𝑑𝑡
.
𝑑𝑡

𝑑𝑡′
= 𝛾.

𝑑𝑥

𝑑𝑡
= 𝛾. 𝑣. 

 
Dans 𝑅, la quantité de mouvement d’une particule de masse 𝑚 est donc 𝑝 = 𝛾.𝑚. 𝑣.  
En particulier, si 𝑣 → 𝑐 , alors 𝛾 → ∞  ce qui nécessite d’avoir 𝑚 → 0  pour ne pas avoir une 
quantité de mouvement qui tende vers l’infini. On en déduit donc que seule une particule de 
masse au repos nulle peut se déplacer à la vitesse de la lumière : 
 

(49) 
 
Pour une particule de masse 𝑚 se déplaçant à la vitesse 𝑣 ≪ 𝑐 par rapport à un repère 𝑅 fixe : 

𝛾.𝑚. 𝑐2 =
𝑚. 𝑐2

√1 −
𝑣2

𝑐2

= 𝑚. 𝑐2. (1 −
𝑣2

𝑐2
)

−
1
2

≈ 𝑚. 𝑐2. (1 +
1

2

𝑣2

𝑐2
) = 𝑚. 𝑐2 +

1

2
𝑚. 𝑣2  

En utilisant l’approximation (1 − 𝜀)𝑛 ≈ 1 − 𝑛. ε pour tout 𝑛 si 𝜀 ≪ 1. 
Le terme 𝐸 = 𝛾.𝑚. 𝑐2  est donc l’expression d’une énergie décomposée en la somme d’une 

énergie cinétique 𝐸𝑐 =
1

2
𝑚. 𝑣2, en lien avec la vitesse de la masse, et d’une énergie de repos 

portée seulement par la masse de la particule,  𝐸𝑟 = 𝑚. 𝑐2  
 
Sous réserve du respect des lois de conservation, une particule au repos de masse 𝑚 peut donc 
se désintégrer en une énergie 𝐸𝑟 , et une énergie 𝐸𝑟  peut se matérialiser en une particule de 
masse 𝑚, ces deux quantités étant liées par la relation :  

(50) 

𝑣 = 𝑐 ⟹ 𝑚 = 0 

𝐸𝑟 = 𝑚. 𝑐
2 
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En dehors de toute approximation sur 𝑣, 𝐸 = 𝛾.𝑚. 𝑐2 est donc l’énergie totale d’une particule (en 
l’absence de toute énergie potentielle), et l’expression relativiste de l’énergie cinétique est donc 

simplement 𝐸𝑐 = (𝛾 − 1).𝑚. 𝑐2. En calculant 𝛾2 − 1 = 𝑣2

𝑐2−𝑣2
,  on pourra facilement vérifier que 

𝐸𝑐 = (𝛾 − 1).𝑚. 𝑐
2 =

𝛾2

𝛾+1
. 𝑚. 𝑣2 , forme sous laquelle, lorsque 𝑣 ≪ 𝑐 ⟹ 𝛾 ≈ 1  , on retrouve 

l’approximation non relativiste bien connue de l’énergie cinétique 𝐸𝑐 ≈
1

2
. 𝑚. 𝑣2. 

 
L’énergie totale, cinétique et de repos, s’exprime aussi suivant : 

 𝐸 = 𝛾.𝑚. 𝑐2⟹𝐸2 = 𝛾2. 𝑚2. 𝑐4 = 𝑚2. 𝑐4. (1 +
1

1−
𝑣2

𝑐2

− 1) = 𝑚2. 𝑐4. (1 +
𝑣2

𝑐2

1−
𝑣2

𝑐2

)  

⟹ 𝐸2 = 𝑚2. 𝑐4. (1 + 𝛾2
𝑣2

𝑐2
) = 𝑚2. 𝑐4 +𝑚2. 𝑐2. 𝛾2. 𝑣2 . 

Comme 𝑝 = 𝛾.𝑚. 𝑣, nous obtenons pour l’énergie totale :  
 
(51) 
 

C- La relation du quantum 
 
Par définition, le photon est le corpuscule associé à une onde électromagnétique. 
Sa masse au repos 𝑚 = 0 puisqu’il se déplace à la vitesse de la lumière. 
D’après (51), sa quantité de mouvement est : 
  

(52) 
 
L’onde électromagnétique pure suivant la relation (47) de Louis de Broglie 𝜆 = ℎ/𝑝. 

Pour un photon, la combinaison des équations (47) et (52) permet d’écrire : 𝐸 = 𝑝. 𝑐 = ℎ

𝜆
. 𝑐. Dans 

le cas particulier d’un photon, la relation de Louis de Broglie est connue sous le nom de relation 
du quantum. Elle relie l’énergie d’un photon (aspect corpusculaire) à la fréquence de l’onde 
électromagnétique qui lui est associée : 

 

(53)
  

En exprimant l’énergie en électronvolts (1 eV = 1,602.10-19 J) et la longueur d’onde en nanomètres, 

cette équation s’écrit  𝐸(𝑒𝑉) = 6,626.10−34.2,998.108

1,602.10−19.𝜆(𝑛𝑚).10−9
, soit : 

 
(54) 

 
La relation 54 permet de classer les ondes électromagnétiques en fonction de la longueur d’onde 
ou de la fréquence de l’onde, ou en fonction de l’énergie du photon associé (figure 42).  
Les rayons X et  se distinguent seulement par leur origine :  

- Un rayonnement gamma () est produit au sein des noyaux atomiques ou par 
annihilation entre une particule et son antiparticule (cf. paragraphe 3-H-II).  

- Un rayonnement X est lui produit par des transitions électroniques au sein d’un atome 
ou par une accélération d’électrons (freinage ou courbure de leurs trajectoires). Ces 
aspects sont détaillés aux paragraphes 3-F et 3-G. 

𝐸2 = 𝑚2. 𝑐4 + 𝑝2. 𝑐2 

𝑝 =
𝐸

𝑐
 

𝐸 =
ℎ. 𝑐

𝜆
= ℎ. 𝑓 = ℏ.𝜔 

𝐸(𝑒𝑉) =
1240

𝜆(𝑛𝑚)
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Figure 42 : Présentation simplifiée du spectre des ondes électromagnétiques. 

 
On comprend que la nature se manifeste plutôt par ses aspects ondulatoires pour des énergies 
inférieures à quelques électrons-volt (visible, IR, micro-ondes et ondes hertziennes) pour 
lesquelles les longueurs d’ondes peuvent être diffractés par des objets proches de notre échelle. 
A l’inverse, les aspects corpusculaires prédomineront lorsque la longueur d’onde devient petite 

( 𝜆
𝑑
→ 0 , ce qui empêche toute manifestation ondulatoire du type diffraction) donc pour des 

énergies de photons supérieures à quelques dizaines d’électrons-volts (UV, X ou ). 
 

D- Retour sur la diffraction : les relations d’incertitude d’Heisenberg 
 
Nous avons vu (cf. paragraphe 1-H) qu’une source ponctuelle de radiation de longueur d’onde 𝜆 
placée à grande distance d’une fine fente rectangulaire de hauteur 𝑏  percée dans un écran 
opaque s’y présente sous la forme d’une onde (localement plane), y est diffractée en vertu du 
principe de Huygens-Fresnel, puis subit des interférences tantôt constructives, tantôt 
destructives. Il en résulte sur un écran placé par exemple à un mètre de la fente, pour de faibles 
angles, l’apparition d’une figure de diffraction avec des minima de luminosité espacés d’un 

intervalle angulaire 𝜃𝑚𝑖𝑛 ≈ sin 𝜃𝑚𝑖𝑛 =
𝜆

𝑏
. Cette figure qui résulte de l’addition algébrique de 

multiples ondes sphériques issues de la fente est un phénomène purement ondulatoire. 
 
Reprenons la description d’une expérience de diffraction (cf. paragraphe 1-H), mais sous un point 
de vue corpusculaire, en supposant que la source de lumière émet ses photons un par un de 
manière à éviter que 2 photons soient en même temps dans un trajet entre la source et l’écran 
(figure 43). Aucune interférence n’est alors concevable, et pourtant au bout d’un certain temps, 
on enregistre sur l’écran la même figure que celle observée précédemment. 
En terme corpusculaire, cela oblige à admettre que lorsqu’un photon arrive au niveau de la fente, 
un processus aléatoire dépendant d’une certaine loi de probabilité décide de l’angle 𝜃  que 
prendra la trajectoire, donc la quantité de mouvement 𝑝  du photon après la fente. Cette 
probabilité est maximale pour les angles 𝜃  associés à des maxima d’intensité sur l’écran, et 

minimale pour les multiples de 𝜆
𝑏

. 

Dans ce modèle, l’incertitude sur la position d’un photon 𝑥 est Δ𝑥 = 𝑏. 
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Figure 43 : Distribution d’intensité observée avec une source de photons émis un par un vers 
une fente mince percée dans un écran opaque. 
  
Au passage de la fente, l’incertitude sur la composante verticale de 𝑝   est Δ𝑝𝑥 = 𝑝. sin𝜃 ≈

𝑝. 𝜃 pour 𝜃 ≪ 1.  Comme l’ordre de grandeur de  𝜃 ≈ 𝜆

𝑏
, l’ordre de grandeur du produit Δ𝑥. Δ𝑝𝑥 

est, d’après (47) : Δ𝑥. Δ𝑝𝑥 ≈  𝑏. 𝑝. 𝜃 ≈ 𝑏. 𝑝.
𝜆

𝑏
= 𝑝. 𝜆 = ℎ 

 
Le produit Δ𝑥. Δ𝑝𝑥 des incertitudes au passage de la fente sur la position et sur la quantité de 
mouvement du photon est donc de l’ordre de la constante de Planck, soit  10−34. Cette valeur est 
faible, mais non nulle : 

             (55) 
 
Cette inégalité porte le nom de relation d’incertitude d’Heisenberg. 

Ces considérations ont plusieurs conséquences importantes : 

1- L’introduction de hasard dans les lois physiques est nécessaire pour expliquer comment 
une particule peut se manifester comme une onde, dans une description duale. 

2- Il est impossible de connaitre avec une précision parfaite à la fois de la position et la 
quantité de mouvement de la particule à un instant donné, quelle que soit la précision 
des mesures envisagées. 

3- Le détermination de la trajectoire d’une particule nécessite d’intégrer deux fois la relation 
fondamentale de la dynamique ∑𝐹 = 𝑚. 𝑎 , ce qui implique de connaitre avec une 
précision parfaite à la fois de la position et la quantité de mouvement de la particule à un 
instant donné. Comme ceci est impossible, la notion de trajectoire n’a plus aucun sens à 
l’échelle des particules élémentaires. On ne pourra déterminer que des probabilités de 
présence à un endroit et un instant donnés. 

 

E- Quantification des grandeurs atomiques 
 
Nous avons vu au paragraphe (1-G-II) qu’une onde pure confinée entre deux miroirs distants de L 
se réduisait à une onde stationnaire dont la longueur d’onde 𝜆 était quantifiée sous la forme 𝜆 =
2.𝐿

𝑘
 , soit 𝑓 = 𝑐

𝜆
= 𝑘.

𝑐

2.𝐿
 avec 𝑘 entier non nul.  

Pour le photon associé à cette onde, 𝐸 = ℎ. 𝑓 = ℎ. 𝑘. 𝑐
2.𝐿
 et 𝑝 = 𝐸

𝑐
= 𝑘.

ℎ

2.𝐿
.  Dans un espace clos, 

l’énergie et la quantité de mouvement d’un photon ne peuvent donc prendre que certaines 
valeurs bien particulières. On dit que les grandeurs physiques sont quantifiées.  

Δ𝑥. Δ𝑝𝑥 > 0 
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CHAPITRE 3 : LE MODELE ATOMIQUE DE BOHR 
 

Présentation : Ce dernier chapitre propose d’exploiter tous les résultats acquis pour établir un 
modèle de l’atome et du noyau atomique suffisamment pertinent pour permettre à un 
professionnel de santé de fonder ses connaissances en chimie (orbitales, construction des 
structures moléculaires), de comprendre le bénéfice pour ses patients de l’exploitation de 
rayonnement ionisants (en imagerie médicale radiologique ou scintigraphique comme en 
radiothérapie), mais aussi les risques que ces derniers peuvent engendrer. Nous détaillerons le 
premier modèle atomique proprement scientifique élaboré au tout début du XX° siècle par 
analogie avec le système solaire. Nous l’exploiterons pour définir la notion de défaut de masse 
au sein du noyau atomique, comprendre la stabilité du noyau et l’origine de l’énergie produite par 
les réactions de fusion ou de fission nucléaire. Nous verrons en quoi ce modèle est insuffisant 
pour décrire correctement les électrons d’un atome, avant d’exploiter les résultats de mécanique 
ondulatoire obtenus au chapitre précédent pour établir le modèle atomique de Bohr. Après avoir 
justifié la forme de l’équation de Schrödinger par une approche très simple, nous l’exploiterons 
pour introduire la notion de fonction d’onde et les nombres quantiques qui permettent 
d’améliorer le modèle de Bohr, de calculer de façon exacte l’énergie des électrons atomiques et 
la façon dont les électrons forment le nuage électronique d’un atome. Nous terminerons le 
chapitre en décrivant comment sont produites les sources de rayonnements ionisants utilisés en 
particulier dans les domaines du soin : fluorescence et rayonnement de freinage pour les rayons 
X, divers modes de radioactivité pour les rayonnements utilisés en médecine nucléaire. 

 

A- Le modèle atomique de Rutherford-Nagaoka. 
 
Modèle atomique de Rutherford-Nagaoka : L’atome est modélisé par un petit noyau en son 
centre, chargé positivement et portant l’essentiel de la masse atomique, entouré d’électrons en 
orbite autour du noyau à une distance très supérieure au diamètre du noyau.  
 
Quelques définitions et ordres de grandeurs : 
 

- Les nucléons sont les neutrons et les protons qui constituent le noyau atomique. On les 
modélise comme des sphères de rayon 𝑟 ≈ 1,4. 10−15 𝑚 = 1,4 𝑓𝑚. 

- Le numéro atomique Z est le nombre de protons dans un noyau atomique. L’atome étant 
neutre, il est égal au nombre d’électrons dans l’atome. 

- Le nombre de masse A est le nombre de nucléons (protons et neutrons) d’un noyau 
Ce terme est justifié car la masse des électrons est négligeable par rapport à celle des 
nucléons. Le nombre de neutrons d’un atome est A-Z. 

- Un atome de symbole chimique X sera noté 𝑋𝑍𝐴 . 
- Un atome hydrogénoïde est un atome ne possédant qu’un électron. 
- Deux atomes sont : 

o isotopes s’ils ont même Z. 
o isobares s’ils ont même A. 
o isotones s’ils ont même nombre de neutrons A-Z. 
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Quelques unités : 
 

- Un électron-volt et notée eV est l’énergie acquise par un électron accéléré sous une 
différence de potentiel de 1 V : 

 
(56) 

  
- L’unité de masse atomique, de symbole u, est le douzième de la masse d’un atome de 

carbone 𝐶6
12 , dont une mole a une masse de 12 g, soit 1 𝑢 = 1

12
.
12.10−3

6,022.1023
 : 

 
(57) 

  
- La relation (50), 𝐸 = 𝑚. 𝑐2 ,  permet d’exprimer une masse en son équivalent 

énergétique Dans ces conditions, 1 𝑢 = 1,66.10−27.2997924582

1,602.10−19
 𝑒𝑉 , soit :  

 
(58) 

  
Dans cette unité énergétique exprimée, l’électron, le proton et le neutron ont des masses 
𝑚𝑒 = 0,511 𝑀𝑒𝑉,𝑚𝑝 = 938,280 𝑀𝑒𝑉 et 𝑚𝑛 = 939,573 𝑀𝑒𝑉.  

 
A propos du noyau atomique : 
 

- Un noyau est modélisé comme une sphère de rayon 𝑅 tel que   4
3
. 𝜋. 𝑅3 ≈ 𝐴.

4

3
. 𝜋. 𝑟3. Les 

valeurs de 𝑅 = √𝐴3  . 𝑟  varient donc entre 1,4 𝑓𝑚  (pour l’hydrogène) et 9,3 𝑓𝑚  (pour 
l’oganesson  𝑂𝑔118

294 ). Cette dimension de l’ordre du femtomètre explique la cohésion du 
noyau (par interaction forte qui domine la répulsion électrostatique entre protons) et le 
fait qu’un atome, dont le diamètre est de l’ordre d’1 Å = 10−10 𝑚 est majoritairement 
constitué de vide. 

 
- La masse d’un noyau 𝑀( 𝑋𝑍𝐴 ) est inférieure à la somme des masses de ses constituants 

𝑍.𝑚𝑝 + (𝐴 − 𝑍).𝑚𝑛. L’écart entre ces deux masses est appelé défaut de masse 𝚫𝑴 et 
fournit l’énergie de liaison Δ𝐸 (par interaction forte) entre nucléons (relation 1-58) : 

 
 

(59) 
 

La cohésion relative d’un noyau par rapport à un autre s’estime en évaluant l’énergie de 

liaison par nucléons Δ𝐸
𝐴

 au sein des noyaux (figure 44). Les noyaux les plus stables sont 

ceux dont le nombre de nucléons est proche du fer 𝐹𝑒26
56 . Les nucléons des noyaux plus 

légers ou plus lourds sont moins liés peuvent conduire à des réactions de fusion (pour les 
noyaux légers) ou de fission (pour les noyaux les plus lourds) fortement exothermiques 
pour produire des noyaux plus stables.  

 

Δ𝑀 =
Δ𝐸

𝑐2
=  𝑍.𝑚𝑝 + (𝐴 − 𝑍).𝑚𝑛 −𝑀( 𝑋𝑍

𝐴 ) > 0 

1 𝑒𝑉 = 1,6. 10−19𝐽 

1 𝑢 = 1,66. 10−27𝑘𝑔 

1 𝑢 = 931 𝑀𝑒𝑉 
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Figure 44 : Courbe d’Aston représentant évaluant l’énergie de liaison par nucléons Δ𝐸

𝐴
 en 

fonction du nombre de nucléons 𝐴. 
 

C- Les limites du modèle atomique planétaire 
 
Le modèle planétaire de Rutherford-Nagaoka présente une faille immédiatement identifiée par 
les scientifiques de l’époque :  
 
Des électrons en orbite autour d’un noyau constituent une boucle de courant qui, suivant la 
théorie électromagnétique de Maxwell, doit rayonner de l’énergie. Les électrons perdant peu à 
peu cette énergie devraient l’émettre sous forme d’onde électromagnétique de période de plus 
en plus courte (avec le rayon de l’orbite qui diminue), donc de fréquence continument croissante 
avant de finir par s’écraser sur le noyau. L’expérience infirme complètement cette conclusion : 
d’une part, les atomes sont des structures stables. D’autre part, les spectres émis par des 
atomes chauffés dans des lampes contenant des gaz de sodium ou de mercure montre au 
contraire des spectres discrets, composés de quelques fréquences seulement et non des 
spectres continus. Ces fréquences sont par ailleurs les mêmes que celles qui sont absorbées 
par ces atomes (figure 45). 

 

 
Figure 45 : Exemples de spectres d’émission et d’absorption discrets obtenus avec des 

vapeurs de mercure ou de sodium. 
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A la fin du XIX siècle, en tâtonnant, on avait fini par mettre en évidence que les longueurs d’onde 
des raies d’émission ou d’absorption de l’hydrogène pouvaient être calculées à partir d’une 
formule empirique où n’intervenait qu’une constante et deux nombres entiers. Cette formule est 
connue sous le nom de formule de Rydberg-Ritz s’écrit : 
  

 
(60) 

 
Dans cette formule, 0 < 𝑛 < 𝑝 sont deux entiers naturels et la constante de Rydberg est ajustée 
à la valeur 𝑅 = 1,097. 107𝑚−1. 
 

D- Le modèle atomique de Bohr 
 
Nous nous intéressons dans un premier temps à un atome hydrogénoïde. 
L’électron du modèle de Rutherford-Nagaoka est supposé confiné sur la circonférence d’une 
orbite de longueur 𝐶 = 2. 𝜋. 𝑟. Il est donc associé à une onde stationnaire dont la longueur d’onde 

vérifie 𝐶 = 𝑘. 𝜆
2

 avec 𝑘 entier naturel non nul. Dans le cas d’une orbite circulaire (refermée sur 

elle-même), si 𝑘 est impair, alors l’onde subit des interférences destructives et n’existe pas. On 
supposera donc 𝐶 = 2. 𝜋. 𝑟 = 𝑛. 𝜆 , 𝒏 étant un entier naturel non nul. 

La relation de louis de Broglie (47) donne alors  𝐶 = 2. 𝜋. 𝑟 = 𝑛. 𝜆 = 𝑛. ℎ
𝑝
= 𝑛.

ℎ

𝑚.𝑣
, soit : 

(61) 
 

La relation (61) constitue une première quantification qui porte sur la norme du moment 
cinétique 𝐿⃗  de l’électron sur son orbite.  

Dans le champ électrostatique d’un noyau de charge 𝑍. 𝑒, l’électron de charge −𝑒 est soumis à 

une force électrostatique attractive centrale de la part du noyau de norme ‖𝐹𝑒⃗⃗  ⃗‖ =
𝑍.𝑒2

4.𝜋.𝜀0

1

𝑟2
 qui 

génère une accélération centripète de la forme 𝑣
2

𝑟
 nécessaire pour maintenir l’électron sur une 

trajectoire circulaire à vitesse angulaire constante (cf. rappels de mathématique). La relation 

fondamentale de la dynamique s’écrit  𝑍.𝑒
2

4.𝜋.𝜀0

1

𝑟2
= 𝑚.

𝑣2

𝑟
⇒ 𝑟 =

𝑍.𝑒2

4.𝜋.𝜀0
 1

𝑚.𝑣2
. Le terme 𝑚. 𝑣2 se calcule 

au moyen de la (61) : (𝑚. 𝑣)2 = (𝑛.ℏ
𝑟
)
2
⟹𝑚.𝑣2 =

1

𝑚
(
𝑛.ℏ

𝑟
)
2

, ce qui donne 𝑟 = 𝑍.𝑒2

4.𝜋.𝜀0
 𝑚.𝑟

2

(𝑛.ℏ)2
⟹ 

1

𝑟
=

𝑍.𝑒2

4.𝜋.𝜀0
 𝑚

(𝑛.ℏ)2
, soit : 

 

(62) 

Dans la relation (62), pour de l’hydrogène (𝑍 = 1), puisque 𝜀0 =
107

4.𝜋.𝑐2
 (cf. équations 1-29 et 1-36), 

on évalue 𝑟0 = ℏ2.
4.𝜋.𝜀0

𝑍.𝑒2.𝑚
= (

6,626.10−34

2.𝜋
)
2

.

107

(2,998.108)
2

(1,602.10−19)2.9,109.10−31
= 0,53 . 10−10 = 0,53 Å.  

Le fait d’associer une onde (stationnaire) à l’électron d’un atome d’hydrogène contraint celui-ci 
à se trouver sur des orbites discrètes de la forme 𝑟𝑛 = 𝑛2. 0,53 Å , soit 𝑟1 = 𝑟0 = 0,53 Å, 𝑟2 =

1

𝜆
= 𝑅. (

1

𝑛2
−
1

𝑝2
) 

‖𝐿⃗ ‖ ≝ ‖𝑚. 𝑣 ∧ 𝑟 ‖ = 𝑚. 𝑣. 𝑟 = 𝑛
ℎ

2. 𝜋
= 𝑛. ℏ 

𝑟 = 𝑛2ℏ2.
4. 𝜋. 𝜀0
𝑍. 𝑒2.𝑚

= 𝑛2. 𝑟0 
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22. 𝑟0 = 2,12 Å, 𝑟3 = 3
2. 𝑟0 = 4,77 Å … qui correspondent bien aux estimations expérimentales de 

la dimension d’un atome. 

Aspect énergétique :  

𝑍.𝑒2

4.𝜋.𝜀0

1

𝑟2
= 𝑚.

𝑣2

𝑟
⟹

𝑍.𝑒2

4.𝜋.𝜀0

1

𝑟
= 𝑚. 𝑣2⟹𝐸𝑐 =

1

2
𝑚. 𝑣2 =

1

2.𝑟

𝑍.𝑒2

4.𝜋.𝜀0
 pour l’énergie cinétique de 

l’électron.  

L’énergie potentielle d’interaction électrostatique avec le noyau 𝐸𝑝 = −𝑒. 𝑉 = −𝑒.
𝑍.𝑒

4.𝜋.𝜀0
.
1

𝑟
 . 

L’énergie totale de l’électron est donc 𝐸 = 𝐸𝑐 + 𝐸𝑝 =
1

2.𝑟

𝑍.𝑒2

4.𝜋.𝜀0
−

𝑍.𝑒2

4.𝜋.𝜀0
.
1

𝑟
= −

1

2.𝑟

𝑍.𝑒2

4.𝜋.𝜀0
.  

En remplaçant dans cette expression 𝑟 par son expression donnée par la relation de 

quantification (62), 𝑟 = 𝑛2ℏ2. 4.𝜋.𝜀0
𝑍.𝑒2.𝑚

, on obtient 𝐸 = − 1

2
.

𝑍.𝑒2.𝑚

𝑛2(
ℎ

2.𝜋
)
2
.4.𝜋.𝜀0

.
𝑍.𝑒2

4.𝜋.𝜀0
= −

𝑍2𝑒4.𝑚

8.𝑛2.ℎ2.𝜀0
2, soit : 

 
(63) 

 

𝐸1,1 se calcule en 𝑒𝑉 suivant 𝐸1,1(𝑒𝑉) =
1

𝑒

𝑒4.𝑚

8.ℎ2.𝜀0
2 =

(1,602.10−19)
3
.9,109.10−31

8.(6,626.10−34)2.(
107

4.𝜋.(2,998.108)
2)

2 = −13,6 𝑒𝑉.  

L’expression de l’énergie totale de l’électron d’un atome hydrogénoïde de numéro atomique 𝑍 
est finalement d’une forme simple : 

 
(64) 

Cette énergie (de liaison de l’électron au noyau) est quantifiée par un nombre entier strictement 
positif 𝑛 que l’on nomme nombre quantique principal et qui définit une couche (ou niveau) 
énergétique de l’électron.  

Pour soustraire l’électron à l’attraction du noyau, il faut amener cette énergie à 0 (𝑛 ⟶ ∞), et 
donc fournir à l’électron situé sur la couche 𝑛  une énergie d’ionisation 𝐸𝑛𝑖 = −𝐸𝑛 > 0  , 

généralement apportée à l’électron par un photon d’énergie 𝐸𝜑 = ℎ. 𝑓 =
ℎ.𝑐

𝜆
= ℏ.𝜔  qui est 

absorbé par l’électron, suivant la relation (53).  

 
(65) 

 

Si 𝐸𝜑(𝑒𝑉) = 𝐸𝑝 − 𝐸𝑛 = −13,6. 𝑍2. (
1

𝑝2
−

1

𝑛2
) = 13,6. 𝑍2. (

1

𝑛2
−

1

𝑝2
), alors l’absorption d’un photon 

d’énergie 𝐸𝜑  par un électron d’une couche (énergétique) profonde 𝑛 permet à cet électron de 
passer sur une couche plus périphérique 𝑝 > 𝑛. On dira alors que l’atome est excité. 
 
Un atome excité peut voir spontanément son électron placé sur une couche périphérique 𝑝 
revenir sur une couche plus proche du noyau 𝑛 < 𝑝, donc moins énergétique, en émettant sous 
la forme d’un photon d’énergie 𝐸𝜑  l’écart d’énergie entre ces deux couches : 𝐸𝜑(𝑒𝑉) =

𝐸(𝐽) = −
𝑒4. 𝑚

8. ℎ2. 𝜀0
2
.
𝑍2

𝑛2
= −𝐸1,1.

𝑍2

𝑛2
 

𝐸𝑛(𝑒𝑉) = −13,6.
𝑍2

𝑛2
 

𝐸𝑛
𝑖 = +

𝑒4.𝑚

8. ℎ2. 𝜀0
2
.
𝑍2

𝑛2
= +13,6.

𝑍2

𝑛2
 𝑒𝑉 
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13,6. 𝑍2. (
1

𝑛2
−

1

𝑝2
). Le photon émis lors d’une telle désexcitation porte le nom de photon de 

fluorescence. 
 
L’électron d’un atome d’hydrogène ne peut donc absorber ou émettre que certains photons de 

longueurs d’ondes bien spécifiques, les mêmes dans les deux cas, satisfaisant 𝐸𝜑(𝑒𝑉) =
ℎ.𝑐

𝜆
=

13,6. 𝑍2. (
1

𝑛2
−

1

𝑝2
), et donc, en revenant à une énergie exprimée en joules : 

1

𝜆
=
13,6.𝑒

ℎ.𝑐
. (
1

𝑛2
−

1

𝑝2
) = 𝑅. ( 1

𝑛2
−

1

𝑝2
) avec 𝑅 = 13,6.𝑒

ℎ.𝑐
=

13,6 .1,602.10−19

6.626.10−34 .2,998.108
= 1,097. 107 𝑚−1. 

 
On retrouve ainsi très exactement la constante de Balmer et la formule empirique de Rydberg-
Ritz (équation 1-68) à laquelle le modèle atomique de Bohr donne une explication cohérente. La 
présence des deux nombres entiers 𝑛 et 𝑝  se trouve expliquée, et l’équation (63) permet au 

passage d’exprimer la constante de Balmer en fonction de constantes :  𝑅 = 1

ℎ.𝑐

𝑒4.𝑚

8.ℎ2.𝜀0
2 =

𝑒4.𝑚

8.ℎ3.𝑐.𝜀0
2. 

 
Dans le cas d’atomes à plus d’un électron, le modèle de Bohr se généralise en exprimant que la 
charge du noyau est en partie masquée à un électron de la couche 𝑛 par les charges négatives 
des électrons des couches 𝑝 < 𝑛 : 
 

(66) 

 
La constante 𝜎 est appelée constante d’écran. Elle est nulle pour des électrons de la première 
couche (𝑛 = 1) et croit avec 𝑛.  
 
Pour un électron impliqué dans une liaison covalente entre les atomes d’oxygène et d’hydrogène 
d’une molécule d’eau, l’énergie d’ionisation moyenne est de l’ordre de 32 𝑒𝑉. Cet électron ne 
pourra donc être ionisé que par des photons ultraviolet,  ou X (cf. figure 42). 
Ces rayonnements sont qualifiés de rayonnements ionisants. Pour un organisme humain 
constitué principalement de molécules d’eau, seuls les rayonnements ionisants sont capables 
d’ioniser un électron covalent d’une molécule d’eau et de provoquer la rupture de cette liaison 
covalente. Ceci produit des radicaux libres 𝑂𝐻• (groupement OH avec un électron non apparié) 
qui sont des substances chimiques fortement oxydantes, ainsi que des électrons et des protons 
libres qui eux sont fortement réducteurs. Ces produits de la radiolyse de l’eau sont extrêmement 
réactifs (au sens chimique du terme) et capables de dénaturer des membranes ou des protéines 
cellulaires telles que l’ADN nucléaire. A forte dose, ils peuvent ainsi provoquer des lésions 
tissulaires responsables d’insuffisances organiques (hématopoïétiques en particulier) 
potentiellement mortelles. A plus faible dose, ils peuvent également être à l’origine de cancers 
radio-induits. Les rayonnements non ionisants, visibles, IR ou hertziens, au contraire, ne sont pas 
associés à des photons d’énergie suffisante pour ioniser un électron atomique, et ne peuvent 
donc pas provoquer de telles pathologies. 
 
En dépit de ses succès dans la modélisation des faits expérimentaux, le modèle de Bohr conserve 
quelques limites :  

1- La quantification du moment cinétique de l’électron qui en découle n’est pas vérifiée par 
l’expérience (équation 1-69).  

𝐸(𝑒𝑉) = −
𝑒3.𝑚

8. ℎ2. 𝜀0
2
.
(𝑍 − 𝜎)2

𝑛2
= −13,6.

(𝑍 − 𝜎)2

𝑛2
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2- Il suppose pour les électrons l’existence de trajectoires circulaires (orbites) à une 
distance bien déterminée du noyau (équation 1-70). Or l’inégalité de Heisenberg 
(équation 1-63) infirme l’existence de trajectoires pour des particules élémentaires.  

3- Enfin, il ne modélise pas d’autres caractéristiques atomiques importantes, comme le 
comportement d’un atome plongé dans un champ magnétique par exemple. 

 

E- Equation de Schrödinger et remplissage des couches électroniques 
atomiques 
 
Pour dépasser les limites du modèle de Bohr, il faut modéliser la position d’une particule 
électronique à un certain instant 𝑡 au sein d’un atome non plus par un jeu de coordonnées précis 
(𝑥, 𝑦, 𝑧, 𝑡), mais par une fonction nommée fonction d’onde 𝜓(𝑥, 𝑦, 𝑧, 𝑡)  définissant la probabilité 
de présence 𝑑𝑝 de cet électron dans un volume infinitésimal 𝑑𝑉  centré sur le point (𝑥, 𝑦, 𝑧),à 
l’instant 𝑡, suivant la relation : 

(67) 
 
Un raisonnement simple permet de comprendre comment une telle fonction d’onde peut être 
calculée. Pour simplifier, limitons-nous dans un premier temps à une fonction d’onde ne 
dépendant que du temps et d’une seule dimension de l’espace.  
 
En se limitant à une dimension, cette fonction 𝜓(𝑥, 𝑡) peut être recherchée sous la forme d’une 
onde progressive (de probabilité) se déplaçant avec l’électron, donc de la forme 𝜓(𝑥, 𝑡) =
𝐴. 𝑠𝑖𝑛(𝜔. 𝑡 − 𝑘. 𝑥) suivant la relation (8). En dérivant à deux reprise cette expression, on obtient 
successivement : 

𝜕𝜓(𝑥,𝑡)

𝜕𝑥
=

𝜕

𝜕𝑥
[𝐴. 𝑠𝑖𝑛(𝜔. 𝑡 − 𝑘. 𝑥)] = −𝐴. 𝑘. 𝑐𝑜𝑠(𝜔. 𝑡 − 𝑘. 𝑥) , puis 

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2
=

𝜕

𝜕𝑥
[−𝐴. 𝑘. 𝑐𝑜𝑠(𝜔. 𝑡 − 𝑘. 𝑥)] = −𝐴. 𝑘2. 𝑠𝑖𝑛(𝜔. 𝑡 − 𝑘. 𝑥) = −𝑘2. 𝜓(𝑥, 𝑡), soit  

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2
+ 𝑘2. 𝜓(𝑥, 𝑡) = 0. 

L’onde de probabilité 𝜓  de vecteur d’onde 𝑘⃗  se propage avec la particule électronique de 
quantité de mouvement 𝑝 . En suivant le même raisonnement que celui suivi pour établir la 
relation de Louis de Broglie (paragraphe 2-A), l’application du principe de moindre action à cette 
onde et à cette particule nous permet d’écrire 𝑝 = ℏ. 𝑘  (relation 1-54), ce qui conduit à 𝑘2 =

(
𝑝

ℏ
)
2
= (

𝑚𝑣

ℏ
)
2

.  

En régime stationnaire (où la fonction d’onde 𝜓  ne dépend du temps), l’équation précédente 

s’écrit alors 𝜕
2𝜓(𝑥)

𝜕𝑥2
+ 𝑘2. 𝜓(𝑥) = 0. En remplaçant 𝑘2  par (𝑚𝑣

ℏ
)
2

 dans l’équation précédente, il 

vient 𝜕2𝜓(𝑥)

𝜕𝑥2
+ (

𝑚𝑣

ℏ
)
2
. 𝜓(𝑥) = 0 ⟹

ℏ2

2.𝑚
.
𝜕2𝜓(𝑥)

𝜕𝑥2
+
𝑚.𝑣2

2
. 𝜓(𝑥) = 0  . On reconnait dans cette 

expression l’énergie cinétique de l’électron 𝐸𝑐 =
𝑚.𝑣2

2
= 𝐸 − 𝐸𝑝  où 𝐸  est l’énergie totale de 

l’électron et 𝐸𝑝 son énergie potentielle dans le champ électrostatique du noyau telle que définie 

au paragraphe 3-D. On a donc ℏ
2

2.𝑚
.
𝜕2𝜓(𝑥)

𝜕𝑥2
+ (𝐸 − 𝐸𝑝). 𝜓(𝑥) = 0, soit encore : 

 
  (68) 

 
 

𝑑𝑝 ≝ |𝜓(𝑥, 𝑦, 𝑧, 𝑡)|2. 𝑑𝑉 

−
ℏ2

2.𝑚
.
𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝐸𝑝. 𝜓(𝑥) = 𝐸.𝜓(𝑥) 
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Cette équation est appelée équation de Schrödinger en régime stationnaire. Sa résolution (le 
plus souvent approchée) permet de déterminer la fonction d’onde 𝜓, et donc, via la définition 
(67), la probabilité de présence 𝑑𝑝  d’un électron atomique dans un volume infinitésimal 𝑑𝑉 
centré en tout point de l’espace. 
Exemple d’un « puits de potentiel » : il s’agit d’une configuration dans laquelle l’énergie 
potentielle 𝐸𝑝(𝑥) est nulle pour 𝑥 ∈ [0, 𝐿] et infinie en dehors de cet intervalle d’espace.  
 
Pour une particule de masse 𝑚 est piégée dans l’intervalle [0, 𝐿], l’équation de Schrödinger (68) 
s’écrit : 
 

−
ℏ2

2.𝑚
.
𝜕2𝜓(𝑥)

𝜕𝑥2
− 𝐸.𝜓(𝑥) = 0 soit encore 𝜕

2𝜓(𝑥)

𝜕𝑥2
+ 𝛼2𝜓(𝑥) = 0 avec 𝛼 ≝ √2.𝑚.𝐸

ℏ
. 

La fonction d’onde 𝜓(𝑥) = 𝐴. sin(𝛼. 𝑥 + 𝜑)  est solution l’équation de Schrödinger puisque 
𝜕2𝜓(𝑥)

𝜕𝑥2
=

𝜕

𝜕𝑥
[𝛼. 𝐴. cos(𝛼. 𝑥 + 𝜑)] = −𝛼2𝐴. sin(𝛼. 𝑥 + 𝜑) = −𝛼2. 𝜓(𝑥). 

 
La constante 𝜑 peut être déterminée en remarquant que puisque la particule ne peut sortir de 
l’intervalle [0, 𝐿]  : 𝜓(0) = 𝐴. sin(𝜑) =  0 , et donc 𝜑  est un multiple de 𝜋 , ce qui conduit à 
contraindre la solution sous la forme 𝜓(𝑥) = 𝐴. sin(𝛼. 𝑥). En écrivant que la particule se trouve 
nécessairement quelque part dans l’intervalle [0, 𝐿] , avec une probabilité de 1, on peut 

déterminer la constante 𝐴 = √2
𝐿

. 

 
Comme de plus 𝜓(𝐿) = 0 = 𝐴. sin(𝛼. 𝐿),  𝛼. 𝐿 = 𝑛. 𝜋 , 𝑛 étant un nombre entier. En revenant à la 

définition de 𝛼 ≝ √2.𝑚.𝐸

ℏ
, il vient √2.𝑚.𝐸

ℏ
. 𝐿 = 𝑛. 𝜋 et donc 𝐸 = 𝑛2.

(
𝜋.ℏ

𝐿
)
2

2.𝑚
, soit, avec n entier non nul : 

 

𝐸 =
ℎ2

8.𝑚.𝐿2
. 𝑛2  

𝜓(𝑥) = 𝐴. sin (𝑛.
𝜋. 𝑥 

𝐿
) 

 
On constate dans cet exemple à une dimension que la résolution de l’équation de Schrödinger 
aboutit à une fonction d’onde et à une énergie de la particule quantifiées par le nombre entier 𝑛. 
La généralisation de ce résultat à un puit de potentiel à 3 dimensions aboutit de même à une 
énergie et une fonction d’onde quantifiées cette fois par 3 nombres entiers 𝑛, 𝑙,𝑚. 
 
Ces résultats obtenus sur un exemple de puits de potentiel sont tout à fait généraux.  
 
Dans le cas d’électrons atomiques, la résolution de l’équation de Schrödinger (sous forme 
analytique dans les cas simples, ou sous forme d’approximations numériques sinon) aboutit de 
même à des fonctions d’onde 𝜓𝑛,𝑙,𝑚(𝑥, 𝑦, 𝑧)  et à des énergies totales 𝐸𝑛,𝑙,𝑚  quantifiées par 3 
nombres entiers appelés nombres quantiques, (𝑛, 𝑙,𝑚).  
Le calcul de la fonction d’onde pour un électron d’un atome d’hydrogène retrouve alors une 
probabilité de présence maximale pour une distance au noyau correspondant exactement à celle 
calculée par le modèle de Bohr, ce qui confirme, avec la validité de sa prévision pour les niveaux 
d’énergie de l’hydrogène, le grand intérêt de l’approximation que constitue ce modèle de Bohr. 
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Dans un atome, les nombres quantiques relatifs aux électrons qui permettent de déterminer les 
énergies et moments cinétiques des électrons atomiques sont soumis à certaines contraintes 
dont l’étude sort des limites de ce cours. On ne fait que les citer :  
 

- Le nombre quantique principal 𝒏 > 0  est celui du modèle de Bohr. Il définit donc le 
niveau ou la couche énergétique d’un électron atomique identifiées par les chimistes par 
les lettres K (𝑛 = 1), L (𝑛 = 2), M (𝑛 = 3) etc. 
 

- Le nombre quantique secondaire 𝒍 peut prendre toutes les 𝑛 valeurs entières comprises 
entre 0 et 𝑛 − 1 incluses. Les chimistes désignent ces électrons par les lettres s (pour 𝑙 =
0), p (pour 𝑙 = 1), d (pour 𝑙 = 2) ou f (pour 𝑙 = 3), puis g, h, etc. dans l’ordre alphabétique. 
Ajustement notable avec le modèle de Bohr, il s’avère que la constante d’écran 𝜎 définie 
par l’équation (66) dépend non seulement de 𝑛, mais aussi de 𝑙. Il en est donc de même 
pour l’énergie d’un électron atomique qui s’écrit en toute généralité : 

 
(69) 

 

Pour un atome hydrogénoïde (à un seul électron, 𝜎 = 0), le modèle de Bohr est inchangé. 
En revanche, pour un atome contenant plus d’un électron, il apparait à partir de la couche 
L (𝑛 = 2), des sous-couches électroniques correspondant à des énergies légèrement 
différentes associées aux différentes valeurs de 𝑙  possibles. Pour la couche L par 
exemple (𝑛 = 2), le nombre 𝑙  peut prendre les valeurs 0 et 1 correspondant aux sous-
couches 2s et 2p, chacune associée à un niveau d’énergie légèrement différent. Pour la 
couche K (𝑛 = 1), en revanche, une seule sous-couche 1s (𝑙 = 0) existe et s’identifie à la 
couche énergétique. Les physiciens parlent de niveaux dégénérés.  
 
Avec des arguments de mécanique quantique qui sortent du cadre de cours, on peut 
montrer que le nombre quantique secondaire quantifie aussi correctement le module du 
moment cinétique orbital de l’électron atomique non plus suivant l’équation 1-69 du 

modèle de Bohr (‖𝐿⃗ ‖ = 𝑛. ℏ), mais suivant ‖𝐿⃗ ‖ = √𝑙. (𝑙 + 1). ℏ.  
  

- Le nombre quantique magnétique 𝒎  peut prendre toutes les valeurs entières 
comprises entre −𝑙 et +𝑙 incluses. Ce nombre n’a aucune influence sur la quantification 
des énergies des électrons atomiques. Lorsqu’un atome est plongé dans un champ 
magnétique externe ayant une certaine direction, on peut montrer que ce nombre 𝑚 
permet de quantifier la projection 𝐿 du moment cinétique de l’électron atomique 𝐿⃗  sur 
cette direction suivant 𝐿 = 𝑚. ℏ. 

 

- Un quatrième et dernier nombre quantique n’est pas lié à l’interaction électrostatique 
entre les électrons et le noyau (nous avons vu que celle-ci ne nécessitait que les 3 
nombres quantiques). Il résulte de l’existence avérée d’un moment cinétique non plus 
orbital mais propre à la particule électronique. La projection de ce moment cinétique sur 
la direction d’un champ magnétique externe est quantifiée par le nombre quantique de 

spin 𝑚𝑆 = ±
1

2
.    

𝐸𝑛,𝑙(𝑒𝑉) = −
𝑒3.𝑚

8. ℎ2. 𝜀0
2
.
(𝑍 − 𝜎(𝑛, 𝑙))

2

𝑛2
= −13,6.

(𝑍 − 𝜎(𝑛, 𝑙))
2

𝑛2
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Un électron atomique sera donc complètement défini par 4 nombre quantiques (principal, 
secondaire, magnétique et de spin), 𝑛, 𝑙,𝑚, 𝑒𝑡 𝑚𝑠.  

Le « principe d’exclusion » de Pauli affirme que deux électrons au sein d’un atome ne peuvent 
être caractérisées par le même quadruplet (𝑛, 𝑙,𝑚,𝑚𝑠). Dans une couche 𝑛 donnée, il est ainsi 
possible de disposer de 𝑛  sous-couches ( 𝑙 = 0,1,… , 𝑛 − 1 ) et pour chacune de ces sous-
couches 𝑙 de 2. 𝑙 + 1 valeurs différentes de 𝑚. On dispose donc de 1 + 3 + 5 +⋯+ (2. 𝑛 − 1) =
𝑛2  valeurs distinctes de 𝑚 , donc de 𝑛2  triplets (𝑛, 𝑙,𝑚)  distincts pour une couche 𝑛  donnée. 

Enfin, à chacun de ces 𝑛2  triplets (𝑛, 𝑙,𝑚), il est possible d’associer deux valeurs (± 1

2
) de 𝑚𝑠. 

Chaque couche électronique 𝒏  peut donc contenir au plus 𝟐. 𝒏𝟐  électrons que l’on peut 

regrouper par paires d’électrons de spin − 1

2
 et + 1

2
.  

La figure 48 donne un exemple des sous-couches énergétiques et du remplissage de celles-ci 
possibles pour un atome d’argon (𝑍 = 18).  

 

F- Excitation et désexcitation d’électrons atomiques 
 

La figure 48 illustre comment un électron peut passer d’une sous-couche énergétique à une autre 
plus profonde en émettant un photon de fluorescence dont l’énergie 𝐸 = ℎ𝑓 est égale à l’écart 
d’énergie entre les sous-couches de départ et d’arrivée (d’où le spectre d’émission de l’atome). 
Elle montre de même comment un électron peut être excité (ou ionisé) en passant d’une sous-
couche énergétique à une autre plus périphérique à condition d’absorber un photon d’énergie 
𝐸 = ℎ𝑓 égale de nouveau à l’écart d’énergie entre les sous-couches de départ et d’arrivée de 
l’électron, expliquant de ce fait le spectre d’absorption de l’atome. 

Lorsqu’un photon dont l’énergie 𝐸 = ℎ𝑓 > 𝐸𝑛𝑖  voit son énergie intégralement absorbée par un 
électron de la couche 𝑛, ce dernier est ionisé (soustrait à l’attraction du noyau) et doté d’une 
énergie cinétique  𝐸𝑐 = ℎ𝑓 − 𝐸𝑛𝑖 . On parle alors d’effet photo-électrique. Un autre électron 
(d’une couche 𝑝 > 𝑛 ou libre dans la matière) pourra alors occuper la case quantique 𝑛 laissée 
vacante par l’ionisation, en émettant un photon de fluorescence. 
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Figure 48 : Représentation schématique d’un atome d’Argon (Z=18, configuration 3s2 3p6) ayant 
subi deux ionisations (cases quantiques libres sur les couches 2s et 3p) avec exemple de deux 
transitions possibles (une fluorescence et une excitation). 

Lors de transitions électroniques entre une couche périphérique et une couche profonde, proche 
du noyau, l’écart d’énergie peut conduire à l’émission de rayons ionisants d’énergie de l’ordre de 
la centaine d’électronvolts ou plus, qualifiés de ce fait de rayonnements X.  

En spectrométrie de fluorescence par rayons X, la mesure de l’énergie des photons de 
fluorescence X d’un échantillon au préalable excité par un rayonnement électronique ou X 
polychromatique permet de reconnaitre dans ces énergies de fluorescence certains écarts 
d’énergie |𝐸𝑛,𝑙 − 𝐸𝑛′,𝑙′| correspondant à des transitions entre sous-couches d’un atome donné, 
donc d’identifier cet atome et d’en déterminer sa concentration au sein de l’échantillon. 

Pour être complet sur ce point, notons que lors d’une transition électronique d’une sous-couche 
(𝑛, 𝑙) vers une sous-couche (𝑛′, 𝑙′) plus profonde, le photon de fluorescence émis peut aussi être 
absorbé par un électron (𝑛′′, 𝑙′′) plus périphérique qui se trouvera ionisé. Après dissipation de 
son énergie cinétique, ce dernier électron pourra revenir sur une couche électronique disponible 
d’un atome, émettant alors un photon de fluorescence d’énergie inférieure à celui de la transition 
initiale |𝐸𝑛,𝑙 − 𝐸𝑛′,𝑙′|. Ce phénomène porte le nom d’effet Auger et constitue un mode alternatif 
de production de rayons X.  

Nous verrons au paragraphe 3-H que certains processus radioactifs peuvent aussi conduire 
secondairement à la production de rayonnements X. 

Ces processus produisent des spectres de raies avec des intensités relativement limitées. 
L’imagerie médicale radiologique a besoin de sources de rayonnement X beaucoup plus intenses 
pour produire des radiographies exploitables. Elle utilisera pour cela une autre façon de produire 
des rayons X qui est décrite dans le paragraphe 3-G. 

 

G- Rayonnement de freinage 
 

La figure 49 représente schématiquement un tube à rayons X utilisé dans les services de 
radiologie. Un filament chauffé libère des électrons qui sont accélérés vers une anode tournante 
A en tungstène (𝑍 = 74) sous une différence de potentiel 𝑉 de l’ordre de 100 kV. 

 

Figure 49 : Schéma d’un tube producteur de rayons X par rayonnement de freinage. 
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Dans l’anode, le faisceau d’électrons de 100 keV sont déviés par l’attraction électrostatique des 

noyaux de tungstène, et subissent une décélération 𝑎 de la forme 𝑚. 𝑎 = 1

4.𝜋.𝜀0

𝑍.𝑒2

𝑟2
. Ce freinage 

des électrons est principalement transmis à l’anode sous forme de chaleur, mais la variation de 
densité du courant d’électrons génère aussi un rayonnement de freinage X ou Bremsstrahlung 
(suivant l’équation 1-34). L’énergie e ce rayonnement est proportionnelle au carré de 
l’accélération, soit inversement proportionnelle au carré de la masse des particules déviées, et 
donc particulièrement importante pour des particules de faibles masses comme les électrons.  
 

Spectre du rayonnement de freinage : Les électrons d’énergie 𝐸𝑚𝑎𝑥 = 𝑒. 𝑉  atteignent A puis 
traversent une épaisseur 𝑑𝑥 où un premier seul photon X est produit pour un électron incident. 
L’énergie du photon X étant une fraction aléatoire et équiprobable de  𝐸𝑚𝑎𝑥, le spectre émis par 
𝑑𝑥 est constant entre 0 et 𝐸𝑚𝑎𝑥. La deuxième épaisseur 𝑑𝑥 traversée émet de même un spectre 
constant entre 0  et 𝐸𝑚𝑎𝑥 − 𝜀 , l’énergie maximale des électrons se présentant devant cette 
deuxième épaisseur. Après traversée de toute l’anode, le spectre X obtenu est donc un spectre 
continu tel que celui représenté dans la partie gauche de la figure 50.  
Mais les photons de faibles énergies sont absorbés par effet photo-électrique dans l’anode et ne 
sont donc pas observés (figure 50, partie médiane). Enfin, ces effets photo-électriques 
produisent secondairement des photons de fluorescence qui forment finalement un spectre 
continu de rayonnement de freinage tel que celui de la partie droite de la figure 50. 

 

Figure 50 : Construction du spectre d’un rayonnement X de freinage 

 

H- Désintégrations radioactives 
 

Une désintégration radioactive est une transformation d’un noyau atomique père 𝑋𝑍𝐴  instable en 

un noyau fils  𝑌𝑍′
𝐴′   avec émission de particules élémentaires.  Les noyaux instables sont 

caractérisés par des nombres de masse  𝐴 élevés, un déséquilibre entre nombre de protons et de 
neutrons ou des nucléons excités. Il en existe une cinquantaine d’isotopes radioactifs de naturels 
qui se désintègrent très lentement. Depuis les travaux d’Irène et Frédéric Joliot-Curie ont sait 
fabriquer des isotopes radioactifs artificiels qui se désintègrent beaucoup plus vite, et peuvent 
de ce fait être administrés à des patients sans entrainer une longue exposition à des 
rayonnements ionisants.  

Pour qu’une désintégration radioactive soit possible, il faut, entre autres choses, que les lois de 
conservation de l’énergie, de la quantité de mouvement, et de la charge électrique soient 
respectées.  

Considérons une désintégration 𝑋𝑍𝐴 → 𝑌 + 𝑝𝑍′
𝐴′  où 𝑝est une particule élémentaire. 
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Notons ℳ( 𝑋𝑍
𝐴 ) la masse de l’atome 𝑋𝑍𝐴 , 𝑀( 𝑋𝑍𝐴 ) celle de son noyau, 𝑚𝑝 celle de la particule et 𝑚𝑒  

la masse d’un électron. 
L’énergie 𝐸𝑑  rendue disponible lors de la réaction est :     
             

(70) 

La masse du noyau est celle de l’atome moins celle de ses électrons :    

(71) 

I- Radioactivité alpha (impliquant l’interaction forte) 
 

La radioactivité alpha (𝛼 ) consiste en l’émission d’un noyau d’hélium 𝐻𝑒2
4  (2 protons + 2 

neutrons), encore appelé particule alpha, par un noyau père : 

(72) 

 

La radioactivité 𝛼 concerne les noyaux volumineux : 

𝐸𝑑 = (𝑀(𝑋) − [𝑀(𝑌) +𝑀(𝛼)]). 𝑐
2 = (ℳ(𝑋) − [ℳ(𝑌) +𝑀( 𝐻𝑒2

4 )]). 𝑐2 > 0⟹ 𝐴 > 150  

La conservation de la quantité de mouvement s’écrit : 

𝑚𝑌. 𝑣𝑌 = 𝑚𝛼 . 𝑣𝛼 ⟹
1

2
. (𝑚𝑌. 𝑣𝑌)

2 =
1

2
. (𝑚𝛼 . 𝑣𝛼)

2⟹𝑚𝑌𝐸𝑌 = 𝑚𝛼𝐸𝛼 ⟹𝐸𝑌 =
𝑚𝛼
𝑚𝑌

𝐸𝛼 

Puisque  𝐸𝑑 = 𝐸𝑌 + 𝐸𝛼 = (1 +
𝑚𝛼

𝑚𝑌
)𝐸𝛼   et compte-tenu de 𝑚𝑌 ≫ 𝑚𝛼  : 

(73) 

 

Le spectre de l’émission alpha est donc (en première approximation), un spectre de raie unique. 
En pratique, l’énergie de la raie est de l’ordre de 4 à 9 MeV en fonction des isotopes utilisés en 
radiothérapie métabolique ou en curiethérapie. Ces isotopes permettent de déposer une forte 
énergie sur une distance de quelques micromètres et sont utilisés pour traiter divers cancers (col 
de l’utérus, sein, peau, prostate, etc.). 

 

II- Radioactivité bêta et capture électronique (impliquant l’interaction faible) 
 
Les noyaux instables du fait d’un déséquilibre entre protons et neutrons peuvent se désintégrer 
de façon isobarique (𝐴 est inchangé) en transformant un neutron en proton ou un proton en 
neutron.  
 
RADIOACTIVITE BETA MOINS 
La radioactivité 𝛽− concerne des noyaux riches en neutrons où un neutron 𝑛01  se transforme en 
proton 𝑝11  avec émission d’un électron 𝑒−−1

0  et d’un antineutrino 𝜈̅00  suivant la réaction : 
 

𝐸𝑑 = (𝑀( 𝑋𝑍
𝐴 ) − [𝑀 ( 𝑌𝑍′

𝐴′ ) +𝑚𝑝]) . 𝑐
2 

𝑀( 𝑋𝑍
𝐴 ) = ℳ( 𝑋𝑍

𝐴 ) − 𝑍.𝑚𝑒  

𝑋𝑍
𝐴 → 𝑌 + 𝐻𝑒2

4
𝑍−2
𝐴−4    ou   𝑋𝑍𝐴 → 𝑌 + 𝛼𝑍−2

𝐴−4  

 

𝐸𝛼 =
𝑚𝑌

𝑚𝑌+𝑚𝛼
𝐸𝑑 ≈ 𝐸𝑑   
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(74) 

 
𝐸𝑑 = (𝑀(𝑋) − [𝑀(𝑌) +𝑚𝑒−]). 𝑐

2 = (ℳ(𝑋) −ℳ(𝑌)). 𝑐2 = 𝐸𝑒− + 𝐸𝜈̅ puisque, comme pour 
l’émission 𝑎 , le noyau de recul 𝑌𝑍+1

𝐴  n’emporte qu’une part infime de l’énergie disponible. Il 
s’ensuit pour l’électron émis un spectre en énergie continu (figure 51 à gauche) entre 0 et 𝐸𝑑. 

 

Figure 51 : Allure d’un spectre de rayonnement -et +. On donne ici la probabilité pour un 
électron ou un positon d’être émis avec une certaine énergie. 

 
En radiothérapie métabolique, les électrons émis par des isotopes radioactifs - permettent de 
déposer une forte énergie sur quelques mm, ionisant et détruisant des tissus pathologiques 
(arthrites inflammatoires, cancer différencié de la thyroïde, cancer du foie, de la prostate, 
tumeurs neuro endocrines etc.).  
 
RADIOACTIVITE BETA PLUS ET CAPTURE ELECTRONIQUE 
La radioactivité 𝛽+  concerne des noyaux riches en protons où un proton 𝑝11  se transforme en 
neutron 𝑛01 , avec émission d’un électron positif ou positon 𝑒++1

0  et d’un neutrino 𝜈00  : 

(75) 

 

De nouveau  𝐸𝑑 = (𝑀(𝑋) − [𝑀(𝑌) +𝑚𝑒+]). 𝑐
2 = (ℳ(𝑋) −ℳ(𝑌) − 2.𝑚𝑒+). 𝑐

2 = 𝐸𝑒− + 𝐸𝜈̅ 
conduit à un spectre continu du rayonnement 𝛽+  (figure 51, partie de droite). 

Après avoir cédé son énergie cinétique sur quelques mm sous forme d’ionisations, le positon 
émis va s’annihiler avec un électron naturel suivant 𝑒+ + 𝑒− → 2𝛾. Les masses de l’électron et 
du positon disparaissent et se transforment en deux photons 𝛾  émis dans deux directions 
opposées, porteurs chacun de l’énergie correspondant à la masse d’un électron : 𝐸𝛾 = 𝑚𝑒− . 𝑐2 =
511 𝑘𝑒𝑉. 

Cette paire de photons peut être détectée par un tomographie par émission de positons (TEP), 
permettant l’exploitation de la radioactivité  𝛽+ à des fins d’imagerie scintigraphique. La figure 52 
donne un exemple d’une image obtenue par TEP au moyen de molécules de glucoses marquées 
par du fluor 18. 

𝑛0
1 → 𝑝 + 𝑒− + 𝜈̅0

0
−1
0

1
1      soit     𝑋𝑍𝐴 → 𝑌 + 𝑒− + 𝜈̅0

0
−1
0

𝑍+1
𝐴  

 

𝑝1
1 → 𝑛 + 𝑒+ + 𝜈0

0
+1
0

0
1      soit     𝑋𝑍𝐴 → 𝑌 + 𝑒+ + 𝜈0

0
+1
0

𝑍−1
𝐴  
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La capture électronique est un mécanisme alternatif à la radioactivité 𝛽+  dans lequel un 
électron K de l’atome est absorbé par l’atome père transformer un proton en neutron : 

 

(76) 

 

En notant 𝐸𝑖
𝐾  l’énergie d’ionisation de l’électron K de l’atome 𝑋𝑍𝐴 , la contrainte de positivité de 

l’énergie disponible 𝐸𝑑 = (𝑀(𝑋) +𝑚𝑒+ −𝑀(𝑌)). 𝑐2 − 𝐸𝑖
𝐾 = (ℳ(𝑋) −ℳ(𝑌)). 𝑐2 − 𝐸𝑖

𝐾  apparait 
moins exigeante que pour la radioactivité 𝛽+.  

Une capture électronique est suivie d’une émission de photons X de fluorescence dont les 
énergies sont caractéristiques de l’atome fils, permettant le dosage in vitro de certaines 
substances biologiques marquées avec de l’iode 125.  

 

III- Radioactivité gamma, conversion interne et création de paires (impliquant 
l’interaction électromagnétique) 
 

Comme les électrons atomiques, les nucléons présentent des niveaux énergétiques quantifiés. 
Les noyaux de certains isotopes peuvent passer d’un état excité (dit métastable) à un état plus 
stable, d’énergie inférieure, en émettant l’écart d’énergie sous la forme photons gamma (). On 
parle alors de radioactivité 𝜸.  

(77) 

où 𝐸𝑑 = (𝑀(𝑋𝑚) − 𝑀(𝑋)). 𝑐2 = (ℳ(𝑋𝑚) −ℳ(𝑋)). 𝑐2 ≈ 𝐸𝛾 = ℎ. 𝑓 =
ℎ.𝑐

𝜆
 .  

La radioactivité 𝛾 est exploitée en imagerie scintigraphique par émission de photon unique où 
des isotopes émetteurs  𝛾 sont fixés à des vecteurs ciblant certains organes. L’enregistrement la 
distribution des émissions gamma au moyen de gamma-caméras, on produit des images 
scintigraphiques qui renseignent sur le fonctionnement de nombreux organes : cerveau, 
thyroïde, parathyroïdes, poumons, cœur, reins, os etc. 

𝑝 + 𝑒−−1
0

1
1 → 𝑛 ++ 𝜈0

0
0
1      soit     𝑋 + 𝑒−−1

0
𝑍
𝐴 → 𝑌 + 𝜈0

0
𝑍−1
𝐴  

 

𝑋𝑚 →𝑍
𝐴 𝑋𝑋

𝐴 + 𝛾0
0  

 

Figure 52 : exemple d’image 
scintigraphique obtenue par 

tomographie par émission de 
positons (TEP) au 𝐹⬚

18 − 𝐹𝐷𝐺. 
Notez la fixation physiologique 
du glucose dans le cerveau, le 

foie, l’estomac, et 
l’élimination du radiotraceur 

par les reins. 
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La figure 53 donne l’exemple de la désintégration du technétium 99 métastable, le principal 
isotope utilisé en imagerie par émission de photon unique.  

 

Figure 53 : schéma de désintégration du technétium 99 métastable 𝑇𝑐43
99𝑚   

La figure 54 ci-dessous est un exemple de scintigraphie osseuse obtenue avec des molécules de 
biphosphonates marquées au technétium 99 métastable. Les biphosphonates se fixent sur les 
tissus osseux en cours de réparation après une agression. Les foyers d’hyperfixation des 
biphosphonates (observables en noir sur le squelette axial dans la figure 54) correspondent à des 
lésions métastatiques osseuses. 

 
 

Deux modes de désintégration proches de l’émission gamma sont également possibles.  

La conversion interne où après une émission gamma standard, le photon gamma est absorbé et 
ionise un électron de l’atome dont il est issu. Il s’ensuit l’émission de photons de fluorescence X.  

La création de paire 𝑒+/ 𝑒− est la matérialisation en une paire électron/positon d’un photon 𝛾 
d’énergie 𝐸𝛾 > 2.𝑚𝑒−.𝑐2 = 1,02 𝑀𝑒𝑉, suivant la réaction 𝛾 → 𝑒+ + 𝑒−. 

 

IV- Loi de décroissance radioactive 
 

La désintégration d’un noyau est un phénomène aléatoire, probabiliste. Si le nombre de noyaux 
non encore désintégrés à un instant 𝑡, 𝑁(𝑡), diminue de 𝑁(𝑡) à 𝑁(𝑡) + 𝑑𝑁(𝑡) < 𝑁(𝑡) entre 𝑡 et 
𝑡 + 𝑑𝑡, la probabilité 𝜆 de désintégration par unité de temps est constante et s’écrit : 

 

(78) 𝜆 ≝
−
𝑑𝑁(𝑡)
𝑁(𝑡)

𝑑𝑡
≝
𝑑𝑝

𝑑𝑡
 

Figure 54 : Exemple de 
scintigraphie osseuse 
obtenue au moyen de 

molécules de 
biphosphonates marquées 

au technétium 99 
métastable.  
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𝜆 est appelée constante radioactive (ou constante de désintégration) et s’exprime en 𝑠−1.  

La dérivée 𝑁′(𝑡) de la fonction 𝑁(𝑡) s’écrit (cf. rappels de mathématique) :  

𝑁′(𝑡) = lim
𝑑𝑡→0

𝑁(𝑡 + 𝑑𝑡) − 𝑁(𝑡)

𝑑𝑡
≝
𝑑𝑁(𝑡)

𝑑𝑡
  

⟹ 𝑑𝑁(𝑡) = 𝑁′(𝑡). 𝑑𝑡 ⇒
𝑑𝑁(𝑡)

𝑁(𝑡)
=
𝑁′(𝑡)

𝑁(𝑡)
𝑑𝑡 = [l n𝑁(𝑡)]′. 𝑑𝑡 

⟹ [l n𝑁(𝑡)]′ = −𝜆 

⟹ ln𝑁(𝑡) = −𝜆. 𝑡 + 𝑐 où 𝑐 est une constante réelle. 

⟹𝑁(𝑡) = 𝑒−𝜆.𝑡+𝑐 = 𝑒−𝜆.𝑡. 𝑒𝑐. 

En 𝑡 = 0, cette relation s’écrit 𝑁(0) = 𝑁0 = 𝑒0. 𝑒𝑐 = 𝑒𝑐, soit finalement (figure 55) :  
 

(79) 

 

Figure 55 : Evolution dans le temps du nombre de noyaux non encore désintégrés dans un 
échantillon de technétium 99 métastable (𝑇 = 6 ℎ). 

La période radioactive (ou demi-vie) 𝑻 est la durée moyenne durant laquelle la 50% des noyaux 

d’un échantillon se sont désintégrés :  𝑁(𝑇) = 𝑁0. 𝑒−𝜆.𝑇 ≝
𝑁0

2
⟹ 𝑒−𝜆.𝑇 =

1

2
⟹−𝜆. 𝑇 = − ln 2 :: 

 

(80) 

En combinant les équations (79) et (80), on obtient : 𝑁(𝑡) = 𝑁0. 𝑒−𝜆.𝑡 = 𝑁0. 𝑒
−ln2.

𝑡

𝑇 = 𝑁0. 2
−.
𝑡

𝑇 

 

(81) 

 

La vie moyenne, 𝝉 est le temps moyen avant désintégration d’un noyau radioactif.  
A l’instant 𝑡, il reste 𝑁(𝑡) = 𝑁0. 𝑒−𝜆.𝑡 noyaux encore radioactifs. Parmi ces noyaux, en moyenne, 
𝑑𝑁(𝑡) = 𝜆.𝑁(𝑡). 𝑑𝑡 se désintègreront entre l’instant 𝑡 et l’instant 𝑡 + 𝑑𝑡 et auront donc subsisté 
une durée 𝑡 avant de se désintégrer. La vie moyenne s’exprime comme la somme du produit des 
durées de vie 𝑡 possibles par le nombre de noyaux concernés 𝑑𝑁(𝑡) divisée par le nombre de 
noyaux total, 𝑁0 :  

𝜏 =
1

𝑁0
∫ 𝑡. 𝑑𝑁(𝑡). 𝑑𝑡 =

1

𝑁0
∫ 𝑡. 𝜆. 𝑁(𝑡). 𝑑𝑡 =

1

𝑁0
∫ 𝑡. 𝜆. 𝑁0. 𝑒

−𝜆.𝑡. 𝑑𝑡 = 𝜆∫ 𝑡. 𝑒−𝜆.𝑡 . 𝑑𝑡
∞

𝑡=0

∞

𝑡=0

∞

𝑡=0

∞

𝑡=0

 

𝑁(𝑡) = 𝑁0. 𝑒
−𝜆.𝑡 

𝑇 =
ln2

𝜆
 

𝑁(𝑡) =
𝑁0

2
𝑡
𝑇
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L’intégrale se calcule par parties (cf. rappels de mathématique) et vaut ∫ 𝑡. 𝑒−𝜆.𝑡 . 𝑑𝑡
∞

𝑡=0
=

1

𝜆2
. On 

en déduit : 

(82) 

 

L’activité 𝑨 est le nombre moyen de désintégrations par seconde au sein d’un échantillon 

radioactif : 𝐴(𝑡) ≝ |𝑑𝑁
(𝑡)

𝑑𝑡
| = |

𝑑

𝑑𝑡
𝑁0. 𝑒

−𝜆.𝑡| = 𝜆.𝑁0. 𝑒
−𝜆.𝑡 = 𝜆.𝑁(𝑡).  

             (83) 

 
L’activité s’exprime en Becquerel (Bq) avec 1 Bq = 1 désintégration par seconde. 
 
Précisons pour finir la loi statistique qui régit les désintégrations radioactives.  
Si l’on réalise de nombreuses expériences de dénombrement des désintégrations touchant un 
échantillon de 𝑁 noyaux radioactifs durant un intervalle temporel de Δ𝑡, le nombre moyen de 
désintégrations 𝐶̅ observé lors de ces expériences entre les instants 𝑡 et 𝑡 + Δ𝑡 sera : 
 

(84) 

 
Au-delà de cette moyenne, pour déterminer la probabilité d’observer un nombre 𝑛  de 
désintégrations, 𝑝(𝐶 = 𝑛), qui s’écarte de cette moyenne 𝐶̅, il faut prendre en compte certaines 
hypothèses sur les caractéristiques physiques d’une désintégration radioactive. On considèrera 
que celle-ci est :  

- Sans mémoire : la désintégration d’un noyau n’influe pas sur celle d’un noyau voisin. 
- Stationnaire :  la probabilité de désintégration d’un noyau entre 𝑡 et  𝑡 + 𝑑𝑡 (avec 𝑑𝑡 ≪ 𝑇) 

ne dépend que de 𝑑𝑡 (et pas de 𝑡). 
- Rare :  au sens où 𝜆 ≪ 1. 

Ces trois hypothèses aboutissent à une loi de probabilité, dite loi de Poisson (Figure 56) : 

 

(85) 

 

 

𝐶̅ ≝ −Δ𝑁̅̅ ̅̅ = 𝜆.𝑁. Δ𝑡 

𝑝(𝐶 = 𝑛) = 𝑒−𝐶̅
𝐶̅𝑛

𝑛!
= 𝑒−𝜆.𝑁.Δ𝑡

(𝜆. 𝑁. Δ𝑡)𝑛

𝑛!
 

𝜏 =
1

𝜆
=
𝑇

ln 2
 

𝐴(𝑡) =  𝜆. 𝑁(𝑡) 
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Figure 56 : Aspect de distributions de Poisson pour différentes moyennes. 

Le comptage du nombre de photons 𝛾 émis par un échantillon radioactif donne donc une mesure 
proche de 𝐶̅, qui est le signal 𝑆 que l’on souhaite connaitre entachée d’un bruit aléatoire 𝐵 qui fait 
que l’on ne mesure pas exactement 𝐶̅ . L’intensité de ce bruit par rapport à S caractérise la 
justesse d’une mesure de comptage radioactif. 

L’équation (85) permet de montrer que la variance d’une loi de Poisson est égale à sa moyenne : 

(86) 

 
Le rapport signal sur bruit qui exprime quelle part (en %) prend le bruit au sein du signal peut être 

estimé par le rapport entre 𝐶̅ et l’écart-type 𝜎 ≝ √𝑣 = √𝐶̅ de la mesure : 
 

(87) 
 
 

Si l’on compte 𝐶̅ = 100 ⟹ 
𝑆

𝐵
= √𝐶̅ = 10: 1 dixième de la mesure est constitué de bruit aléatoire.  

Si on divise le temps de comptage Δ𝑡  par dix, alors 𝑆
𝐵
= √10 ≈ 3  et la part aléatoire dans la 

mesure réalisée s’élève au tiers celle-ci.  

  

𝑣 = 𝜎2 = 𝐶̅ 

𝑆

𝐵
= √𝐶̅ 
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notions permettant de comprendre les éléments de théorie sur lesquels se fonde la 
physique moderne (tome 1), des éléments de mécanique quantique (tome 2), puis les 
bases des théories de la relativité et de l’électromagnétisme (tomes 3 et 4). 
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