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Préte au vrai maintenant une oreille attentive,
Quod super est, vacuas auris animumaque sagacem
Nette de tout souci, aiguise ton esprit,
semotum a curis adhibe veram ad rationem,
Et mes dons, apprétés avec un soin fidele,
ne mea dona tibi studio disposta fideli,
Garde d’en faire fi avant d’y rien comprendre,
intellecta prius quam sint, contempta relinquas.
Car je vais t’exposer les hautes lois du ciel
nam tibi de summa caeli ratione deumque
Et des dieux, dévoiler d’ou procedent les choses,
disserere incipiam et rerum primordia pandam.

Lucréce. De la nature des choses, Chant 1, vers 50-55
Traduction d’Olivier Sers, Belles lettres, Paris, 2012

« Le penseur de Tobyl ».

Région de Qostanai, Kazakhstan.
Musée national de la République du Kazakhstan.

L’auteur de cette sculpture arpentait la steppe
kazakhe au 3° ou au 2° millénaire avant notre ére.
ILexprime un sentiment toujours présent chez
’homme moderne qui leve ses yeux vers les
cieux: celui d’un réve mélé de perplexité, puis,
tres vite, du désir de comprendre, selon les mots
de Lucrece, d’ou proviennent les choses.




INTRODUCTION

La physiologie, l'imagerie médicale, la radiothérapie ou les techniques de laboratoire sont des
disciplines fondées sur une physique qui ne s'est développée qu'a partir de la fin du XIX° siecle.
Celle-ci fut élaborée au moyen de modeles et d’outils mathématiques qui ne constituent pas un
héritage commun aux étudiants se destinant a une profession de santé.

Or limiter pour ceux-ci ’étude de la physique a quelques recettes, ou pire a un formulaire
indigeste, ne permettrait pas a 'étudiant de fonder ses connaissances sur les bases solides
nécessaires a un exercice raisonné d’une profession de santé comme a la prise en main de
techniques thérapeutiques nouvelles tout au long de la vie professionnelle. Pire, cela conduirait
areléguer des faits scientifiques indiscutablement établis a un certain degré de précision au rang
d’opinions subjectives dépendant de Uindividu, du temps ou du lieu ou elles sont énoncées. La
notion méme de science s’y dissoudrait, et la physique passerait pour une discipline ésotérique.

Le cours que nous proposons est donc fondé sur deux partis pris pédagogiques :

1- A de trés rares exceptions pres, les lois de physique qui font Uobjet de ce cours seront
systématiquement démontrées pas a pas, ou au minimum justifiées dans le cadre d’un
modele et d’hypotheses clairement énoncées.

2- Cette justification ne s’appuiera pas sur des notions de mathématiques qui sortent du
programme enseigné en lycée. Au besoin, une second polycopié proposé aux étudiants
rappelle toutes les bases de mathématique nécessaires.

L’objectif de ce cours est de fournir a U'étudiant une compréhension suffisante de la physique
atomique et nucléaire et de celle des rayonnements pour exercer une activité de soins.

Cela nécessiterade commencer par définir et modéliser une onde, puis sa propagation au moyen
d’un principe de moindre action que nous justifierons. Les exemples des ondes sonores et
électromagnétiques permettront a ’étudiant de comprendre d’une part le fonctionnement et
les pathologies de la vision et de lUaudition humaine, et d’autre part les techniques de
radiothérapie et d’imagerie utilisées dans les centres de soins.

L’étude des ondes stationnaires constituera une premiéere approche de la quantification des
grandeurs physiques. Celle d’une onde traversant un orifice en diffractant et en produisant des
interférences permettra de définir la résolution d’un appareil d’imagerie médicale.

Ces éléments ameneront a une modélisation duale, onde-particule, de la nature. Aprés un
détour dans le monde de la relativité restreinte pour justifier la relativité de 'écoulement du
temps et I’énergie qui associée & une masse au repos (E = m.c?), nous expliquerons pourquoi
’énergie d’un photon est proportionnelle a la fréquence de cette onde (E = h. f). Un retour sur
les expériences de diffraction permettra de comprendre U’origine des phénomenes aléatoires qui
régissent le comportement d’une particule élémentaire, et justifient les relations d’incertitudes
d’Heisenberg. Enfin, la notion d’onde stationnaire décrite précédemment éclairera le concept
de quantification des grandeurs physiques associées aux particules élémentaires. Dans les pas
du physicien Niels Bohr, nous établirons un modeéle d’atome ou les électrons atomiques se
répartissent sur des couches énergétiques discretes. Ce modele, et ses améliorations
ultérieures est a la base de toute la chimie moderne mais aussi des sources de rayonnement
ionisants utilisés en imagerie ou dans les laboratoires d’analyse médicale. Nous nous
intéresserons enfin au noyau atomique, pour décrire les réactions de désintégrations
radioactives qui sont exploitées par les médecins nucléaires en diagnostic et en thérapie.



CHAPITRE 1 : PHYSIQUE DES ONDES

Présentation : Ce chapitre commence de fagon un peu formelle par définir et modéliser la notion
d’onde progressive et les grandeurs physiques fondamentales qui lui sont associées. Cela
permettra de justifier un des principes de base de la radioprotection. On explique ensuite
pourquoi toute onde progressive périodique est la superposition d’ondes progressives
sinusoidales, ce qui permettra de limiter la suite de [’exposé au cas simple de ces ondes. Ce
modeéle sera exploité pour justifier le principe de moindre action et expliquer par exemple
pourquoi un rayon lumineux se propage en ligne droite dans un milieu homogene.

Pour ancrer ces concepts un peu abstraits dans la réalité physique, on décrira ensuite deux types
d’ondes particulierement utiles aux soignants: l’onde sonore d’abord en explicitant ses
caractéristiques utiles a [’étude de [’audition, puis les ondes électromagnétiques au moyen d’un
formalisme minimal pour permettre a des soignants de les exploiter au mieux.

La notion d’onde stationnaire ouvrira a une premiére approche de la quantification que nous
utiliserons pour établir les fondements de la mécanique ondulatoire. Ce chapitre se terminera en
traitant du comportement d’une onde a la traversée d’un orifice (diffraction) et des phénomeénes
d’interférences qui s’ensuivent, ce qui permettra de définir la résolution d’un appareil d’imagerie,
comment numeériser une image ou comment déterminer la géométrie d’une molécule.

A- Onde progressive : définitions et caractéristiques
|- Définitions

1- Une onde progressive est la propagation dans un milieu donné (matériel ou vide) d'une
perturbation entretenue d'une ou plusieurs caractéristiques physiques de ce milieu (par
exemple, une position de particules, une pression, une température, un champ
électrique ou magnétique etc.). La vitesse de propagation de cette perturbation est
appelée célérité de l'onde.

2- Une onde progressive est scalaire lorsque la grandeur physique perturbée est quantifiée
par un nombre réel, vectorielle lorsqu'elle est quantifiée par un vecteur.

3- Une onde progressive est longitudinale lorsque la grandeur est perturbée dans la
direction de propagation de l'onde, transversale lorsque la grandeur est perturbée dans
la direction orthogonale a la propagation de l'onde.

4- Dans le cas d'une onde progressive vectorielle, 'onde est polarisée rectilignement si la
grandeur physique vectorielle perturbée garde une direction constante durant la
propagation de l'onde. Si ce vecteur tourne avec une vitesse angulaire constante
perpendiculairement a la direction de propagation sans changer de norme, on parlera de
polarisation circulaire. Le terme de polarisation elliptique sera réservé a un vecteur
décrivant une ellipse le long de sa direction de propagation.



lI- Exemples

La figure 1 donne un exemple d’une onde sonore générée par une corde ou une surface vibrante
telle que la membrane d’un haut-parleur (HP). Il s’agit d’'une onde progressive scalaire
longitudinale de vibration ou la grandeur physique perturbée est la position de molécules d’air
selon une direction notée x. La mise en vibration de proche en proche des particules du milieu
de propagation est assurée par une onde de surpression locale créée par un rapprochement
périodique de ces particules (cf. paragraphe 1-C).
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Figure 1 : Onde sonore produite par la mise en oscillation de proche en proche de molécules d’air au
moyen d’une corde (violon...) ou d’une surface (tambour, haut-parleur, cordes vocales) vibrante.

La figure 2 constitue un autre exemple d’onde progressive scalaire, transversale cette fois. La
grandeur physique perturbée est la position suivant une direction verticale de portions d’une
corde tendue par une force de tension T. La propagation se fait le long de cette corde qui
constitue le milieu de propagation, dans une direction horizontale. La source de 'onde est une
baguette fixée a une extrémité de la corde qui lui impose mouvement oscillant.
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Figure 2 : Propagation d’une onde progressive transversale de vibration
le long d’une corde tendue, ou de la surface d’un plan d’eau.

La figure 3 donne un dernier exemple concernant cette fois une onde vectorielle transversale. La
grandeur physique perturbée est ici un champ électrique ou magnétique polarisé rectilignement
suivant une direction perpendiculaire a la direction de propagation de 'onde (x) et dont la norme
varie périodiquement avec le temps. Ce champ induit 'apparition retardée d’un champ analogue
de proche en proche (cf. paragraphe 1-D).
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Figure 3 : Propagation d’une onde vectorielle transversale (électromagnétique par exemple).

lll- Modélisation

On modélise la grandeur physique associée a une onde qui se propage dansle sensdesx > 0a
la célérité c par une fonction g(t, x) continue et deux fois dérivable par rapport a chacune de ses
deux variables t et x. La figure 4 représente une grandeur physique g(t, 0) perturbée en x = 0 et
g(t,x) enun pointx > 0.
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Figure 4 : Modélisation d’une onde progressive sinusoidale

Dans ces conditions, pour tout instant 7, g (‘L’ + %x) = g(7,0). Enposantt =7 + g ona:

git,x)=g (t —;,0)

9:®) = go (¢ -2) (1)

Sionde progressive se déplacgait dans le sens des x négatifs, on aurait de méme :

gt,x)=g (t +§,0)

9:(®) = go (¢ +3) @




I\V- Décomposition en série de Fourier

Considérons une fonction g,(t) périodique de période T“‘:‘“%ﬂ (ou de durée finie T ) et

raisonnablement réguliere (continue par morceaux avec un nombre fini de points de
discontinuités sur une période). Dans ces conditions, le théoréme de décomposition en série

de Fourier (cf. rappels de mathématique) affirme que moyennant le calcul de :

2 T

a, & ?f 9o (1).cos(n.w.t).dt
0
T

2
b, & —.f go(7).sin(n.w.7).dt
T Jy

b
A, & /a% + bZ et tan @, ¥ tan~! (—n)
an

La fonction g, (t) s’exprime sous la forme d’une somme de fonctions circulaires (sinus ou

cosinus) de fréquences 0, f, 2. f, 3. f, ... multiples de f & Zﬂ @ L suivant :

T T

Qo C ag - , T
go() =—+ Z An-cos[(nw)t — gn] ==+ Z Ay.sin [(nw)t t5- (pn]
n=1 n=1

go(t) = % + Z A,.cos[(2m. f.n)t — @,]
n=1

(4)

(5)

. . 1 p
La fréquence de la fonction gy, f = = % est la fréquence fondamentale en hertz (Hz=s), et

w = 27. f est la pulsation propre fondamentale en (rad/s).

Les fonctions cosinus (ou sinus) de fréquences multiples de la fréquence fondamentale f sont
appelées des harmoniques d’ordre 1,2,3, ... Les harmoniques de plus hautes fréquences
représentent dans cette décomposition les variations les plus rapides de la fonction g, sur une
période. Pour des ondes ayant une réalité physique, il existe une valeur maximale a la variation
de la fonction g, en fonction du temps, ce qui limite le nombre d’harmoniques a une valeur finie.



Figure 5: Exemple d’une fonction périodique (de période 2.m) décomposable en somme de
fonctions sinus ou cosinus au moyen de 7 harmoniques. Ici go(t) =1+ 1,3.cos(t) +

0,4. cos (3. t+ g) +0,3.cos(5.t) + 0,2.cos (7. t— %) =1+ 1,3.sin (t + %) +0,4.sin(3.t + 1) +
0,3.sin (5. t+ g) + 0,2.sin(7.t) puisque cos(t) ¥ sin (t + g)

Les graphes représentant 4,, et ¢,, en fonction des fréquences harmoniques n. f (figure 6) sont
appelés spectres en amplitude et en phase (ou transformée de Fourier) de la fonction g,. Ils la
définissent complétement.

Figure 6 : Spectres en amplitude (4, a gauche) et en phase (¢, a droite) de la fonction gy (t) = 1 +
1,3.cos(t) + 0,4.cos (3. t+ g) + 0,3.cos(5.t) + 0,2.cos (7. t— g) . La valeur n en abscisse

représente le numéro de 'harmonique, donc la fréquence n. f.

Cette possibilité de décomposer une perturbation source d’une onde progressive g,(t) en
somme de fonctions cosinus s’étend a la fonction g,.(t) = g, (t - %) et donc au modele d’onde

progressive que nous avons établi. Sans perte de généralité, ’étude des ondes progressives peut
donc se limiter au cas d’un type d’onde progressive particuliere que nous qualifierons de pure,
de sinusoidale, de monochromatique, ou encore de radiation (tous ces termes sont
synonymes) et qui consiste en une onde progressive créée par une perturbation g,(t) dont le
spectre ne contient qu’une seule fréquence.

Une onde dont le spectre contient plus d’une fréquence sera qualifiée d’one polychromatique,
ou complexe et peut donc étre décomposée en une superposition d’ondes monochromatiques,
si bien que les résultats que nous obtiendrons dans le cas simplifié de ces derniéres pourront
aussi s’appliquer aux ondes complexes.



V- Caractéristiques d’une onde progressive monochromatique

Une onde progressive monochromatique se propageant dans la direction x > 0 a la célérité c,
produite par une perturbation localisée au point x = 0 sera donc de la forme :

g(t,x) = g(0,x) + A.sin [w. (t - ;)]

ol g(0, x) est la valeur de la grandeur physique observée en tout point x avant toute perturbation
par onde progressive. Pour éviter de surcharger les notations par ce terme additif, on supposera
dans la suite que g(0,x) = 0 pour toute position x, et 'on notera :

g(t,x) = A.sin [w. (t — ;)] (6)

Dans cette derniére expression :
A est lamplitude de 'onde (de méme unité que la grandeur physique perturbée g),
w ¥ 2nf 2?“ est la pulsation propre (en radians par seconde) et f la fréquence de

'onde (en Hertz), deux grandeurs représentant la méme réalité physique avec deux unités
différentes,
T est la période (pour la variable temporelle, en seconde).

L’onde progressive monochromatique g(t,x) présente deux périodes, 'une pour la variable
temporelle (T), autre suivant la variable d’espace :

En tout point x fixé,  g(t+T,x) = Asin[=. (¢ +7 = 2)| = Asin[Z. (£ = %) + 21| = g(t, %)

cT+x

Atoutinstantt fixé, g(t,x) =gt —T,x) = A.sin [w. (t -T-— E)] = A.sin [w. (t - )] =gtx+cT)

[

La période spatiale 1 & ¢.T parcourue par 'onde en une période temporelle T est appelée
longueur d’onde et est notée A (en métre) :
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Figure 7 : Période et longueur d’onde

Quelques définitions :

La phase est le terme indépendant du temps ¢ = % de la relation g(t,x) = A.sin [a).t + %],

complété éventuellement d’autres termes indépendants du temps.



Une surface d’onde est une surface connexe contenant ’ensemble des points de méme phase.

Dans le cas d’une source ponctuelle isotrope positionnée en un point C de Uespace, les surfaces
d’ondes sont constituées de spheres concentriques centrées en C et de rayons x, associées a

des phases identiques ¢ = % Ce type d’onde est qualifiée d’onde sphérique. A distance de la

source C et localement, ces surfaces d’ondes sont proches des plans tangents aux cercles et
peuvent autoriser une approximation locale d’une onde sphérique par une onde plane (Figure 8).
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Figure 8 : Exemple de surfaces d’ondes sphériques S; (en pointillés)

En tout point atteint par une onde, le vecteur d’onde, E, est un vecteur dont la direction est
normale aux surfaces d’ondes, le sens identique a celui de la propagation de ’onde, et de norme

Ik

w N N . .
&ef - Pour un modele a 1 dimension,on a:

g(t,x) = A.sin[w.t — k.x] (8)

Deux ondes progressives de méme longueur d’onde définies par les fonctions g,(t,x) =

A.sinflw.t —k.x — ¢,] et g,(t,x) = A.sinfw.t —k.x —¢,] , avec w = % sont qualifiées

d’ondes cohérentes si la différence de phase ¢, — ¢, reste constante dans le temps.

Principe fondamental de la radioprotection: Considérons une source ponctuelle de
rayonnement émettant de fagon isotrope une puissance P (en watt, W). A une distance d de la
source, cette puissance se répartit de facon homogene sur ’ensemble de la surface d’une sphere
de rayon d, donc de surface 4md?. La puissance surfacique | (en W /m?) recue dans chaque m?
de cette surface est donc inversement proportionnelle au carré de la distance séparant la source
de la sphere ou cette puissance surfacique est évaluée, et s’écrit :

I(W/m?) = ;ﬂ% (9)

Un patient ou un soignant exposant la surface de son corps a une source de rayonnementrecevra
donc une puissance par unité de surface corporelle inversement proportionnelle au carré de la
distance qui le sépare de la source. Cette loi « en 1/d®>» est une des 3 regles fondamentales
permettant de se protéger de rayonnements dangereux (avec la limitation du temps d’exposition
et lutilisation d’écrans atténuant le rayonnement). Elle fonde de nombreuses pratiques et
réglementations en matiére de radioprotection.
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B- Propagation d’une onde : du principe d’Huygens au principe de
moindre action

Le principe de Huygens découle directement de la modélisation et des exemples que nous
avons donné d’une onde progressive. Il stipule que tout point atteint par une onde issue d’une
source se comporte comme une nouvelle source ponctuelle, et réémet ainsi de fagon
isotrope une onde sphérique, qui atteindra a son tour un point voisin, permettant ainsi une
propagation de Uonde de proche en proche.

Considérons un rayon lumineux se propageant d’un point S a un point S’. Si ’on considére que le
point S a été atteint par 'onde, puis réémet, suivant le principe de Huygens, une onde sphérique
isotrope, une infinité de trajectoires C; de longueurs x;reliant S a S’ (en pointillés sur la figure 9)
peuvent a priori étre envisagees, en plus de la ligne droite Cj.

~ ?

_--»®
.ﬂST

Figure 9 : Illustration de quatre des différents chemins a priori possibles pour une onde

lumineuse entre deux points S et S’. Chaque pointillé se comporte comme une source
secondaire d’ondes sphériques dont certaines directions construisent un cheminde S a S’.

'y

En §’, toutes les ondes issues de S ayant suivi tous les chemins C; passant par §’ s’additionnent,
et 'onde en S’ s’écrit, suivant (6) :

g(t,S) = A. Z sin [w. (t - %)] = A. z sinfw.t —w.t;] ol t; =% (10)

chemins C; chemins C;

La pulsation propre de l'onde est de l'ordre de 10™ rad/s par exemple pour une radiation
lumineuse dans le spectre visible par un étre humain.

Si le temps de propagation t; ne varie pas infiniment peu entre deux chemins possibles rejoignant
SetS’, alors le terme de phase w. t; dans 'expression (10) prend des valeurs trés variables d’un
chemin a un autre chemin voisin, générant dans la somme, pour tout instant t, des valeurs de la
fonction sinus réparties de fagon uniforme entre -1 et +1. Une fois ces sinus sommés, ces valeurs
se compensent, et la somme présente dans ’équation (10) est nulle.

L’onde en S, g(t,S"), ne sera produite que par une composante sinusoidale dans la somme de
’équation (10) obtenue pour un chemin C; pour lequel le temps de trajet t; entre S et S’ varie
infiniment peu entre C, et un autre chemin voisin. Cette condition de stationnarité du temps de
trajet suppose que t; soit un extremum (un minimum, un maximum ou une plage constante) de
la fonction exprimant le temps de trajet en fonction du chemin emprunté.

Ce résultat est un cas particulier d’un principe physique beaucoup plus général que le
raisonnement heuristique qui précede, dd au physicien Robert Feynman (1918-1988), justifie :
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Principe de moindre action de Fermat (pour un rayon lumineux, 1657) : La trajectoire suivie par
une onde lumineuse est celle que cette onde peut parcourir en un extremum de temps.

Dans un milieu homogene ou la vitesse de propagation de 'onde est constante, sans miroir, cet
extremum correspond a un minimum et tous les rayons ayant suivi des chemins autres que celui
parcouru en un minimum de temps produisent des ondes qui se détruisent par interférences.
Seul subsiste, in fine, le rayon qui s’est propagé en ligne droite entre S et S’.

Des trajectoires correspondant a un temps de parcours constant ou maximal peuvent survenir
dans certaines configurations, avec un rayon lumineux se réfléchissant sur un miroir elliptique
ou sphérique par exemple :

Cas d’un miroir elliptique. La figure 10 illustre le cas d’un rayon lumineux issu d’un foyer
F; d’un miroir elliptique se réfléchissant sur ce miroir en un point M; avant d’atteindre le
second foyer F,. La définition d’une ellipse garantit que pour tout point M;, la longueur de
la trajectoire (F;, M;, F,) , donc le temps de trajet pour parcourir cette trajectoire est
constant. Tous les rayons issus de F; qui se réfléchissent en un point quelconque du
miroir elliptique convergent donc vers F,.

Figure 10 : Exemple de temps de trajet constants de rayons lumineux issus d’un foyer
et se réfléchissant sur un miroir elliptique.

- Cas d’un miroir sphérique. Plagons dans le vide un miroir sphérique de rayon 1 centré a
lorigine d’un repére (0, x, y, z) et considérons un rayon lumineux issu du point A(—1,0,0)
qui se réfléchit sur le miroiren M(x — 1, y, 0) puis atteint le point €(1,0,0) suivant la figure
11.

Figure 11 : Exemple de temps de trajet maximal d’un rayon lumineux
apres réflexion sur un miroir sphérique.
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Le théoreme de Pythagore permet de calculer la longueur L(A, M, C) de la trajectoire du rayon
issu de A, se réfléchissant en M et atteignant C. On pourra facilement vérifier que L(A, M, C) =

V2.x+ 2.2 - %) = 2. (\/§ ++V2 — x). L’étude de cette fonction de x pour x € [0,2] retrouve

une fonction croissante puis décroissante, avec un maximum atteint en x = 1, c’est-a-dire au
point B(0,1,0) qui satisfait a la loi de Descartes sur la réflexion. Dans cet exemple donc, le trajet
effectivement suivi par unrayon lumineux issu de 4, se réfléchissant sur le miroir sphérique avant
d’atteindre C est donc la trajectoire (4, B, C) qui correspond a un maximum de temps de trajet.

L’application du principe de Huygens et une construction graphique simple mettant en jeu une
onde plane ou sphérique se propageant de proche en proche permet aussi de comprendre
pourquoi la forme des surfaces d’ondes (des plans ou des spheres) se conserve au fil de la
propagation de 'onde dans un milieu homogene.

Ertre las sutfaces d o N
pas 02 Mamum — 4 —%a

Figure 12 : Application du principe de Huygens pour comprendre la conservation des surfaces
d’ondes (planes a gauche ou sphériques a droite) au fil d la propagation d’une onde. Les
surfaces d’ondes représentées sur la figure concernent dans cet exemple des points au

maximum d’intensité a un instant t donné.

Considérons par exemple 'onde plane représentée dans la partie gauche de la figure 12 et un
point P situé dans un plan d’onde associé (a U'instant de la figure) a un maximum de vibration. La
superposition des ondes sphériques émises par le point P et ses voisins produit un unique
maximum situé a une longueur d’onde a droite de P. Il en est de méme des points situés au-
dessus et au-dessous de P, ce qui conduit a une nouvelle surface d’onde constituée par un plan
a une longueur d’onde de la surface d’onde précédente, et parallele a celle-ci. Le méme
raisonnement sur des surfaces d’ondes sphériques (schéma de droite de la figure 12) conduit de
méme a la propagation de surfaces d’ondes sphériques sous la forme de sphéres de rayons
croissants centrées sur la source ponctuelle de 'onde.

C- Premier exemple d’onde progressive : 'onde sonore

I- Onde de (sur)pression acoustique, impédance acoustique et célérité du son

12



Lafigure 13illustre les oscillations de deux particules gazeuses mises en vibration autour de leurs
positions de repos x; et x, par un haut-parleur avec un déphasage %

Au fil du temps, on constate que les particules 1 et 2 s’éloignent puis se rapprochent suivant une
période identique a celle de U'onde de vibration. La densité de particules en x , suit de ce fait aussi
une loi périodique de méme période que le mouvement vibratoire. Il s’ensuit une surpression
locale périodique apportée par la propagation du son a la pression initiale du milieu.

P surpression
locale

F\ /\dépression/\ t

N —

locale -
v | ‘

A Xr ————————— //"
\ / / \
S e
> "g(tlxl>

Figure 13 : illustration du mouvement vibratoire déphasé de deux particules situées a des
distances x1 < x2 de la membrane d’un haut-parleur, source d’une onde sonore.

Pour aller au-dela, on définit le coefficient de compressibilité y (en Pa”) par la diminution
relative d’un volume de matiére (un gaz le plus souvent) qui passe d’un volume V a un volume
V + AV, avec AV < 0, sous Ueffet d’une surpression P :

1 AV

X==p7 (1)

Dans le cas simple de la propagation d’une onde sonore suivant une seule direction x, dans le
sens des x positifs, considérons deux particules du milieu de propagation positionnées au repos,
avant U'arrivée de 'onde sonore (t = 0), en des abscisses x et x + dx (figure 14).

t=0 —— oY

E(t, x) E(t, x+ox)
t>0 &

& x + E(t, x+6x) - E(t, x)
=0X +cF

\u

Figure 14 : modélisation de ’onde de surpression acoustique

1 OE 1 6[A.sin(a).(t—;—cc))] Aw

Danscecasaunedimensiony=—-.—=> P = ——, ———————————= = —_(0S§ a).(t——)
P 0x X ox .c

La vitesse de vibration des particules v est :
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L Z—E _ a[A.sin<:-(t _§)>] — A w.cos <w. (t—£)>

etdonc:

1
pP=—.
x.-c

P 1 - L . , . -2 -
Z = 5= o est appelé impédance acoustique et s’exprime doncen kg.m 2571,

Pour contourner la difficulté de mesurer la compressibilité de certains milieux non gazeux,
considérons un petit élément de volume dx.dS de masse m = p.dx.dS au sein du milieu de
masse volumique p ou se propage un son (figure 15).

ox

-—

/ 7
4

X X+0x
Figure 15 : Elément de volume d’un milieu de propagation d’un son constitué de deux faces de
surfaces dS séparées d’une distance dx

sl
S
X

La relation fondamentale de la dynamique sur ce petit élément de volume s’écrit :

aV—F F, =P P 0 as = apa as
m.or=F - 5 = [P(x) — P(x + 0x)]. = =35 0%
d|z.Aw. (e-2
OrP=Z.v=Z7Z.A . w.cos (w.(t —%)) = g—i = [ZAwCO;Ew (t C))] = Z'Ac'wz.sin (a). (t —%))
Donc m.% = —g—i.ax.dS = —Z'Ac'wz .sin (a). (t —%)).ax.dS
d|Asin(w.(e-2
Commev = M = A.w.cos (a). (t - E)) = w_ —A. w?.sin (w. (t - f)) on obtient :
t c at c

2
—m. A. w?.sin (a). (t — E)) = 24 .sin (a). (t - f)) .0x.dS = m = p.0x.dS = Z ox. ds, soit:
c c c (o

Z=p.c (13)

Les relations (12) et (13) combinées permettent d’établir la loi de Laplace qui détermine la
célérité du son:

xc T Jxp (14)

Dans un gaz réel, par exemple pour de Uair a8 20°C, x ~ 6,53.107° Pa letp ~ 1,3kg. m 3. La
relation (14) donne alors une célérité du son estimée ac ~ 343 m.s™ !
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Dans 'approximation d’un gaz parfait, des considérations de thermodynamique montrent que la
loi de Laplace prend une forme remarquablement simple ol ¢ ne dépend que de la température :

¢ = 20../T(Kelvin) = 20.,/6(° Celsius) + 273 (15)

Dans un fluide, Pour de l'eau salée & 37°C, p = 1030 kg. m~3 mais x =~ 4,18.1071° Pa~! est trés

faible, ce quidonne ¢ = 1524 m.s™ L.

Dans un solide, le module de Young Y est défini par le rapport entre une contrainte de pression

F , . . . —AL .
P = § exercee sur la face du solide et le raccourcissement relatlfT de ce solide sous cette
. . F AL 1 1 AL s
contrainte. Dans ces conditions, 5 e p= _Y'T = T e T permet de définir la

compressibilité d’un solide comme 7 La relation de Laplace pour un solide s’écrit alors :

1 Y

C=—= —
1 p
&

Dans de l'os cortical 4 37°C, Y = 15.10° Paetp = 1900 kg.m™3, etc ~ 2810 m.s 1.

Ces estimations de la célérité du son permettent de constater que les impédances acoustiques
varient beaucoup dans les différents milieux d’un organisme humain :

p (kg. m™3) c(m.s™1) Z(kgm2s ) =p.c
Air a 20°C 1,3 343 446
Eau salée a 37°C 1030 1524 1,6.10°
Os cortical humain a 37°C 1900 2810 5,3.108

Ce point qui justifie chez ’homme Uexistence de U'oreille moyenne (Cf. cours de DFGSM2).
D- Second exemple d’onde progressive : 'ondes électromagnétique

|- Rappels d’électrostatique et de magnétostatique
La justification de ces rappels repose sur les équations de Maxwell (cf. paragraphe 1-D-lII).

Par définition, on qualifie de statique un champ vectoriel (électrique ou magnétique) créé par
une source (charge ou courant électrique) dont Uintensité est constante au fil du temps.

Une charge électrique g’ constante dans le temps, positionnée en un point O de l’espace,

crée en tout point M distinct de O de lUespace un vecteur champ électrostatique E (1)
caractérisé par la relation :

4me 2T (17)

o

|, u, = ﬁ le vecteur unitaire (de norme 1) dirigé de 0 vers M.

u7=0M, r=|0M
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La permittivité du milieu &, en Farad/meétre (r 1 F=1A.s.V") se décompose comme le produit de
la permittivité relative du milieu &, par la permittivité du vide ¢, & 8,85.10712F /m.

. _ 1 _ 18
£ e g0 =¢,.8854.10712 =~ m.m SF/m (18)

Dans un tel espace, une seconde charge q placée au point M est soumise a une force

électrostatique F(r) proportionnelle au champ électrostatique, suivant la loi de Coulomb :

- _ 1 q.q9_,

F(r)=q.E(r) = Uy (19)

4.1 ¢ 12

Cette force sera donc répulsive (dirigée de O vers M comme u,. ) pour la charge g siq.q’ > 0, donc
si g et ¢’ sont de méme signe, et attractive dans le cas contraire.

Figure 16 : illustration de la création d’un champ électrostatique et d’'une force de Coulomb par
une charge électrique négative d’intensité constante dans le temps.

Un fil électrique rectiligne parcouru par une intensité de courant constante / crée en tout

point M éloigné d’une distance r # 0 du fil, champ magnétostatique B(r) caractérisé par la loi
de Biot et Savart (Cf. figure 17 pour la définition du vecteur unitaire ug ) :

B() = Uy (20)

S|~

i
2.1

La perméabilité du milieu u , en Henry/meétre (1 H=1 V.A'.s) se décompose comme le produit
de la perméabilité relative du milieu u, par la perméabilité du vide yy & 4.7. 10"’ H/m.

U o =ty 4.1 1077 H/m

(21)

Figure 17 : illustration de la création d’un champ magnétostatique et d’une force de Lorentz par
un courant électrique d’intensité constante dans le temps.
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Sous leffet de B(r), une charge g qui se déplace avec une vitesse V dans le référentiel du
laboratoire subit une force de Lorentz qui va courber sa trajectoire et dont on peut montrer
qu’elle s’exprime suivant (cf. rappels de mathématique) :

F=qVAB (22)

Considérons maintenant le montage présenté en figure 18. Des que U'on fait glisser la
barre conductrice sur le cadre conducteur en forme de U, on constate qu’un courant
(d’électrons) y apparait, ce qui nécessite U'existence d’une force de type Lorentz ou Coulomb de

la forme F = —e. (E+ VA §), sous réserve de U'existence de champs électrostatique E ou

magnétostatique B.
Dans le référentiel R fixe par rapport a ce montage, il n’y a pas de champ électrique, mais un
électron de charge —e de la barre se déplace dans un champ magnétostatique et subit donc une

forcede Lorentz F = —e.V A B qui explique le courant.
Dans le référentiel R’ lié a la baguette métallique, cette derniere estimmobile, mais les électrons

restenten mouvement, mus parune force F' = F qui ne peut étre que de type Lorentz, de laforme

F = —e.E’.Un champ E'=VAB apparait donc dans R‘, en lieu et place du champ B dansR.

Figure 18 : Modéle d’un fil conducteur en forme de lettre U, placé dans un champ
magnétostatique §, sur lequel glisse une barre conductrice a la vitesse V.

La circulation d’un courant électrique est donc vue comme Ueffet d’un champ magnétostatique
dans le repére fixe, et d’un champ électrostatique dans un repére mobile. Ces deux champs
relevent d’une méme grandeur physique, vue sous des référentiels différents. C’est ce lien intime
entre champs électrique et magnétique que la théorie de Maxwell va nous permettre d’explorer,
mais pour cela, il va falloir généraliser et considérer la possibilité de sources (charges ou
courants) dont Uintensité varie avec le temps.
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II- Equations de Maxwell et caractéristiques d’une onde électromagnétique

Dans un milieu conducteur contenant n charges q /m? se déplagant a la vitesse 17, on définit :
- Densitédecharge p ¥ n.genC.m?

7 def

- Densité de courant “ n.q.VenAm?

Les quatre équations de Maxwell (1864) s’écrivent sous une forme simplifiée :

Une densité de charge crée un champ
électrique E = (Ex, Ey,EZ).

ILn’existe pas de charges
magnétiques.

Un champ magnétique variable dans
le temps crée (induit) un champ
électrique (également variable dans
le temps).

Un courant électrique J = (y, jy.Jjz) »
mais aussi un champ électrique
variable dans le temps crée (induit)
un champ magnétique.

0B,

dy

0B,

9z

9By

0x

0E, OE, O0E, p
ox 9y 0z e
dB, 0B, 0B,
W + W + 8z =0
0E, OE, 0B,
dy 0z ot
E, OE,|_ | 9B,
9z ox | | ot
E, O, 9B,
x  dy. at
9B, OE,
0z Jdt .
9B | _ .. aﬂ + u. f;
d0x Jat ;
0B, oE, Jz
ay at

Les deux dernieres équations de Maxwell (25 et 26) caractérisent le couplage entre champs
électrique et magnétique qui constituent (dans le cas de sources variables dans le temps) deux
grandeurs indissociables que nous appellerons désormais un champ électromagnétique.
Ces équations se démontrent en théorie des champs classiques en se fondant sur la relativité
restreinte et le principe de moindre action, mais cette démonstration sort du cadre de ce cours.
Nous nous limitons a explorer les conséquences de ces équations sur un exemple simple.

Soit le champ électrique E = (Ey, Ey, E;) = (0,0,E, = E,(x,t)) dans un milieu sans densité de
courant (j = 0). Supposons que la composante E,(x,t) corresponde a une onde progressive
sinusoidale de pulsation w se déplagant dans le sens des x > 0 a la célérité ¢, suivant (6) :

E(t,x) =<

0
0
E,

(o

0
0

w.(t——
Cn

X

)

La relation de Maxwell (25) permet de finir d’expliciter le champ magnétique :

9By _ 9E, 0By
at ox dat Cn
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= —E.Eo.cos [a). (t—ci)] etdoncBy = —E.sin [a)(

b
t——
Cn

(27)



Une onde électrique de la forme (27) génére donc une autre onde progressive, de nature

magnétique cette fois, perpendiculaire et en phase avec E (¢, x), de méme fréquence, de méme
célérité, de laforme :

0
E(t, x) = | —By.sin [w. (t — é)] ,ennotant B, = f—z
0

Les ondes magnétique E(t, x) et électrique E(t, x) sont couplées. Elles ne forment qu’une seule
grandeur physique, appelée onde électromagnétique.

En manipulant de fagon plus technique les équations de Maxwell, il est possible d’étendre les
résultats obtenus sur notre exemple simple et de montrer qu’en toute généralité, les vecteurs E

et B constituant une onde électromagnétique sont liés au vecteur unitaire (de norme 1) i porté
par la direction de propagation suivant les relations équivalentes :

1 - = —
—UANE ©E=—c,.uAB
Cn (28)

B =

Comme B, = —ﬂ.sin [w. (t - i)] etE, = Ej.sin [w. (t - Ci)] ’équation (26) donne :

Cn Cn n

, X , X
9B, JE, E, d sin [w. (t — a)] d sin [a). (t — a)] w.E,
——=c. U = —— =& w.Ey. = —=&uEhw
ox ot Cn ox ot ch
On en déduit Uexpression de la célérité de 'onde électromagnétique :
! 29
C, =
"= T (29)
Compte tenu des relations (18) et (21), la célérité est c,, = L = L S— L
P ’ nTVER  Verdhyeoto  Verd Jeodo'
Le terme —— n’est autre que la célérité ¢ d’'une onde électromagnétique dans le vide. En
v €0-Ho

1 1
Veo-to J4—.n.10‘7.$.10‘9

Le terme +/¢,. u,- est appelé indice de réfraction du milieu de propagation, etestnoté n:
n¥ Je.u>1 (30)

La célérité d’une onde électromagnétique dans un milieu d’indice de réfraction n est donc:

=3.108m/s.

utilisant les valeurs données en (18) et (21), ¢

¢ 8
cn=;<cz3.10 m/s (31)

La période temporelle T = % d’une onde progressive pure est la méme dans le vide et dans un

milieu d’indice de réfraction n, mais pas sa longueur d’onde puisque A1, =c,.T = %.T =
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Une onde électromagnétique (f, l—§) est donc constituée de deux ondes progressives
vectorielles couplées, perpendiculaires entre-elles et avec leur direction de propagation
commune U, vibrant en phase, a la méme fréquence et se propageant a la méme célérité c,,
=c/n dans un milieu d’indice de réfraction n. (Fig. 1-20)

Figure 20 : lllustration de la propagation d’une onde
électromagnétique monochromatique polarisée

rectilignement (E, §) Durant leurs propagations suivant Uaxe
X, les champs E et B varient en norme en restant en phase.
Notez que, sur ce schéma, la norme de B a été fortement

exagérée par rapport a celle de E, pour des raisons de lisibilité.

Une classification des ondes électromagnétiques sera donnée au paragraphe 2-C.

E- Lois de Snell-Descartes de la réflexion et de la réfraction

|- Chemin optique
Compte-tenu de ’équation (31), le temps mis par une onde électromagnétique pour se propager
du point A au point B distants de d (4, B) dans un milieu d’indice de réfraction n est :

_d(4,B)
by = c, (32)
_n d(A,B) (33)
no c

Le chemin optique L(4 — B) entre les points A et B dans un milieu d’indice de réfraction n est la
distance parcourue dans le vide dans le méme temps que d(4, B) dans un milieu d’indice n :

L(A > B) * n.d(4, B) (34)
L’équation (34) s’écrit de facon équivalente (cf. rappels de mathématique) :
L(A - B) ® n.%.AB ou i = AH
( il =n.u. ouu—m (35)

Le principe de moindre action nous a appris que 'onde suit entre A et B le chemin qui minimise
le temps de trajet. Les équations (33) et (34) permettent de le reformuler suivant :

Principe de moindre action de Fermat : Entre deux points A et B de ’espace, une onde suit la
trajectoire associée a un chemin optique L(A — B) extrémal.
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Celarevient a dire que pour une onde issue de A atteignant B, la variation de chemin optique est
infiniment petite (dL — 0) sile point B est déplacé sur une distance infiniment petite (dB — 0).

A% 7 Ld—B

Figure 19 :illustration de la variation infinitésimale de chemin optique dL(A — B) provoquée par
un déplacement infinitésimal dB du point B.

Pour deux points A et B distants, lorsque le B se déplace en B’ suivant un vecteur infiniment petit

= oo . . =3 __ ABr N . . e 4B
dB = BB’, le vecteur unitaire u’ = m est en premiere approximation peu différentde u = W

et le chemin optique entre les points A et B devient L(A - B') = n. 1. AB'.
D’apreés la relation de Chasles : L(A - B') = n.%. (4B + dB) = L(A - B) + n.1i.dB. Le chemin
optique a donc varié de dL(A —» B) = n.u. E?), le produit de n par la longueur de la projection du

vecteur dB sur la direction portée par le vecteur 1. Pour un rayon lumineux joignant les points A
et B, le principe de moindre action s’écrit donc :

lI- Loi de Snell-Descartes pour la réflexion

La figure 20 montre un rayon lumineux issu du point A (dans un milieu d’indice de réfraction n,)
m —_— m .
T, Uy = 7==7- L et
[[am|| [MB||

r les angles d’incidence et de réflexion (par rapport a la normale au miroiren M) :

qui se réfléchit sur un miroir au point M puis atteint le point B. Notons u, =

n;

Figure 20 : Réflexion d’un rayon lumineux par un miroir.

Pour un petit déplacement_d_l\z du pointM, dL(A - M - B) =0.
Cela nécessite que les points A, M et B soient coplanaires.

Par ailleurs, si M est translaté de dM en se rapprochant de B la relation (36) donne :
dL(A > M - B) = dL(A » M) + dL(M - B) = n,u,.dM — n,u,.dM = 0
Il s’ensuit que ny%,. dM = n,u,.dM = n,dM.cosi' = n,.dM.cosr".
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Orcosi' = cosr’ = sini = sinr = i = r puisque les angles i et r varient entre 0 et 90°.

D’ou les lois de Snell-Descartes pour la réflexion
1- Lesrayonsincidents et réfléchis sont coplanaires,
2- L’angle d’incidence i est égal a 'angle de réflexionr.

lll- Loi de Snell-Descartes pour la réfraction

Le figure 21 montre le trajetd’un rayon émis en A, atteignanten M une interface entre deux milieux

d’indices n, et n,, etréfracté dans le second milieu sous l’angle t. Pour un petit déplacement am
du pointM, dL(A - M — C) = 0, ce qui nécessite que les points A, M et C soient coplanaires. On
a parailleurs :

dL(A > M - C) = dL(A > M) + dL(M - C) = nyw,.dM — n,U;.dM = 0 = n,.sini = n,.sint

Oe

Ny Ny

Figure 21 : Réfraction d’un rayon lumineux a travers une interface P.

D’ou les lois de Snell-Descartes pour la réfraction :
1- Lesrayonsincidents et réfractés sont coplanaires,
2- L’angle d’incidence i et 'angle de réfraction t sont liés par la relation ny.sini = n,.sint

La fonction sinus étant croissante sur Uintervalle [0,90°], t > i sin, < ny (et t < isinon)

Lorsque n, < n4 (milieu d’émergence est moins réfringent que le milieu d’incidence), il existe
un angle d’incidence limite i,,,, au-dela duquelt > 90°: le rayon est intégralement réfléchi, et
plus du tout transmis par réfraction dans le second milieu. Cet angle d’incidence limite se calcule

facilement:=.sini = sint < 1 = i < i;g, = arcsin (—2)
nz ni

Cette réflexion totale est utilisée dans les fibres optiques ou le rayon laser constituant le signal
arrive sur la face interne de la fibre avec un angle d’incidence i > i,,,, de maniére a assurer une
réflexion totale de ce rayon et sa propagation a Uintérieur de la fibre (figure 22).
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Figure 22 : Réflexion totale d’un rayon laser dans une fibre optique.

Notons enfin que, compte tenu de la relation (31) suivant laquelle Uindice de réfractionn = i,

Cn

. , . A . . 1 .. 1,
la loi de Descartes pour la réfraction s’écrit aussi de fagon équivalente —.sini = —.sint. Sous
C C
1 2

cette forme, elle est aussi applicable a une onde sonore réfractée par une interface séparant
deux milieux d’impédances acoustiques différentes.

F- Optique géométrique et dioptrique oculaire

|- Définition et hypotheses.

- Dioptre : surface séparant deux milieux transparents d’indices de réfraction différents.
o Sphérique : sila surface du dioptre est une portion de sphere.
- Lentille : succession de deux dioptres.
- Systéme optique : milieu transparent contenant des miroirs ou des dioptres.
o Dioptrique s’il ne contient que des dioptres,
o Catadioptrique s’il contient aussi des miroirs.
o Centré s’il est invariant par rotation autour d’un axe (de révolution).
= Satisfaisant a Uapproximation de Gauss si les angles entre les rayons
lumineux et 'axe de révolution sont assez petits pour approximer le sinus
de ces angles par leur valeur en radians.
e Stigmate si 'limage de tout point objet lumineux est un point
image, astigmate sinon.
e Aplanétique sil’'image de tout segment lumineux perpendiculaire
a l’axe optique est un segment qui reste perpendiculaire a cet axe.
- Espace objet : en amont du dioptre (par rapport au sens de propagation des rayons).
- Espaceimage : en aval du dioptre.

DIOPTRE 2

DIOPTRE 1

Figure 23 : Illustration, dans approximation de Gauss (a<<1), d’'un systeme optique centré
constitué d’une lentille, stigmate et aplanétique.
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lI- Relation de conjugaison d’un dioptre, construction des images.

Lafigure 24 illustre la déviation d’un rayon lumineuxissu d’un point objet A au travers d’un dioptre
sphérique séparant deux milieux d’indices de réfraction n et n’ et contenu dans une sphére de
centre C etderayon SC. Le point S, intersection du dioptre avec ’axe optique est appelé sommet
du dioptre. Apres réfraction au point P, le rayon incident AP est dévié et converge sur 'axe
optique en un point A’, image du point A.
Par convention, l’axe des abscisses est orienté positivement dans le sens de propagation de la
lumiere. Les arcs et les angles sont mesurés positifs dans le sens trigonométrique. On rappelle
que la mesure algébrique du bipoint AB est la distance de A & B dotée d’un signe suivant ces
conventions.
La somme des angles d’un triangle valant w radians :

Dans le triangle (A,P,C),mr—i+w+a=1m =>i=w +a,

Etdans letriangle (A,P,C),m —w+i'+a' =1 =i’ =w—a'.
Dans 'approximation de Gauss, la loi de Snell-Descartes pour la réfraction s’écrit :
ni=n.i=>nwt+a)=n.(w—-a)=> 0 —n.w=na+n'.a.

En exprimant les angles a = i:i = —;):j cal = % ;W= %, on obtient :
PS PS PS n-n n n
(n'—n).::—n.: +Tl’._ =1 — = =
SC SA SA' SC SA' SA

Figure 24 : Illustration de la déviation d’un rayon lumineux par un dioptre sphérique
et de laformation de 'image A’ d’un point objet A.

D’ou la localisation de 'image A’ par la formule de conjugaison du dioptre sphérique :

- (37)

La puissance ou vergence du dioptre sphériquell est une grandeur algébrique et additive
caractéristique du dioptre qui s’exprime en dioptrie (Dp), avec par définition 1 Dp % 1 m™1.
Le dioptre sera qualifié de convergent si Il > 0, et de divergent si Il < 0.

Si le point objet A est infiniment éloigné du dioptre SA — —oo, alors 'angle a tend vers 0 et le
rayon lumineux prend une direction parallele a 'axe optique avant d’atteindre le dioptre. Ces
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rayons convergent en un point image appelé foyer image F’ du dioptre. La relation de
conjugaison (37) permet d’en préciser la position :

I_n nl nl

__ n
SA—> —0o=J% —= = SF' =— (38)
SC SF’ I

Ajouter aux hypotheses la condition d’aplanétisme permet de compléter le modele et de Uutiliser
pour construire U'image par un dioptre sphérique de tout objet lumineux constitué d’'un segment
AB perpendiculaire a ’axe optique dont le point A est sur cet axe. Il suffit pour cela :

1- De localiser 'image A’ du point A en utilisant la relation de conjugaison (37),

2- Deremarquer qu’un rayon issu du point objet B et dont la direction incidente passe par le
centre du dioptre sphérique C arrive sur le dioptre sous une incidence normale et n’est
donc pas dévié.

3- Lacondition d’aplanétisme impose que 'image du point B se trouve a U'intersection de la
droite (BC) et de la droite perpendiculaire a ’axe optique passant par 4’ .

Dioptre sphérique convergeant
Figure 25 : Image d’un segment lumineux AB par un dioptre sphérique convergent.

Pour un dioptre convergent, on constate sur figure 25 que U'image A’B’ du segment AB se forme
dans U'espace image. On qualifie cette image d’image réelle.
Le cas d’un dioptre sphérique divergent est illustré en figure 26 : Limage A’B’ se forme dans
’espace objet. Elle est de ce fait qualifiée d’image virtuelle.

ey
objet image

Dioptre spherique

divergeant

Figure 26 : Image d’un segment lumineux AB par un dioptre sphérique divergent.
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llI- Introduction a la dioptrique oculaire et aux amétropies sphériques

L’ceil humain est un systéme optique centré constitué de 4 dioptres formant deux lentilles, la
cornée et le cristallin (partie supérieure de la figure 27).

Le premier de ces dioptres, le dioptre cornéen antérieur, de rayon 7,8 mm sépare U'air ambiant du
tissu cornéen d’indice de réfraction 1,377. Le deuxieme dioptre, de rayon 6,8 mm, sépare la
cornée de la chambre antérieure de Uceil emplie d’un liquide, ’humeur aqueuse, d’indice 1,34.

La puissance de la cornée est la somme des puissances de ces deux dioptres :
1,377—-1 1,34-1,377

= + = 42,9 Dp

Meornge 781073 ' 6,8.1073
Un diaphragme, liris, sert a limiter Uintensité de la lumiére transmise. On trouve ensuite le
cristallin (indice de Uordre de 1,40) dont les dioptres antérieur et postérieur ont des rayons de
courbure au repos, lors d’une vision de loin, de 10 et -6 mm respectivement (en vision de pres,
ces rayons varient pour assurer une accommodation).
En aval du cristallin, la chambre postérieure est remplie d’un liquide, "humeur vitrée d’indice

de réfraction n’=1,336. La puissance du cristallin au repos estdonc :
1,40-1,34 1,336—-1,40
Heristauin = 10.10-3 e10 17 Dp.

La chambre postérieure est tapissée d’un tissu constitué de cellules nerveuses photosensibles,
la rétine, et de neurones dont les axones forment le nerf optique. C’est au sein ce dernier que le
signal lumineux, transformé en signal électrique, est transmis au cortex occipital pour analyse et
intégration.

La puissance totale d’un ceil humain au repos en vision de loin est la somme des puissances des
deux lentilles: II = M prnee + Heristaniin = 60 Dp, dont de 48 Dp proviennent du seul dioptre
antérieur de la cornée.

Schéma & un oofl humeis

- Schive anche)

Moscle e -

Hurmow vinds
(chanire pasiéeure

Humaur pquouss
(tharmbes slésieis o \\_ Cefhsinn phobeanation

du Lo ritine
|

'

A . ey, Imegw dans
Obies Pl S e plan focal
SC« 56 mn -

i = E

\
‘.:) Humwut v '« 1.3

Disptre sphéoigie
n=uwlp

-

SH =02 2 mm

Figure 27 : Représentation schématique d’un ceil humain (partie supérieure)
et modélisation fonctionnelle dite de « Uceil réduit »
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Les amétropies sphériques sont des défauts de courbure du dioptre antérieur de la cornée qui
n’affectent pas sa sphéricité. Elles conduisent a une image floue sur la rétine.
Dans la myopie, 'image d’un objet éloigné se forme dans un plan focal en amont de la
rétine, du fait soit un rayon de courbure SC trop faible (donc une courbure trop forte), soit
une profondeur SR du globe oculaire trop élevée (figure 28, partie médiane). Cette
amétropie se corrige en soustrayant la puissance en excés au moyen de verres
divergents.
Dans ’hypermétropie, 'image d’un objet éloigné se forme dans un plan focal en aval de
la rétine, du fait soit un rayon de courbure SC trop grand, soit une profondeur SR du globe
oculaire trop faible (figure 28, partie inférieure). Cette amétropie se corrige en ajoutant la
puissance manquante au moyen de verres convergents.

CEil réduit normal A
Rétine

I ’ axe optique !
A

S
Image nette
de B surla
n=1 :
rétine

Dioptre sphérique
I1=60Dp

CEil réduit myope : ST 1 etiou ST Rétine

Axe optique

A
Dioptre sphérique Image floue
I1>60Dp de B surla
N rétine
’ CEil réduit hyperope : : 5C 1 etlou ST |
Rétine
IOb)et Axe optique p ;
spanpane

Image floue

n=1 n=134 de B sur la
rétine

Dioptre sphérique
[1<60Dp

Figure 28 : Comparaison de la position de U'image d’un objet éloigné dans le cas d’un ceil sain,
d’un ceil myope (image du milieu) et d’un ceil hypermétrope (ou hyperope, image du bas)

Des corrections analogues a celles que nous venons d’évoquer peuvent étre proposées a des
patients présentant des amétropies non sphériques (astigmatisme), c’est-a-dire des défauts de
convergence qui concernent de la cornée de fagon moins uniforme, avec par exemple des
dioptres non sphériques de puissances différentes sur les méridiens verticaux et horizontaux.
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G- Onde stationnaire et quantification

|- Réflexion normale

Une onde progressive g;(t, x) = A;.sin [w. (t - ci)] qui atteint sous une incidence normale une
1

interface P positionnée en x = 0, perpendiculaire a 'axe des x génere une onde réfléchie
gr(t,x) = A,.sin [a). (t + Ci)] et une onde réfractée g,(t, x) = A;.sin [a). (t - ﬁ)]

1 2

- X
: X g (7.x)=Asmfar(r )
g(t.X)=Asmfex(t+-)] =T T

¢ r) . X
Ny

n;

Figure 29 : Réflexion et réfraction d’une onde progressive g;(t, x) atteignant, sous une incidence
normale, une interface P séparant deux milieux d’indices n, et n..

La grandeur physique étant continue sur Uinterface : g;(t,0) + g,(t,0) = g;(t, 0) pour tout t, soit
A;.sinfw. t] + A,.sin[w. t] = A;.sinfw. t], ce qui nécessite d’avoir 4; + A, = A;.

La continuité de la dérivée de la grandeur physique au niveau de Uinterface donne, pour toutt :

99i 09r — 99t Y @ =_2 i
o (t,0) + P (t,0) = o (t,0) = ClAl.cos[a).t] + o A,.cos|w.t] = o A;.cos|w.t], ce qui
nécessite —ﬁAi + ﬂAr = —ﬂAt, soitd; — A, = C—lAt.
1 c1 (o] C2
En combinant ces deux résultats, il vient :
c c
c c A c A A c;—¢i n, n, N —n
Ai—Arz—lAtz—l(Ai+Ar)=>1——T=—1(1+—r>:>—r= L 1=z 1=
Cy Cy Ai Cy Ai Ai Cy + Cq1 + nq + n,
2 1
Le coefficient de réflexion en amplitude est donc :
ol T (39)
A ngt+ny
A —A. — A. ) Ar _ _ n-n, _ 2my .
Deméme,A; = A; + A, = A; +14.4; = 2 1+r,=1+ i, ity soit
A 2.1
& —=—
A Ai nq + n, (40)

A titre d’exemple, pour une lentille en verre d’indice de réfraction n, = 1,5, placée dans de Uair
1-15| _ 1 _ 2 4

(g ~ 1)1y = |1+1,5| =it = s T

En termes d’intensité transmise, on peut montrer que dans le milieu incident, lUintensité

lumineuse est proportionnelle au carré des amplitudes :

I ny — n,\2
r,d:&f—r=(¥) (41)
ns +n,
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Le coefficient de transmission en intensité se calcule simplement en remarquant que I; = I, +
I;,etquedoncr; +t; = 1, soit

I 4.n,.1n
tl‘g—t=1—1‘1=—1 z (42)
(ny +ny)?

4.1,5

2
?) = 96% : Uintensité lumineuse

. 1
Dans 'exemple précédent, on trouve r; = 2= 4% ett; = (

est donc principalement transmise a travers le verre étudié.
lI- Onde stationnaire et premiere approche de quantification

Reprenons U'exemple précédent en supposant que l'onde est intégralement réfléchie par
Uinterface (Fig. 1-31 avec n, > ny,de sortequer; = lett; =0).

Enx =0, g(t,0) = A;.sin[w. (t)] + A,.sin[w. (t)] = 0 pour t, ce quiimplique A, = —A;.

En amont de P (pour x < 0), les ondes progressives g; et g,.s’additionnent et créent une onde :

00 = agsin o (1= )] # vsin o (14 2)] = [ o (e~ 2)] - s (¢ + )]

Compte-tenu de la relation de factorisation sin(p) — sin(q) = 2.sin (pz;q) cos (?) :

gt x) = [—Z.Ai.sin (ac)—f)] cos(w.t) = A(x).cos(w.t)

L’onde de type cos(w. t), sans terme de retard de la forme w. Ci est qualifié d’onde stationnaire :
1

tous les points de U'espace sont dans le méme état vibratoire a chaque instant (ils vibrent en
phase, mais avec une amplitude A(x) variable entre 0 et 2. 4;).

2m. . L . A
Lorsque% = ;rx est un multiple de m, c’est-a-dire lorsque x est un multiple de 71, A(x) =0et
1 1
l’onde disparait a tout instant. On qualifiera ces points de nceuds de vibration.
D’autres points pour lesquels % = :x est un multiple impair de %, soit quand x est un multiple
1 1

impair de f, verront une onde d’amplitude maximale 2. 4;. On qualifie ces points de ventres de

’'onde stationnaire (Figure 30).
=0 P

-
'y
“
o

Ax)=2.A,  Alx)=0 2

Figure 30 : Onde stationnaire obtenue par réflexion normale compléte d’une onde progressive.

Une onde stationnaire de longueur d’onde A, peut ainsi étre maintenue et amplifiée dans une
cavité résonnante constituée de deux miroirs P et P’ positionnés sur deux nceuds de vibration,
suivant la figure 31, a condition donc que la distance L qui sépare ces deux miroirs soit un
multiple de A+/2. Cette distance ne peut donc pas prendre n’importe quelle valeur, mais
seulement des valeurs parmi A+/2, A1, 3.A1/2, 2.\ etc. On dira que cette distance est quantifiée.
Cette remarque sera essentielle pour comprendre les bases de la mécanique quantique.
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P’ P

i /2
L multiple de &, /2
Figure 31 : Illustration d’une onde stationnaire au sein d’une cavité résonnante.

H- Diffraction et interférences.

|- Interférences apres diffraction

On considéere une onde plane progressive pure qui se propage a travers un orifice percé dans un
écran opaque. Si Uorifice est petit (par rapport a la longueur d’onde) un seul point au sein de
l'orifice réémet en aval de Uorifice une seule onde sphérique suivant le principe de Huygens
(figure 32-a). Si Uorifice est plus large, plusieurs sources ponctuelles au sein de Llorifice
réémettent des ondes sphériques qui vont s’additionner algébriqguement en aval de celui-ci
(figure 32-b). Dans les deux cas, le changement de direction du vecteur d’onde au passage de
Uorifice est qualifié de diffraction. Dans le second cas, on appelle interférences la sommation
des ondes sphériques émergentes.

Onde plane Onde spherique Cnde plane Onde
incidente emergents incidents amergents

a. Ecran percé d'un orifice ponctuel b. Ecran percé d'un orifice large

Figure 32 : Illustration de la diffraction d’une onde stationnaire plane
a travers un orifice percé dans un écran opaque.

Calculons d’abord l'onde progressive qui se forme sur un écran distant par interférences a partir
de deux sources ponctuelles espacées d’une distance b dans le vide (figure 33).
Dans une direction 8 < 1 peu inclinée par rapport a ’horizontale, le chemin optique d’un des

deux rayons est majoré de la valeur D = b.sin 8 par rapport a autre rayon (figure 33), ce qui
b.sin@
A

conduit a un déphasage entre les deux rayons de ¢ = %.D = ZTR.D =27
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2 sources
cohérentes

D=ksmd?
Figure 33 : Interférence de deux ondes sphériques.

L’onde g(t, ) mesurée en un point M sur un écran distant de r de la source s’écrit :
) w.T ] w.T
gt,r) = A [sm (w. t— T) + sin (w. t— - (p)]

En se souvenant de la relation de factorisation sinp + sing = 2.sin (?) . COS (?), il vient:
_ N w.r Py N w(2.r—D)
g(t,r) = 2.4A,.cos (E) .sin (w. t— - E) = 2.4Ay.cos (E) .sin (w. t— T
r+(r-D)

Il s’agit d’une onde progressive apparaissant sur ’écran (a la distance moyenne de ) avec

b.sin @

. b.sin @ . . .
une amplitude 2. A,. cos (%) = 2.4,.cos (n %) qui est extrémale lorsque estunentierk,

b.sin@
A

succession de bandes claires (0 tels que sin 8 = k.%, k entier), et de bandes sombres (6 tels que

. . . . 1 . P
et qui s’annule lorsque est un multiple impair de 3 Il apparait donc sur U'écran une

. 1\ A . . . .
sinf = (k + 5) 'E)' On parlera dans le premier cas d’une interférence constructive (les deux

ondes sont en phase et se renforcent en s’additionnant), et dans le second d’une interférence
destructive (les deux ondes s’annulent en s’additionnant). Pour des angles 8 < 1, les centres

. L y)
des bandes claires (comme ceux des bandes sombres) sont espacés d’un angle de valeur 5

Généralisons au cas d’une fente de diffraction rectangulaire de largeur b centrée a Uorigine d’un
repere (x,y) (Figure 34).

' écran
€éloigné

Figure 34 : Interférence aprées diffraction par une fente rectangulaire de hauteur b.
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Pour deux points de la fente rectangulaire distants de x, le déphasage des ondes diffractés dans

2m.sin @ 2m.sin @
x = 0.xen notant ©® &

une direction 8 estdg = %dD = 2THdD =

L’onde observée dans la direction 8 apres diffraction est donc, en notant ¢, = % (cf. rappels de

mathématique) :

1 +b/2 AO 1 b
gt,r)= Ef Ap.sin(w.t — @, —0.x).dx = g(t,r) = 50 [cos(w.t — @ — 0.x)]%,
—b/2 -2
(t,7) Aol{ ( t @b) ( t +G)b>}
= =—.—. t—@,—0.=)— t— =
g, r Lo 1S (@ O 5) —cos{w O 3
En utilisant la formule de factorisation cosp — cosq = —2 sinpz;qsin ?:
. (0.b
Ay 2 [ O.b\ sin (—2 ) _
gt r)= —7 S (— T) sin(w.t — @,) = Ay.sin(w.t — @)

0.b
(%) |
En introduisant la fonction sinus cardinal définie pour tout x # 0 par sinc(x) = % etsinc(0) =

21.sin 6
A

1, etenremplagant © par sa valeur , on obtient :
m.b.sin 0

P ).Ao.sin(w. t— )

gt r)= sinc(

On retrouve une onde progressive dont amplitude est modifiée par un facteur A(9) =

. .b.sin @ . i . . . . . ”: y
sinc (” im ) L’intensité lumineuse étant proportionnelle au carré des amplitudes, Uintensité

qui se projette sur ’écran dans la direction 8 est donc modulée par la fonction 1(8) = A(8)?:

1(6) = sinc? (22222) (43)

. . . . A
Cette fonction /(8) s’annule lorsque son argument est un multiple de i, soit lorsque sin 8 = k.;

avec k entier. Pour des angles 6 petits devant Uunité, sin 8 ~ 6 et 'on observe sur un écran placé
. A R

en aval de la fente des bandes sombres pour les valeurs de 8 multiples de 5 De méme, /(0)

présentera un maximum absolu pour 8§ = 0, dans la direction du rayon incident en aval de la

2.k+1 A .
)'E’ avec k entier non nul, formant des bandes

fente, et des maxima relatifs poursinf = (

plus claires entre deux bandes sombres (figure 35).

m.b.sin 6

Figure 35 : Graphe de la fonction I(8) = sinc? ( ) en fonction de . sin 6.
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A e - - .1 (A A s
La valeur; définissant la position du 1° minimum, 6,,,;, = sin™! (3) N correspond aussi a une

bonne approximation pres a la largeur (en radians) de la bande claire principale mesurée entre
les deux points définissant la moitié de son intensité (figure 35). On qualifiera cette largeur de

Largeur a Mi-Hauteur angulaire (LMH, = % , ou FWHM,, Full Width at Half maximum en anglais)

de la réponse impulsionnelle de appareil d’optique utilisé.

Dans le cas d’un orifice de diffraction circulaire de diamétre d, le calcul de la figure d’interférence
et plus complexe, mais aboutit a un résultat similaire a un facteur 1,22 pres, avec des minima

locaux observés pour des angles vérifiant sin ,,;,, = 1,22. k.; avec k entier et une largeur a mi-

hauteur de la frange lumineuse principale de Uordre de LMH, = 1,22.%.

lI- Résolution des appareils d’imagerie

Dans le vide, la réponse impulsionnelle d’un systeme d’imagerie est 'image d’une source
ponctuelle et éloignée de rayonnement qui se forme sur un écran placé dans le plan focal d’un
systeme optique apres diffraction a travers Uorifice circulaire de diameétre d qui en constitue
I’entrée, puis interférences (figure 36).

owm
|
|
|

Tfu
1 |0 __:_1

.Af (distance focale) _'

Figure 36 : Réponse impulsionnelle d’un appareil d’imagerie

La largeur a mi-hauteur LMH de la réponse impulsionnelle de ce systeme d’imagerie est :

2
LMH = f.6pyn = 1,22.f.5=122.2.N # RouN zg

Définitions: Nombre d’ouverture. : N = g

Résolution angulaire : 8,,,;,, (en radians)
Résolution spatiale: R &£ LMH = f.0,,;, (en unité de longueur),

En utilisant le petit angle a défini dans la figure 36, on asina = tana = SN N & AP
2.f d  2sina

Sile milieu en aval de Uorifice de diffraction est caractérisé par un indice de réfraction n supérieur

. o L !
a l'unité, alors la longueur d’onde du rayonnement s’écrit A, = ¢,,. T = %.T =

Dans le cas le plus général, la résolution spatiale d’un objectif de longueur focale f, de diametre

d etde nombre d’ouverture N &f 5, dans un milieu d’indice de réfraction n est donc :

R ¥ LMH=1f.0 =1,22 AT 1221N—061
f-Omin =1, nd . tYn T P hsina

En microscopie optique, le terme n. sin @ est appelé ouverture numérique .
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Si A n’est pas négligeable par rapport a d, du simple fait de la diffraction par Uorifice d’entrée d’un
systeme optique (et d’autres artefacts), 'image d’un objet ponctuel n’est donc pas un point, mais
une tache dont Uintensité décroit du centre vers la périphérie. L’équation 1-52 montre que les
meilleurs appareils d’imagerie devront exploiter des optiques de grand diametre (larges lentilles
et miroirs des télescopes en astronomie), des longueurs d’ondes les plus petites possibles
(intérét des rayons X en imagerie électromagnétique), et baigner dans des milieux d’indice élevés
(intérét d’une goutte d’huile transparente interposée dans un microscope).

Dans un ceil humain, Uiris constitue un diaphragme de diameétre d ~ 5 mm. L’indice de réfraction
de 'humeur aqueuse est n = 1,34. Pour une radiation bleue de longueur d’onde dans le vide de

A =500 nm, 'équation 1-52 donne une résolution dans le plan focal de la rétine (f = 22 mm) de

-9
R=1,222201 2 _ 510" m=2um.
1.34 5

llI- Pouvoir séparateur des appareils d’imagerie

Dans la figure 37, on représente 'acquisition d’une image de deux sources ponctuelles de
rayonnement S et S’ séparées par une distance x.

S d A -
ix : : nn
s W /

4

PET Y xEwH
LMH /LMK PO, A VA S
X > .0, 1 2 images distinctes x < 1.0, : fusion des 2 objets

Figure 37 : Pouvoir séparateur d’un appareil d’imagerie

On constate que si x < R = LMH, Les deux réponses impulsionnelles produites fusionnent en
une seule image, I'intensité de 'image entre les deux maxima correspondant aux images de chacun
des objets ponctuels dépassant le niveau de ses maxima. Les deux images ne sont individualisables
que six > R = LMH : la résolution est aussi le pouvoir séparateur de 'appareil d’imagerie.

Une image ne peut contenir que de composantes dont la période% > R, donc dont la fréquence
(enm™) f < %. Dans la décomposition en série de Fourier de Uimage (cf. paragraphe 1-A-IV), il

existe donc une composante harmonique de fréquence maximale f,5 ==
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IV- Théoreme d’échantillonnage de Shannon et numérisation des images

Considérons l'image de deux objets ponctuels séparés par une distance a peine supérieure a la
résolution R, donc dont les images n’ont pas encore fusionné. Etudions la taille des pixels a
utiliser pour numeériser cette image sans perte. On constate sur la figure 38 que choisir des pixels
de dimension R ne permet pas d’échantillonner la discrete diminution d’intensité qui, sur 'image
analogique, permet d’identifier deux images a peine discernables.

s

>
-
-

.
-~ -
u — e

< .
e

Figure 38 : lllustration heuristique du théoreme d’échantillonnage sur un signal

Pour que cela soit possible, il faut utiliser des pixels de taille d = g, ce quirevient a échantillonner

avec une fréquence d’échantillonnage f, = % = %. Ce résultat obtenu ici de maniere intuitive
porte le nom de théoréme d’échantillonnage de Shannon.
R 1 1
dzzﬁfedéfE:Z-fmax:z'ﬁ (45)

V- Application a ’'étude de la structure tridimensionnelle des molécules

Lors d’une expérience de diffraction des rayons X par un réseau cristallin constitué de molécules
. . . . _ o A . .
biologiques déshydratées (1 et b ~ 10710 m & 1A), la mesure de - sur un écran distant permet

de déterminer les distances b caractérisant les cristaux qui ont provoqué la diffraction. Dans le
cas d’un cristal d’ADN, la figure de diffraction est plus complexe qu’un sinus cardinal, mais elle
a permis en mai 1952 a R. Gosling, étudiant en thése sous la direction de la biophysicienne
Rosalind Franklin, d’élucider la structure en double hélice de la molécule d’ADN (figure 39).

Figure 39 : Image de diffraction des rayons X
par une molécule d’ADN (« photographie
51 »). Son analyse montre la structure en

double hélice de 'ADN, détermine son
diametre (20 A), la période de U’hélice (34 A°),
espacement entre les bases (3,4 A )etla
pente de ’hélice (40°).
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CHAPITRE 2 : INITIATION A LA MECANIQUE ONDULATOIRE

Présentation : Ce chapitre propose une approche raisonnée aussi simple que possible des
fondements de la mécanique ondulatoire (mécanique quantique) qui permettra au chapitre
suivant de proposer une modélisation de [’atome et du noyau atomique suffisante pour la plupart
des besoins des professionnels de santé. Nous commencerons par appliquer le principe de
moindre action a une onde et a une particule pour établir la relation de Louis de Broglie et
proposer une modélisation duale, corpusculaire et ondulatoire, de la nature. Pour aller au-dela,
un détour par quelques éléments de relativité restreinte sera nécessaire : la prise de conscience
d’un écoulement variable du temps en fonction du mouvement de l'observateur qui le mesure
permettra d’établir la célébrissime relation d’Einstein (E=mc?), de calculer l’énergie d’une
particule de masse au repos nulle, puis d’en déduire la relation qui relie ’énergie d’un photon a
la fréquence de 'onde électromagnétique qui lui est associée. Cela permettra de préciser le
spectre de toutes les radiations électromagnétiques. Une approche trés simple fondée sur une
modélisation corpusculaire et ondulatoire du phénomene de diffraction permettra ensuite de
justifier les inégalités d’Heisenberg, de comprendre pourquoi la notion de trajectoire perd toute
signification physique a l’échelle des particules élémentaires et d’ou provient le caractere
probabiliste de la théorie quantique. Nous terminerons ce chapitre en revenant sur la notion
d’onde progressive pour comprendre pourquoi les grandeurs physiques associées aux particules
élémentaires (quantité de mouvement, énergie...) ne peuvent pas prendre des valeurs continues
mais seulement certaines valeurs discrétes bien déterminées (quantification).

A- Approche par principe de moindre action : relation de Louis de
Broglie

D’apres le principe de moindre action de Fermat (cf. paragraphe 1-E-l), une onde pure se propage
entre deux points A et B en suivant un chemin optique L extrémal (figure 40). Ce chemin optique
est la somme de chemins optiques élémentaires dL = n.ds sur chaque portion infinitésimale de

Cmax

trajectoire ds dans un milieu d'indice n = (Cmax = ¢ sionde est électromagnétique). Cette

Cn
B B . . I e
somme L = fA dL = fA n.ds peut s’exprimer en fonction du vecteur d’onde k et du vecteur ds =
ds.u suivant:

B BC BC
L:f n.ds:f max.ds=f max.gds

B B B B
Cmax w Cmax 7 Cmax 7T = Cmax T
=12 ds =" |k||.ds = 22| kids =22 | k.ds
w J,y cp w J, w J, w J,

Comme C’”ﬁ ne dépend pas de la trajectoire suivie entre A et B, le principe de moindre action de

) By 5= . .
Fermatimpose que la grandeur C, = fA k.ds soit extrémale.
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Figure 40 : lllustration d’'une modélisation ondulatoire (vecteur d’onde E) et corpusculaire
(quantité de mouvement p) d’un déplacement du point A vers le point B.

Supposons maintenant qu’une particule de quantité de mouvement p suive la méme trajectoire
de Aa B que l'onde précédente. Le principe de moindre action (dit de Maupertuis) appliqué a
cette particule exige que le temps de trajet soit extrémal. On peut montrer que cela revient a

. B = -0 . Ve Ve . . .
exiger que la grandeur C, = fA p.ds soit extrémale. La démonstration de ce principe est un peu

technique, mais on peut le justifier facilement dans le cas d’une particule non relativiste se
déplacant a une vitesse constante :

B | B B B ds B
Cp=f ﬁ.ds=f p.ds=f m.v.ds=f m.v.E.dt=f m.v2.dt = 2.E..(tg — ta)
A A A A A

Sila durée du trajet tg — t4 entre A a B est extrémale, il en est donc de méme de C,,.

Un cadre théorique commun a une modélisation a la fois ondulatoire et corpusculaire de la
nature nécessite de satisfaire le principe de moindre action a la fois dans sa formulation

ondulatoire (principe de Fermat) et dans sa formulation corpusculaire (principe de Maupertuis).

B7 = B> . .
ILfaut donc que les deux grandeurs C, = fA k.dsetC, = fA p.ds soit toutes deux extrémales sur

la trajectoire effectivement suivie par 'onde et la particule, entre les points A et B. Il suffit pour
cela d’imposer une proportionnalité entre le vecteur d’onde ketla quantité de mouvement p. En
notant A (« h barre ») le coefficient de proportionnalité, on obtient un lien entre modélisation
ondulatoire et modélisation corpusculaire :

p=hk (46)

La constante # est appelée constante de Planck réduite.

- 7 w 2.m. 2. 2.m.h
En prenant les normes de ces vecteurs,ona:p=h.k=p = h.c— = h.c—f =ho—=—0 En
n n n

définissant la constante de Planck h par h & 2. 1. /i, on obtient la relation de Louis de Broglie
qui relie la quantité de mouvement (p) d’une particule et la longueur d’onde A de l’onde qui lui est
associée :

PR
” (47)

La constante de Planck a pu &tre évaluée expérimentalementa h = 6,626.10734J.s.

Pour une personne de masse 70 kg se déplacant a une vitesse de 10 km/h, la une quantité de

10000 _ s
2600 = 194,4 kg.m.s 1 est donc associée & une onde de longueur

mouvement p = m.v = 70.
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, h _ 6,626.1073* 36 , . : . .
d’onde A = > = ~Torz 3,4.10 m. Pour Uobserver, il faudrait la faire diffracter sur des

objets de cet ordre de grandeur en dimension, ce qui n’est pas possible (le diamétre d’un électron
estde lordre de 10718 m). A cette échelle donc, la dualité onde-corpuscule n’est pas observable,
et sort donc du domaine de la physique.

En revanche, un électron de masse m = 0,9.10731kg et de charge e = —1,6.10719C accéléré

sous une différence de potentiel de V = 100 V acquiert une énergie cinétique de %.m. vi=eV

ce qui conduit & une quantité de mouvementp = m.v =vV2.m.e.V =5,4.10"%*kg.m.s L et &

., h  6,626.10734 _ o
une longueur d’onde de 'onde associée A = > = 107 = 1,2.1071%m = 1,2 A, delordre de

grandeur de la dimension d’un atome. On vérifie expérimentalement que des cristaux bombardés
par un faisceau d’électrons produisent effectivement une figure de diffraction identique a celle
observée avec des rayons X.

Un électron, de méme que toute particule élémentaire, se comporte ainsi a la fois comme une
onde (qui diffracte, permet de concevoir des microscopes électroniques a forte résolution
suivant la relation 1-52), et comme une particule (capable de chocs). A 'échelle des particules
élémentaires, la description de la nature doit donc étre duale, particulaire et ondulatoire.
Symétriguement, la relation (47) permet d’associer a toute onde une particule. Pour décrire la
particule associée a une onde électromagnétique, il va falloir mieux cerner ce qu’est la quantité
de mouvement d’une particule de lumiere, un photon...

B- Temps, énergie et quantité de mouvement en relativité restreinte

Dans les équations de Maxwell (paragraphe 1-D-Il), la vitesse de la lumiere dans le vide apparait
comme une constante universelle de la physique qui ne dépend pas de l'observateur et de sa
vitesse relative par rapport a une source lumineuse. Ce résultat théorique surprenant a été
confirmé par des mesures expérimentales réalisées a la fin du XIX® siécle. En 1905, Albert
Einstein en a tiré toutes les conséquences...

Dans un repere R’ (un observateur) lié a un train qui se déplace a la vitesse constante I/,
Uintervalle de temps nécessaire a un rayon lumineux pour venir se réfléchir sur un miroir situé a
une distance de L/2 au-dessus de la source lumineuse, puis poury retourner s’y faire détecter
estdt’ = L/c (Figure 41, partie haute).

Calculons ce méme intervalle dt mais par rapport a un repére R (un observateur) fixe sur le quai.
Le trajet « aller » de la source au miroir dure dt /2. Pendant cet intervalle de temps, le train s’est
déplacé de la distance V.dt/2 et le rayon a parcouru la distance c.dt/2, puisque c n’est pas
modifié par le déplacement du train. Le trajet retour dure de méme dt /2, durée pendant laquelle
le rayon parcourt de nouveau la distance c.dt/2 et le train la distance V.dt/2 (Figure 41, partie
basse).

2 2
Mais L? = c2.dt'?, donc (c? — V?).dt? = c?.dt'?, ce qui s’écrit :

D’aprés le théoréme de Pythagore : (c.%)z = (V. E)2 + (E)Z = (c? —=V?).dt? = 2.

at’ , 1 dt
dt=—2=y.dt avec y ¥ ——= >1

1-= 1-5
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Figure 41 : La mesure d’un intervalle de temps dt ou dt’' dépend du référentiel choisi.

Parexemple:V =87% dec =y = = 2 etdt = 2.dt' : un voyageur a Uintérieur du train

1
\/1-0,872
voit passer un intervalle de temps dt’ pendant que l'observateur immobile sur le quai voit lui
passer un intervalle de temps dt = 2.dt’ deux fois plus long: si une personne pouvait voyager

dans unteltrain, elle vieillirait donc deux fois moins vite qu’une autre personne restée sur la quai.

Pour une particule en mouvement, le temps t’ de ’équation (48) mesuré par rapport & un
référentiel lié a la particule est appelé le temps propre de la particule et définit la vitesse de la

. . dx
particule suivant P

Si cette vitesse vaut v = % dans un référentiel fixe R, alors, d’apres (48) :

dx dx dt dx

a " acar Va VY
Dans R, la quantité de mouvement d’une particule de masse m estdoncp = y.m.v.
En particulier, si v = ¢, alors y = o ce qui nécessite d’avoir m = 0 pour ne pas avoir une
quantité de mouvement qui tende vers Uinfini. On en déduit donc que seule une particule de
masse au repos nulle peut se déplacer a la vitesse de la lumiere :

v=c=>m=0 (49)

Pour une particule de masse m se déplagcant a lavitesse v < c par rapport a un repere R fixe :

1

m.c? v?\ 2 1v? 1

ymecl=——=mc:(1-=]| =mc?|(l+-=|=m.c?+-m.v?
) 2 c? 2c? 2

p)
c

En utilisant Uapproximation (1 — &)™ = 1 — n.e pourtoutnsie < 1.

Le terme E = y.m.c? est donc U'expression d’une énergie décomposée en la somme d’une
énergie cinétique E,. = Em.vz, en lien avec la vitesse de la masse, et d’une énergie de repos

portée seulement par la masse de la particule, E, = m.c?

Sous réserve du respect des lois de conservation, une particule au repos de masse m peut donc
se désintégrer en une énergie E,., et une énergie E, peut se matérialiser en une particule de
masse m, ces deux quantités étant liées par la relation :

50
E, = m.c? (50)

39



En dehors de toute approximation sur v, E = y.m. c? est donc 'énergie totale d’une particule (en

’absence de toute énergie potentielle), et Uexpression relativiste de U'énergie cinétique est donc
2

simplement E. = (y — 1).m.c?. En calculanty? — 1 = sz—

—,» On pourra facilement vérifier que

2
E.=(@—-1)m.c?= #.m.vz , forme sous laquelle, lorsque v <K c =y =~ 1, on retrouve

Uapproximation non relativiste bien connue de U’énergie cinétique E,. = 5. m. v2.

L’énergie totale, cinétique et de repos, s’exprime aussi suivant :

vz
E=y.m.c>=E?=y%2m?c*= mz.c4.<1 + 1v2 — 1) =m2.c*t(1+ “sz
1-% 1-%
2
= E? = mz.c4.(1 +y? Z—z) =m?.c* + m?.c2.y%.v?.

Comme p = y.m.v, nous obtenons pour l’énergie totale :

E? =m?.c* +p?.c? (51)

C- Larelation du quantum

Par définition, le photon est le corpuscule associé a une onde électromagnétique.
Sa masse aurepos m = 0 puisqu’il se déplace a la vitesse de la lumiére.
D’apres (51), sa quantité de mouvement est :

_E
p_c

(52)

L’onde électromagnétique pure suivant la relation (47) de Louis de Broglie A = h/p.
Pour un photon, la combinaison des équations (47) et (52) permet d’écrire : E = p.c = % c.Dans

le cas particulier d’un photon, la relation de Louis de Broglie est connue sous le nom de relation
du quantum. Elle relie ’énergie d’un photon (aspect corpusculaire) a la fréquence de 'onde
électromagnétique qui lui est associée :

E_h.c_h -
== f=hw

(53)

En exprimant ’énergie en électronvolts (1 eV =1,602.107"°J) et la longueur d’onde en nanométres,

, . .. 6,626.10734.2,998.108 .
cette équation s’écrit E(el) = soit :
q (eV) 1,602.10"19. A1(nm).10~9’

1240

A(nm) (54)

E(eV) =

Larelation 54 permet de classer les ondes électromagnétiques en fonction de la longueur d’onde
ou de la fréquence de l'onde, ou en fonction de 'énergie du photon associé (figure 42).
Les rayons X ety se distinguent seulement par leur origine :
- Un rayonnement gamma (y) est produit au sein des noyaux atomiques ou par
annihilation entre une particule et son antiparticule (cf. paragraphe 3-H-II).
- Unrayonnement X est lui produit par des transitions électroniques au sein d’un atome
ou par une accélération d’électrons (freinage ou courbure de leurs trajectoires). Ces
aspects sont détaillés aux paragraphes 3-F et 3-G.
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Figure 42 : Présentation simplifiée du spectre des ondes électromagnétiques.

On comprend que la nature se manifeste plutdt par ses aspects ondulatoires pour des énergies
inférieures a quelques électrons-volt (visible, IR, micro-ondes et ondes hertziennes) pour
lesquelles les longueurs d’ondes peuvent étre diffractés par des objets proches de notre échelle.
A linverse, les aspects corpusculaires prédomineront lorsque la longueur d’onde devient petite

(§—> 0, ce qui empéche toute manifestation ondulatoire du type diffraction) donc pour des

énergies de photons supérieures a quelques dizaines d’électrons-volts (UV, X ou y).

D- Retour sur la diffraction : les relations d’incertitude d’Heisenberg

Nous avons vu (cf. paragraphe 1-H) qu’une source ponctuelle de radiation de longueur d’onde 4
placée a grande distance d’une fine fente rectangulaire de hauteur b percée dans un écran
opaque s’y présente sous la forme d’une onde (localement plane), y est diffractée en vertu du
principe de Huygens-Fresnel, puis subit des interférences tantdét constructives, tant6t
destructives. Il en résulte sur un écran placé par exemple a un metre de la fente, pour de faibles
angles, 'apparition d’une figure de diffraction avec des minima de luminosité espacés d’un

intervalle angulaire 0,,;, = sin 0, = b Cette figure qui résulte de Uaddition algébrique de
multiples ondes sphériques issues de la fente est un phénoméne purement ondulatoire.

Reprenons la description d’une expérience de diffraction (cf. paragraphe 1-H), mais sous un point
de vue corpusculaire, en supposant que la source de lumiére émet ses photons un par un de
maniére a éviter que 2 photons soient en méme temps dans un trajet entre la source et U'écran
(figure 43). Aucune interférence n’est alors concevable, et pourtant au bout d’un certain temps,
on enregistre sur ’écran la méme figure que celle observée précédemment.

En terme corpusculaire, cela oblige a admettre que lorsqu’un photon arrive au niveau de la fente,
un processus aléatoire dépendant d’une certaine loi de probabilité décide de l’angle 8 que
prendra la trajectoire, donc la quantité de mouvement p du photon aprés la fente. Cette
probabilité est maximale pour les angles 8 associés a des maxima d’intensité sur Uécran, et

minimale pour les multiples de %.
Dans ce modele, Uincertitude sur la position d’un photon x est Ax = b.
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Figure 43 : Distribution d’intensité observée avec une source de photons émis un par un vers
une fente mince percée dans un écran opaque.

Au passage de la fente, Uincertitude sur la composante verticale de p est Ap, = p.sinf =~

p.0 pour 8 K 1. Comme Uordre de grandeur de 6 = %, Uordre de grandeur du produit Ax. Ap,

est, d’apres (47) : Ax.Ap, = b.p.0 = b.p.% =p.l=h

Le produit Ax. Ap, des incertitudes au passage de la fente sur la position et sur la quantité de
mouvement du photon est donc de U'ordre de la constante de Planck, soit 10734, Cette valeur est
faible, mais non nulle :

Ax.Ap, > 0 (55)

Cette inégalité porte le nom de relation d’incertitude d’Heisenberg.
Ces considérations ont plusieurs conséquences importantes :

1- L’introduction de hasard dans les lois physiques est nécessaire pour expliguer comment
une particule peut se manifester comme une onde, dans une description duale.

2- Il est impossible de connaitre avec une précision parfaite a la fois de la position et la
quantité de mouvement de la particule a un instant donné, quelle que soit la précision
des mesures envisagées.

3- Ledétermination de la trajectoire d’une particule nécessite d’intégrer deux fois la relation

fondamentale de la dynamique Zﬁ =m.d, ce qui implique de connaitre avec une
précision parfaite a la fois de la position et la quantité de mouvement de la particule a un
instant donné. Comme ceci est impossible, la notion de trajectoire n’a plus aucun sens a
’échelle des particules élémentaires. On ne pourra déterminer que des probabilités de
présence a un endroit et un instant donnés.

E- Quantification des grandeurs atomiques

Nous avons vu au paragraphe (1-G-Il) qu’une onde pure confinée entre deux miroirs distants de L

se réduisait a une onde stationnaire dont la longueur d’onde A était quantifiée sous la forme A1 =
2.L . c c .
— soit f = 1= k.ﬂ avec k entier non nul.
AN E h
Pour le photon associé a cette onde, E = h. f = h.k.z—cL etp=—= k'ﬂ' Dans un espace clos,

I’énergie et la quantité de mouvement d’'un photon ne peuvent donc prendre que certaines
valeurs bien particuliéres. On dit que les grandeurs physiques sont quantifiées.
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CHAPITRE 3: LE MODELE ATOMIQUE DE BOHR

Présentation : Ce dernier chapitre propose d’exploiter tous les résultats acquis pour établir un
modele de l’'atome et du noyau atomique suffisamment pertinent pour permettre a un
professionnel de santé de fonder ses connaissances en chimie (orbitales, construction des
structures moléculaires), de comprendre le bénéfice pour ses patients de Uexploitation de
rayonnement ionisants (en imagerie médicale radiologique ou scintigraphique comme en
radiothérapie), mais aussi les risques que ces derniers peuvent engendrer. Nous détaillerons le
premier modéle atomique proprement scientifique élaboré au tout début du XX° siécle par
analogie avec le systeme solaire. Nous ’exploiterons pour définir la notion de défaut de masse
au sein du noyau atomique, comprendre la stabilité du noyau et l’origine de [’énergie produite par
les réactions de fusion ou de fission nucléaire. Nous verrons en quoi ce modele est insuffisant
pourdécrire correctement les électrons d’un atome, avant d’exploiter les résultats de mécanique
ondulatoire obtenus au chapitre précédent pour établir le modéle atomique de Bohr. Aprés avoir
justifié la forme de [’équation de Schrédinger par une approche trés simple, nous l’exploiterons
pour introduire la notion de fonction d’onde et les nombres quantiques qui permettent
d’améliorer le modeéle de Bohr, de calculer de fagcon exacte [’énergie des électrons atomiques et
la facon dont les électrons forment le nuage électronique d’un atome. Nous terminerons le
chapitre en décrivant comment sont produites les sources de rayonnements ionisants utilisés en
particulier dans les domaines du soin : fluorescence et rayonnement de freinage pour les rayons
X, divers modes de radioactivité pour les rayonnements utilisés en médecine nucléaire.

A- Le modele atomique de Rutherford-Nagaoka.
Modele atomique de Rutherford-Nagaoka : L’atome est modélisé par un petit noyau en son
centre, chargé positivement et portant 'essentiel de la masse atomique, entouré d’électrons en

orbite autour du noyau a une distance trés supérieure au diametre du noyau.

Quelgues définitions et ordres de grandeurs :

- Les nucléons sont les neutrons et les protons qui constituent le noyau atomique. On les
modélise comme des spheres de rayonr = 1,4. 1075 m=14 fm.
- Le numéro atomique Z est le nombre de protons dans un noyau atomique. L’atome étant
neutre, il est égal au nombre d’électrons dans ’atome.
- Le nombre de masse A est le nombre de nucléons (protons et neutrons) d’un noyau
Ce terme est justifié car la masse des électrons est négligeable par rapport a celle des
nucléons. Le nombre de neutrons d’un atome est A-Z.
- Unatome de symbole chimique X sera noté ‘}‘X.
- Un atome hydrogénoide est un atome ne possédant qu’un électron.
- Deuxatomes sont:
o isotopes s’ils ont méme Z.
o isobares s’ils ont méme A.
o isotones s’ils ont méme nombre de neutrons A-Z.
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Quelques unités :

- Un électron-volt et notée eV est l’énergie acquise par un électron accéléré sous une
différence de potentielde 1V :

leV =1,6.10"19)

(56)

- L’unité de masse atomique, de symbole u, est le douzieme de la masse d’un atome de

1 121073

carbone 12C, dont une mole aune massede 12 g, soitlu = —.———:
12°6,022.1023

— —-27
lu=166.10"""kg (57)
- La relation (50), E =m.c?, permet d’exprimer une masse en son équivalent
=27 2
énergétique Dans ces conditions, 1 u = Lee. 10 '299_71992458 eV, soit:
1,602.10
1u =931 MeV (58)

Dans cette unité énergétique exprimée, 'électron, le proton et le neutron ont des masses
m, = 0,511 MeV,m,, = 938,280 MeV etm,, = 939,573 MeV.

A propos du noyau atomique :

T N 4 4
- Un noyau est modélisé comme une sphére de rayon R tel que E.n.R3 = A.E.n.r3. Les

valeurs de R = YA .r varient donc entre 1,4 fm (pour U'hydrogéne) et 9,3 fm (pour
Uoganesson %72 0g). Cette dimension de 'ordre du femtométre explique la cohésion du
noyau (par interaction forte qui domine la répulsion électrostatique entre protons) et le
fait qu’un atome, dont le diamétre est de Uordre d’1 A = 1071° m est majoritairement

constitué de vide.

- La masse d’un noyau M(‘}X) est inférieure a la somme des masses de ses constituants
Z.my, + (A — Z).m,. Uécart entre ces deux masses est appelé défaut de masse AM et
fournit ’énergie de liaison AE (par interaction forte) entre nucléons (relation 1-58) :

AE B
AM=?= Zmy+ (A—Z).m, —M(4X) >0 (59)

La cohésion relative d’un noyau par rapport a un autre s’estime en évaluant ’énergie de
- , AE . .
liaison par nucléons —_ausein des noyaux (figure 44). Les noyaux les plus stables sont

ceux dont le nombre de nucléons est proche du fer 3¢Fe. Les nucléons des noyaux plus
légers ou plus lourds sont moins liés peuvent conduire a des réactions de fusion (pour les
noyaux légers) ou de fission (pour les noyaux les plus lourds) fortement exothermiques
pour produire des noyaux plus stables.
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Figure 44 : Courbe d’Aston représentant évaluant ’énergie de liaison par nucléons —_en
fonction du nombre de nucléons A.

C- Les limites du modele atomique planétaire

Le modele planétaire de Rutherford-Nagaoka présente une faille immédiatement identifiée par
les scientifiques de ’époque :

Des électrons en orbite autour d’un noyau constituent une boucle de courant qui, suivant la
théorie électromagnétique de Maxwell, doit rayonner de U’énergie. Les électrons perdant peu a
peu cette énergie devraient 'émettre sous forme d’onde électromagnétique de période de plus
en plus courte (avec le rayon de Uorbite qui diminue), donc de fréquence continument croissante
avant de finir par s’écraser sur le noyau. L’expérience infirme completement cette conclusion :
d’une part, les atomes sont des structures stables. D’autre part, les spectres émis par des
atomes chauffés dans des lampes contenant des gaz de sodium ou de mercure montre au
contraire des spectres discrets, composés de quelques fréquences seulement et non des
spectres continus. Ces fréquences sont par ailleurs les mémes que celles qui sont absorbées
par ces atomes (figure 45).

- - lumiére 5 ‘ O(TSpectres d'absorption
blanche 7 = [
EEE W

. ,,/:\ -
- [ ]
sl

+ _~ Spectres d'émission

"/
Figure 45 : Exemples de spectres d’émission et d’absorption discrets obtenus avec des
vapeurs de mercure ou de sodium.
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A la fin du XIX siecle, en tatonnant, on avait fini par mettre en évidence que les longueurs d’onde
des raies d’émission ou d’absorption de ’hydrogene pouvaient étre calculées a partir d’une
formule empirique ou n’intervenait qu’une constante et deux nombres entiers. Cette formule est
connue sous le nom de formule de Rydberg-Ritz s’écrit :

%R'(%‘%) (60)

Dans cette formule, 0 < n < p sont deux entiers naturels et la constante de Rydberg est ajustée
alavaleurR = 1,097.107m™ 1.

D- Le modele atomique de Bohr

Nous nous intéressons dans un premier temps a un atome hydrogénoide.
L’électron du modéle de Rutherford-Nagaoka est supposé confiné sur la circonférence d’une
orbite de longueur C = 2. 1. 7. llestdonc associé a une onde stationnaire dont la longueur d’onde

vérifie C = k'E avec k entier naturel non nul. Dans le cas d’une orbite circulaire (refermée sur

elle-méme), si k est impair, alors 'onde subit des interférences destructives et n’existe pas. On

supposeradonc C = 2.m.r = n.1, n étant un entier naturel non nul.

La relation de louis de Broglie (47) donne alors C = 2.m.r =n.A = n.% =n. %, soit :

”Z| & |ImIBAF|=mv.r=n—=n.h (61)
2.

La relation (61) constitue une premiere quantification qui porte sur la norme du moment
cinétique L de l'électron sur son orbite.

Dans le champ électrostatique d’un noyau de charge Z. e, U'électron de charge —e est soumis a
Z.e?

4.T.&)

. . . - 1.
une force électrostatique attractive centrale de la part du noyau de norme ||Fe|| = — qui

2
D 71 2 . . N v , . . . ,
génere une acceélération centripete de la forme —-nécessaire pour maintenir Uélectron sur une

trajectoire circulaire a vitesse angulaire constante (cf. rappels de mathématique). La relation

. s ., Ze? 1 v? Ze? 1
fondamentale de la dynamique s’écrit S=m—=>r= —. Le terme m. v se calcule
4.T.E0T 4.7.8g MV
au moyen de la (61): (m.v)? = (n'h)z = m.v? =2 (n'h)z ce qui donne r = 2= Mm% 1
y ' ) “\r ) “m\r /"’ q T 4mey (nh)? r
zer m_ soit :
4.m.gy (n.h)2’ )
4.1 ¢
22 °7 0 2
r =n°h*.———=n".r
Z.e2.m 0 (62)

7

Dans la relation (62), pour de ’hydrogene (Z = 1), puisque g5 = 10 (cf. équations 1-29 et 1-36),

4.1.c2
5 107
X 4me 6,626.10734 2,998.108)° _ o
on évaluery, = h2. L = ( ) . (_ ) — =0,53.10719 = 0,53 A.
Zelm 2. (1,602.10-19)2.9,109.10~31

Le fait d’associer une onde (stationnaire) a ’électron d’un atome d’hydrogéne contraint celui-ci
a se trouver sur des orbites discrétes de la forme 7, = n2.0,53 A, soitr; =15 = 0,53 4,1, =
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22,19 = 2,12 A, 5 = 3%.1y = 4,77 A ... qui correspondent bien aux estimations expérimentales de
la dimension d’un atome.

Aspect énergétique :

Ze? 1 v? zZe? 1 2 1 2 1 Z.e? ) 2 . s
S=m—= —=mv*=E.=-mv°=— pour Uénergie cinétique de
4.T.EGT r 4mMEYT 2 2.r 4.m.&9
l’électron.
5 2 . . 5 . , . Ze 1
L’énergie potentielle d’interaction électrostatique avec le noyau £, = —e.V = —e. ppptng
. . o
y < . y < 1 Z.e? Ze? 1 1 Ze?
L’énergie totale de UélectronestdoncE = E. + E) = ———— ——— .- = —— .
2.r 4.m.&9 4mMEY T 2.r 4.m.&g

En remplagant dans cette expression r par son expression donnée par la relation de

. . 4.1 . 1 Z.e’*m Z.e? Z%e*m .
quantification (62), r = n?A%.—, on obtient E = —=. ) = — , SOit :
Z.em 2 h\? 4.11.8 8.n2.h2.g,2
4 2 2
e*.m Z VA
E)=——— = =—E,— (63)
8.h2.gy% n? " n?
1 e*m _ (1,6021071%)°9,109.10731

E; , secalcule en eV suivant E; ;(eV) = >=—13,6¢€V.

g S.hz.goz 7
8.(6,626.10‘34)2.<$2>
4.1,(2,998.108)

L’expression de U’énergie totale de l’électron d’un atome hydrogénoide de numéro atomique Z
est finalement d’une forme simple :

ZZ
En(eV) = ~13,6.~

(64)

Cette énergie (de liaison de ’électron au noyau) est quantifiée par un nombre entier strictement
positif n que 'on nomme nombre quantique principal et qui définit une couche (ou niveau)
énergétique de U'électron.

Pour soustraire U'électron a Uattraction du noyau, il faut amener cette énergie a 0 (n — ), et

donc fournir a Uélectron situé sur la couche n une énergie d’ionisation E, = —E, >0 ,

généralement apportée a l'électron par un photon d’énergie E, = h.f =TC =h.w qui est

absorbé par l’électron, suivant la relation (53).

; etm Z2 Z?

En =t g gz~ T30z (65)
SIE,(eV) = E, — E, = —13,6.2% (= — =) = 13,6. 2% (= — = ’ ion d’
iE,(eV) =E, — E, = —13,6. '(p_z_ﬁ)_ ,6. '(ﬁ_p_Z)’ alors ’absorption d’un photon

d’energie E, par un électron d’une couche (énergétique) profonde n permet a cet électron de
passer sur une couche plus périphérique p > n. On dira alors que ’atome est excité.

Un atome excité peut voir spontanément son électron placé sur une couche périphérique p

revenir sur une couche plus proche du noyau n < p, donc moins énergétique, en émettant sous
la forme d’un photon d’énergie E, Uécart d’énergie entre ces deux couches: E,(eV) =
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13,6.22.(%—12). Le photon émis lors d’une telle désexcitation porte le nom de photon de
nz p

fluorescence.

L’électron d’un atome d’hydrogene ne peut donc absorber ou émettre que certains photons de

s . ;g N . . h.c
longueurs d’ondes bien spécifiques, les mémes dans les deux cas, satisfaisant Eq,(eV) ===
1 1 R . . . .
13,6.Z2. (ﬁ - p—z), et donc, en revenant a une énergie exprimée en joules :

1 136e (1 1 1 1 13,6.e 13,6.1,602.1071° _
1= .(———)=R.(———)avecR= = - =1,097.107 m™ 1.
A h.c n2 p2 nz p2 h.c 6.626.10734 2,998,108

On retrouve ainsi tres exactement la constante de Balmer et la formule empirique de Rydberg-
Ritz (équation 1-68) a laquelle le modele atomique de Bohr donne une explication cohérente. La

présence des deux nombres entiers n et p se trouve expliquée, et ’équation (63) permet au
1 e*m _  e'm
h.c 8.h2.692  8.h3.c.602

passage d’exprimer la constante de Balmer enfonction de constantes: R =

Dans le cas d’atomes a plus d’un électron, le modele de Bohr se généralise en exprimant que la
charge du noyau est en partie masquée a un électron de la couche n par les charges négatives
des électrons des couchesp < n:

eim (Z-0)? 7 —0)?
( ) = —13,6.u
8.h2.gy2" n?

E(eV)=— ) (66)

La constante o est appelée constante d’écran. Elle est nulle pour des électrons de la premiére
couche (n = 1) et croit avec n.

Pour un électron impliqué dans une liaison covalente entre les atomes d’oxygene et d’hydrogene
d’une molécule d’eau, U’énergie d’ionisation moyenne est de U'ordre de 32 eV. Cet électron ne
pourra donc étre ionisé que par des photons ultraviolet, y ou X (cf. figure 42).

Ces rayonnements sont qualifiés de rayonnements ionisants. Pour un organisme humain
constitué principalement de molécules d’eau, seuls les rayonnements ionisants sont capables
d’ioniser un électron covalent d’une molécule d’eau et de provoquer la rupture de cette liaison
covalente. Ceci produit des radicaux libres OH° (groupement OH avec un électron non apparié)
qui sont des substances chimiques fortement oxydantes, ainsi que des électrons et des protons
libres qui eux sont fortement réducteurs. Ces produits de la radiolyse de eau sont extrémement
réactifs (au sens chimique du terme) et capables de dénaturer des membranes ou des protéines
cellulaires telles que UADN nucléaire. A forte dose, ils peuvent ainsi provoquer des lésions
tissulaires responsables d’insuffisances organiques (hématopoiétiques en particulier)
potentiellement mortelles. A plus faible dose, ils peuvent également étre a U'origine de cancers
radio-induits. Les rayonnements non ionisants, visibles, IR ou hertziens, au contraire, ne sont pas
associés a des photons d’énergie suffisante pour ioniser un électron atomique, et ne peuvent
donc pas provoquer de telles pathologies.

En dépit de ses succes dans la modélisation des faits expérimentaux, le modele de Bohr conserve
quelques limites :
1- La quantification du moment cinétique de U'électron qui en découle n’est pas vérifiée par
I’expérience (équation 1-69).
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2- Il suppose pour les électrons Uexistence de trajectoires circulaires (orbites) a une
distance bien déterminée du noyau (équation 1-70). Or linégalité de Heisenberg
(équation 1-63) infirme U'existence de trajectoires pour des particules élémentaires.

3- Enfin, il ne modélise pas d’autres caractéristiques atomiques importantes, comme le
comportement d’un atome plongé dans un champ magnétique par exemple.

E- Equation de Schrodinger et remplissage des couches électroniques
atomiques

Pour dépasser les limites du modeéle de Bohr, il faut modéliser la position d’une particule
électronique a un certain instant t au sein d’un atome non plus par un jeu de coordonnées précis
(x,y,z,t), mais par une fonction nommée fonction d’onde Y (x, y, z, t) définissant la probabilité
de présence dp de cet électron dans un volume infinitésimal dV centré sur le point (x,y,2),a
linstant t, suivant la relation :

“ |y (x,y,2,0)|%.dV (©7)

Un raisonnement simple permet de comprendre comment une telle fonction d’onde peut étre
calculée. Pour simplifier, limitons-nous dans un premier temps a une fonction d’onde ne
dépendant que du temps et d’une seule dimension de 'espace.

En se limitant a une dimension, cette fonction ¥ (x, t) peut étre recherchée sous la forme d’une
onde progressive (de probabilité) se déplagant avec l'électron, donc de la forme Y(x,t) =
A.sin(w.t — k. x) suivant la relation (8). En dérivant & deux reprise cette expression, on obtient

successivement :

alpa(i’t) = :—x [A.sin(w.t —k.x)] = —A.k.cos(w.t — k.x) , puis

2
OVet) _ i —[—A.k.cos(w.t —k.x)] = —A. k?.sin(w.t — k.x) = —k?.(x,t), soit

0x?

o 1”(’”)+k2 Wix,t) = 0.

L’onde de probabilité i de vecteur d’onde k se propage avec la particule électronique de
quantité de mouvement p. En suivant le méme raisonnement que celui suivi pour établir la
relation de Louis de Broglie (paragraphe 2-A), Uapplication du principe de moindre action a cette
onde et a cette particule nous permet d’écrire p = hi. k (relation 1-54), ce qui conduit a k? =

2 2
Py _ (v
(h) - ( h ) )

En régime stationnaire (ou la fonction d’onde i ne dépend du temps), 'équation précédente

2 2
s’écrit alors M + k2.¢(x) = 0. En remplagant k? par (%) dans U’équation précédente, il

2
vient 0h) +( ) Wpx) =0 :h—.a w(x)

Py o ox? On reconnait dans cette

mv2

expression ’énergie cinétique de Uélectron E, = = E —E, ou E est Uenergie totale de

Uélectron et E,, son énergie potentielle dans le champ électrostatique du noyau telle que définie

2
au paragraphe 3-D. On adonc th.a bx) + (E E ) Y(x) = 0, soitencore :
h? 8%Y(x)
E, =E. (68)
o+ By () = EY()
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Cette équation est appelée équation de Schrodinger en régime stationnaire. Sa résolution (le
plus souvent approchée) permet de déterminer la fonction d’onde ), et donc, via la définition
(67), la probabilité de présence dp d’un électron atomique dans un volume infinitésimal dV
centré en tout point de Uespace.

Exemple d’un «puits de potentiel»: il s’agit d’'une configuration dans laquelle Uénergie
potentielle Ep(x) est nulle pour x € [0, L] et infinie en dehors de cet intervalle d’espace.

Pour une particule de masse m est piégée dans Uintervalle [0, L], U'équation de Schrodinger (68)
s’écrit :

_ ﬁ %P (x) %P (x) 2.mE

2 = def
P ) 5z Ta“y(x) =0aveca = —
La fonction d’onde ¥ (x) = A.sin(a.x + ¢) est solution Uéquation de Schrodinger puisque

Y _ 0
dx2 dx

— E.y(x) = 0 soit encore

[a.A.cos(a.x + @)] = —a?A.sin(a.x + @) = —a?.P(x).

La constante ¢ peut étre déterminée en remarquant que puisque la particule ne peut sortir de
Cintervalle [0,L] : ¥(0) = A.sin(p) = 0, et donc ¢ est un multiple de ™, ce qui conduit a
contraindre la solution sous la forme ¥(x) = A.sin(a.x). En écrivant que la particule se trouve
nécessairement quelque part dans lUintervalle [0,L], avec une probabilité de 1, on peut

, . 2
déterminer la constante A = \/;

Comme de plus (L) = 0 = A.sin(a.L), a.L = n.m,n étant un nombre entier. En revenant a la

(%)’

R VZmE . . V2ZmE . .
définition de a¢ & — il vient - .L=n.metdoncFE = nz.ﬁ, soit, avec n entier non nul :
_ K 2
=——.n
8.m.L?2

P(x) = A.sin (n%)

On constate dans cet exemple a une dimension que la résolution de ’équation de Schrodinger
aboutit a une fonction d’onde et a une énergie de la particule quantifiées par le nombre entier n.
La généralisation de ce résultat a un puit de potentiel a 3 dimensions aboutit de méme a une
énergie et une fonction d’onde quantifiées cette fois par 3 nombres entiers n, [, m.

Ces résultats obtenus sur un exemple de puits de potentiel sont tout a fait généraux.

Dans le cas d’électrons atomiques, la résolution de U’équation de Schrodinger (sous forme
analytique dans les cas simples, ou sous forme d’approximations numériques sinon) aboutit de
méme & des fonctions d’onde ¥, ; ,(x,y,2) et & des énergies totales E, ;,, quantifiées par 3
nombres entiers appelés nombres quantiques, (n, [, m).

Le calcul de la fonction d’onde pour un électron d’un atome d’hydrogene retrouve alors une
probabilité de présence maximale pour une distance au noyau correspondant exactement a celle
calculée par le modele de Bohr, ce qui confirme, avec la validité de sa prévision pour les niveaux
d’énergie de 'hydrogene, le grand intérét de 'approximation que constitue ce modele de Bohr.
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Dans un atome, les nombres quantiques relatifs aux électrons qui permettent de déterminer les
énergies et moments cinétiques des électrons atomiques sont soumis a certaines contraintes
dont 'étude sort des limites de ce cours. On ne fait que les citer :

- Le nombre quantique principaln > 0 est celui du modéle de Bohr. Il définit donc le
niveau ou la couche énergétique d’un électron atomique identifiées par les chimistes par
les lettresK(n =1),L(n = 2),M (n = 3) etc.

- Lenombre quantique secondaire I peut prendre toutes les n valeurs entieres comprises
entre 0 etn — 1 incluses. Les chimistes désignent ces électrons par les lettres s (pour [ =
0), p (pourl = 1),d (pour! = 2) ouf (pour! = 3), puis g, h, etc. dans U'ordre alphabétique.
Ajustement notable avec le modele de Bohr, il s’avere que la constante d’écran o définie
par ’équation (66) dépend non seulement de n, mais aussi de l. Il en est donc de méme
pour U'énergie d’un électron atomique qui s’écrit en toute généralité :

em (Z-o(n, l))2 B —a(n, l))z (69)
2

(z
En(eV) =— Nk = = —13,6.

Pour un atome hydrogénoide (a un seul électron, g = 0), le modele de Bohr estinchangé.
Enrevanche, pour un atome contenant plus d’un électron, il apparait a partir de la couche
L (n = 2), des sous-couches électroniques correspondant a des énergies légerement
différentes associées aux différentes valeurs de [ possibles. Pour la couche L par
exemple (n = 2), le nombre [ peut prendre les valeurs 0 et 1 correspondant aux sous-
couches 2s et 2p, chacune associée a un niveau d’énergie légerement différent. Pour la
couche K (n = 1), en revanche, une seule sous-couche 1s (I = 0) existe et s’identifie a la
couche énergétique. Les physiciens parlent de niveaux dégénérés.

Avec des arguments de mécanique quantique qui sortent du cadre de cours, on peut
montrer que le nombre quantique secondaire quantifie aussi correctement le module du
moment cinétique orbital de U’électron atomique non plus suivant 'équation 1-69 du

modele de Bohr (||Z|| = n. k), mais suivant ||L|| = /1. + 1). &.

- Le nombre quantique magnétique m peut prendre toutes les valeurs entieres
comprises entre —[ et +L incluses. Ce nombre n’a aucune influence sur la quantification
des énergies des électrons atomiques. Lorsqu’un atome est plongé dans un champ
magnétique externe ayant une certaine direction, on peut montrer que ce nombre m
permet de quantifier la projection L du moment cinétique de l’électron atomique L sur
cette direction suivant L = m. h.

- Un quatrieme et dernier nombre quantique n’est pas lié a Uinteraction électrostatique
entre les électrons et le noyau (nous avons vu que celle-ci ne nécessitait que les 3
nombres quantiques). Il résulte de Uexistence avérée d’un moment cinétique non plus
orbital mais propre a la particule électronique. La projection de ce moment cinétique sur
la direction d’un champ magnétique externe est quantifiée par le nombre quantique de

. 1
spinmg = i}'
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Un électron atomique sera donc complétement défini par 4 nombre quantiques (principal,
secondaire, magnétique et de spin), n, [, m, et m.

Le « principe d’exclusion » de Pauli affirme que deux électrons au sein d’un atome ne peuvent
étre caractérisées par le méme quadruplet (n, [, m, m;). Dans une couche n donnée, il est ainsi
possible de disposer de n sous-couches (Il =0,1,...,n— 1) et pour chacune de ces sous-
couches [ de 2.1 + 1 valeurs différentes de m. On dispose doncde1+3+5+ -+ (2.n—1) =
n? valeurs distinctes de m, donc de n? triplets (n, [, m) distincts pour une couche n donnée.

L . . . . 1
Enfin, & chacun de ces n? triplets (n, [, m), il est possible d’associer deux valeurs (+ E) de mg.
Chaque couche électronique n peut donc contenir au plus 2.n? électrons que l'on peut

. . . 1 1
regrouper par paires d’électrons de spin — 2 et + >

La figure 48 donne un exemple des sous-couches énergétiques et du remplissage de celles-ci
possibles pour un atome d’argon (Z = 18).

F- Excitation et désexcitation d’électrons atomiques

Lafigure 48 illustre comment un électron peut passer d’une sous-couche énergétique a une autre
plus profonde en émettant un photon de fluorescence dont U'énergie E = hf est égale a l’écart
d’énergie entre les sous-couches de départ et d’arrivée (d’ou le spectre d’émission de ’'atome).
Elle montre de méme comment un électron peut étre excité (ou ionisé) en passant d’une sous-
couche énergétique a une autre plus périphérique a condition d’absorber un photon d’énergie
E = hf égale de nouveau a l’écart d’énergie entre les sous-couches de départ et d’arrivée de
’électron, expliquant de ce fait le spectre d’absorption de ’atome.

Lorsqu’un photon dont U'énergie E = hf > E,il voit son énergie intégralement absorbée par un
électron de la couche n, ce dernier est ionisé (soustrait a 'attraction du noyau) et doté d’une
énergie cinétique E, = hf —EL. On parle alors d’effet photo-électrique. Un autre électron
(d’une couche p > n ou libre dans la matiere) pourra alors occuper la case quantique n laissée
vacante par lionisation, en émettant un photon de fluorescence.

70 ) > E =lhf = N
N .

E., ) PHOTON
& (W ® ELECTRON
. 2N % % ® () CASE LIBRE
FLUORES _":"\‘.: 20 iy Er ’ )
émission @ S ' * , .
ddyénnz:’;;é?n } & A | .a!bs;).rétfi.on l'
E, =hf = = _ ) d'un photon
Spae i d'énergie :
=E,.— E.s| i~ \ @ ? l he
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Figure 48 : Représentation schématique d’un atome d’Argon (Z=18, configuration 3s? 3p°) ayant
subi deux ionisations (cases quantiques libres sur les couches 2s et 3p) avec exemple de deux
transitions possibles (une fluorescence et une excitation).

Lors de transitions électroniques entre une couche périphérique et une couche profonde, proche
du noyau, 'écart d’énergie peut conduire a ’émission de rayons ionisants d’énergie de Uordre de
la centaine d’électronvolts ou plus, qualifiés de ce fait de rayonnements X.

En spectrométrie de fluorescence par rayons X, la mesure de U’énergie des photons de
fluorescence X d’un échantillon au préalable excité par un rayonnement électronique ou X
polychromatique permet de reconnaitre dans ces énergies de fluorescence certains écarts
d’énergie |En,l — E,r 7| correspondant a des transitions entre sous-couches d’un atome donné,
donc d’identifier cet atome et d’en déterminer sa concentration au sein de U'échantillon.

Pour étre complet sur ce point, notons que lors d’une transition électronique d’une sous-couche
(n, 1) vers une sous-couche (n’,1") plus profonde, le photon de fluorescence émis peut aussi étre
absorbé par un électron (n”, ') plus périphérique qui se trouvera ionisé. Aprés dissipation de
son énergie cinétique, ce dernier électron pourra revenir sur une couche électronique disponible
d’un atome, émettant alors un photon de fluorescence d’énergie inférieure a celui de la transition
initiale |En,l - Enr‘lr|. Ce phénomene porte le nom d’effet Auger et constitue un mode alternatif
de production de rayons X.

Nous verrons au paragraphe 3-H que certains processus radioactifs peuvent aussi conduire
secondairement a la production de rayonnements X.

Ces processus produisent des spectres de raies avec des intensités relativement limitées.
L’imagerie médicale radiologique a besoin de sources de rayonnement X beaucoup plus intenses
pour produire des radiographies exploitables. Elle utilisera pour cela une autre fagon de produire
des rayons X qui est décrite dans le paragraphe 3-G.

G- Rayonnement de freinage

La figure 49 représente schématiquement un tube a rayons X utilisé dans les services de
radiologie. Un filament chauffé libére des électrons qui sont accélérés vers une anode tournante
A en tungstene (Z = 74) sous une différence de potentiel V de 'ordre de 100 kV.

u S
S e | 4 —y —
- .
- e
” X
L -

100 kV

Figure 49 : Schéma d’un tube producteur de rayons X par rayonnement de freinage.
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Dans l’anode, le faisceau d’électrons de 100 keV sont déviés par U'attraction électrostatique des
1 Ze?

4180 T2

noyaux de tungstene, et subissent une décélération a de la forme m.a = . Ce freinage

des électrons est principalement transmis a 'anode sous forme de chaleur, mais la variation de
densité du courant d’électrons génere aussi un rayonnement de freinage X ou Bremsstrahlung
(suivant Uéquation 1-34). L’énergie e ce rayonnement est proportionnelle au carré de
l’accélération, soit inversement proportionnelle au carré de la masse des particules déviées, et
donc particulierement importante pour des particules de faibles masses comme les électrons.

Spectre du rayonnement de freinage : Les électrons d’énergie E,,,, = e.V atteignent A puis
traversent une épaisseur dx ou un premier seul photon X est produit pour un électron incident.
L’énergie du photon X étant une fraction aléatoire et équiprobable de E,,,,, le spectre émis par
dx est constant entre 0 et E,,,,,.. La deuxieme épaisseur dx traversée émet de méme un spectre
constant entre 0 et E,,,, — &, Uénergie maximale des électrons se présentant devant cette
deuxieme épaisseur. Apres traversée de toute ’anode, le spectre X obtenu est donc un spectre
continu tel que celui représenté dans la partie gauche de la figure 50.

Mais les photons de faibles énergies sont absorbés par effet photo-électrique dans ’anode et ne
sont donc pas observés (figure 50, partie médiane). Enfin, ces effets photo-électriques
produisent secondairement des photons de fluorescence qui forment finalement un spectre

continu de rayonnement de freinage tel que celui de la partie droite de la figure 50.
N(E) N(E) N(E)

Figure 50 : Construction du spectre d’un rayonnement X de freinage

H- Désintégrations radioactives

Une désintégration radioactive est une transformation d’un noyau atomique pere ‘}X instable en

un noyau fils ;:Y avec émission de particules élémentaires. Les noyaux instables sont
caractérisés par des nombres de masse A élevés, un déséquilibre entre nombre de protons etde
neutrons ou des nucléons excités. Il en existe une cinquantaine d’isotopes radioactifs de naturels
qui se désintegrent tres lentement. Depuis les travaux d’lrene et Frédéric Joliot-Curie ont sait
fabriquer des isotopes radioactifs artificiels qui se désintegrent beaucoup plus vite, et peuvent
de ce fait étre administrés a des patients sans entrainer une longue exposition a des
rayonnements ionisants.

Pour qu’une désintégration radioactive soit possible, il faut, entre autres choses, que les lois de
conservation de U'énergie, de la quantité de mouvement, et de la charge électrique soient
respectées.

!
Considérons une désintégration 4X — ;‘,Y + p ol pest une particule élémentaire.
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Notons M (4X) lamasse de 'atome 4X, M(4X) celle de son noyau, m,, celle de la particule et m,
la masse d’un électron.
L’énergie E; rendue disponible lors de la réaction est :

Eq = (M(3X) = [M (7) +my)).c? (70)

La masse du noyau est celle de ’'atome moins celle de ses électrons :

M(4X) =M (4X) — Z.m, (71)

|- Radioactivité alpha (impliquant Uinteraction forte)

La radioactivité alpha (a) consiste en I’émission d’un noyau d’hélium 5He (2 protons + 2
neutrons), encore appelé particule alpha, par un noyau pere :

4X > 473Y + 4He ou 4X > 473V +«a (72)
La radioactivité a concerne les noyaux volumineux :
E;=MX)—[MY)+M@)]).c?=MX) — [M(Y) +M(3He)]).c? >0=A> 150
La conservation de la quantité de mouvement s’écrit :
1 , 1 ) my
My. Vy = Mg. Vg = 7. (my.vy)* = 5 (Mg.vy)* = myEy = myE, = Ey = m_E“
Y
Puisque E4 = Ey + E, = (1 + %) E, etcompte-tenude my > m, :
Y
— My ~
Eo = Ea~Ea (73)

Le spectre de ’émission alpha est donc (en premiére approximation), un spectre de raie unique.
En pratique, Uénergie de la raie est de l'ordre de 4 a 9 MeV en fonction des isotopes utilisés en
radiothérapie métabolique ou en curiethérapie. Ces isotopes permettent de déposer une forte
énergie sur une distance de quelques micrometres et sont utilisés pour traiter divers cancers (col
de l'utérus, sein, peau, prostate, etc.).

lI- Radioactivité béta et capture électronique (impliquant Uinteraction faible)

Les noyaux instables du fait d’un déséquilibre entre protons et neutrons peuvent se désintégrer
de fagon isobarique (A est inchangé) en transformant un neutron en proton ou un proton en
neutron.

RADIOACTIVITE BETA MOINS
La radioactivité B~ concerne des noyaux riches en neutrons ol un neutron n se transforme en

proton 1p avec émission d’un électron _Je~ et d’un antineutrino Jv suivant la réaction :

55



Inolp+ % +9 soit 4X - AV + %+ 90 (74)

Eqg=MX) — [MY) +me-]).c? = (MX) —M(Y)).c? = E.- + E; puisque, comme pour
’émission a, le noyau de recul Z+‘1‘Y n’emporte qu’une part infime de U'énergie disponible. Il
s’ensuit pour U'électron émis un spectre en énergie continu (figure 51 a gauche) entre 0O et E;.

Spectre - Spectre g+

p(Eo-) s B P(Ee*‘)‘
Es

Y\ A

1 Ev 1

E, .

o
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| &=
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an.-J— —— - — -
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©

+
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Figure 51 : Allure d’un spectre de rayonnement et f*. On donne ici la probabilité pour un
électron ou un positon d’étre émis avec une certaine énergie.

En radiothérapie métabolique, les électrons émis par des isotopes radioactifs - permettent de
déposer une forte énergie sur quelques mm, ionisant et détruisant des tissus pathologiques
(arthrites inflammatoires, cancer différencié de la thyroide, cancer du foie, de la prostate,
tumeurs neuro endocrines etc.).

RADIOACTIVITE BETA PLUS ET CAPTURE ELECTRONIQUE
La radioactivité §* concerne des noyaux riches en protons ou un proton 1p se transforme en
neutron Jn, avec émission d’un électron positif ou positon ,Je* et d’un neutrino Jv :

Ipodn+ et + v soit 4X -, 9V + et + v (75)

De nouveau E;g=MX)— M) +mg+]).c?=MX) —MY) —2.my+).c> = E,- + Ey
conduit & un spectre continu du rayonnement 8+ (figure 51, partie de droite).

Apres avoir cédé son énergie cinétique sur quelques mm sous forme d’ionisations, le positon
émis va s’annihiler avec un électron naturel suivant et + e~ — 2y. Les masses de U'électron et
du positon disparaissent et se transforment en deux photons y émis dans deux directions
opposeées, porteurs chacun de Uénergie correspondant a la masse d’un électron : E), = m,-. c? =

511 keV.

Cette paire de photons peut étre détectée par un tomographie par émission de positons (TEP),
permettant Uexploitation de la radioactivité B a des fins d’imagerie scintigraphique. La figure 52
donne un exemple d’une image obtenue par TEP au moyen de molécules de glucoses marquées
par du fluor 18.

56



"
: Figure 52 : exemple d’image
”' f scintigraphique obtenue par
& tomographie par émission de
- positons (TEP) au 12F — FDG.

Notez la fixation physiologique
du glucose dans le cerveau, le
foie, 'estomac, et
U'élimination du radiotraceur
par les reins.

La capture électronique est un mécanisme alternatif & la radioactivité B+ dans lequel un
électron K de ’atome est absorbé par ’'atome pére transformer un proton en neutron :

I+ e > n++v soit 4X+ Qe >, 4V + v (76)

En notant ElK I’énergie d’ionisation de U’électron K de ’'atome 4X, la contrainte de positivité de
Uénergie disponible E; = (M(X) + my+ — M(Y)).c? — Ef = (M (X) — M (Y)).c? — Ef apparait
moins exigeante que pour la radioactivité f*.

Une capture électronique est suivie d’une émission de photons X de fluorescence dont les
énergies sont caractéristiques de Uatome fils, permettant le dosage in vitro de certaines
substances biologiques marquées avec de l'iode 125.

lll- Radioactivité gamma, conversion interne et création de paires (impliquant
Uinteraction électromagnétique)

Comme les électrons atomiques, les nucléons présentent des niveaux énergétiques quantifiés.
Les noyaux de certains isotopes peuvent passer d’un état excité (dit métastable) a un état plus
stable, d’énergie inférieure, en émettant 'écart d’énergie sous la forme photons gamma (y). On
parle alors de radioactivité y.

2X™ = §X + 3y (77)

oUEy = (M(X™) — M(X)).c? = (M(X™) - M(X)).c2~E, = h.f = %

La radioactivité y est exploitée en imagerie scintigraphique par émission de photon unique ou
des isotopes émetteurs y sont fixés a des vecteurs ciblant certains organes. L’enregistrement la
distribution des émissions gamma au moyen de gamma-caméras, on produit des images
scintigraphiques qui renseignent sur le fonctionnement de nombreux organes: cerveau,
thyroide, parathyroides, poumons, cceur, reins, os etc.
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La figure 53 donne U'exemple de la désintégration du technétium 99 métastable, le principal
isotope utilisé en imagerie par émission de photon unique.

o

G
[426kelV wommpmmmmmmmm e ———n

140,5 kel === 4- -~ -

9B,6%
14% \J—> y
E,=1426kev [\

E, = 1405 keV

Figure 53 : schéma de désintégration du technétium 99 métastable /2T ¢

La figure 54 ci-dessous est un exemple de scintigraphie osseuse obtenue avec des molécules de
biphosphonates marquées au technétium 99 métastable. Les biphosphonates se fixent sur les
tissus osseux en cours de réparation aprés une agression. Les foyers d’hyperfixation des
biphosphonates (observables en noir sur le squelette axial dans la figure 54) correspondent a des
lésions métastatiques osseuses.

Figure 54 : Exemple de

[ scintigraphie osseuse

', obtenue au moyen de

¢ molécules de

¢ biphosphonates marquées
- .

3 | au technétium 99
wry métastable.

Deux modes de désintégration proches de 'émission gamma sont également possibles.

La conversion interne ou aprés une émission gamma standard, le photon gamma est absorbé et
ionise un électron de 'atome dont il estissu. Il s’ensuit ’émission de photons de fluorescence X.

La création de paire e/ e~ est la matérialisation en une paire électron/positon d’un photon y
d’énergie E), > 2.m,-c? = 1,02 MeV, suivant laréactiony - et +e".

IV- Loi de décroissance radioactive

La désintégration d’un noyau est un phénomene aléatoire, probabiliste. Si le nombre de noyaux
non encore désintégrés a un instantt, N(t), diminue de N(t) a N(t) + dN(t) < N(t) entre t et
t + dt, la probabilité A de désintégration par unité de temps est constante et s’écrit :

_dN(t)
] e _N® 9P
=T 4t dt (78)

58



A est appelée constante radioactive (ou constante de désintégration) et s’exprime en s~ 1.

La dérivée N'(t) de la fonction N(t) s’écrit (cf. rappels de mathématique) :

, . N@+dt)—N(t)  dN(t)
VOSIT w  Ta

, dn(@) N'(t) | ,
= dN(t) = N'(t).dt = NGO - N dt =[InN(t)]'.dt

= [InN(@®)]' = -4
= InN(t) = —A.t + c ou c est une constante réelle.
= N(t) = e ¢ = g4t o€,

Ent = 0, cette relation s’écrit N(0) = N, = e°.e€ = e€, soit finalement (figure 55) :

N(t) = Ny.e ™At (79)

Figure 55 : Evolution dans le temps du nombre de noyaux non encore désintégrés dans un
échantillon de technétium 99 métastable (T = 6 h).

La période radioactive (ou demi-vie) T est la durée moyenne durant laguelle la 50% des noyaux

d’un échantillon se sont désintégrés : N(T) = N,.e AT & % = e AT = % = —AT=-In2:
- In2
2 (80)

(81)

La vie moyenne, T est le temps moyen avant désintégration d’un noyau radioactif.

A linstantt, ilreste N(t) = N,. et noyaux encore radioactifs. Parmi ces noyaux, en moyenne,
dN(t) = A.N(t).dt se désintégreront entre Uinstant t et Uinstant t + dt et auront donc subsisté
une durée t avant de se désintégrer. La vie moyenne s’exprime comme la somme du produit des
durées de vie t possibles par le nombre de noyaux concernés dN(t) divisée par le nombre de
noyaux total, N :

[oe] [oe] [oe] [oe]

1 1 1 N 3
T=— t.dN(t).dt = — t.AN(t).dt = — t.A.Ng.e *t.dt =21 t.e *.dt
NO t=0 NO t=0 NO t=0 t=0
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L’intégrale se calcule par parties (cf. rappels de mathématique) et vaut ::0 t.e M dt = /1—12 On

en déduit : T

1
A In2 (82)

T =

L’activité A est le nombre moyen de désintégrations par seconde au sein d’un échantillon

radioactif : A(t) % dIZ—Et) = |%N0.e‘“| = A Ny.e ™ = 1. N(t).

A(t) = A.N(t) (83)

L’activité s’exprime en Becquerel (Bq) avec 1 Bq = 1 désintégration par seconde.

Précisons pour finir la loi statistique qui régit les désintégrations radioactives.

Si Uon réalise de nombreuses expériences de dénombrement des désintégrations touchant un
échantillon de N noyaux radioactifs durant un intervalle temporel de At, le nombre moyen de
désintégrations C observé lors de ces expériences entre les instants t et t + At sera :

C % AN = A.N.At (84)

Au-dela de cette moyenne, pour déterminer la probabilité d’observer un nombre n de
désintégrations, p(C = n), qui s’écarte de cette moyenne C, il faut prendre en compte certaines
hypothéses sur les caractéristiques physiques d’une désintégration radioactive. On considérera
que celle-ciest:

- Sans mémoire : la désintégration d’un noyau n’influe pas sur celle d’un noyau voisin.

- Stationnaire : la probabilité de désintégration d’un noyau entre t et t + dt (avec dt <K T)

ne dépend que de dt (et pas de t).
- Rare: ausensoul « 1.

Ces trois hypothéses aboutissent a une loi de probabilité, dite loi de Poisson (Figure 56) :

_C" (A.N.AD)™
=) = o — o= AN.
p(C=n)=e Cm—e NMT (85)
compteurs
—  P(C.=n)
oy T
o n 1
oy /| C=10
¢ /|l o i
A I,
‘.n.%__._.-qA —e s -~ ’.n' ...... 1—.—.'
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Figure 56 : Aspect de distributions de Poisson pour différentes moyennes.

Le comptage du nombre de photons y émis par un échantillon radioactif donne donc une mesure
proche de C, qui est le signal S que l’on souhaite connaitre entachée d’un bruit aléatoire B quifait
que l'on ne mesure pas exactement C. L’intensité de ce bruit par rapport & S caractérise la
justesse d’une mesure de comptage radioactif.

L’équation (85) permet de montrer que la variance d’une loi de Poisson est égale a sa moyenne :

v=02=C (86)

Le rapport signal sur bruit qui exprime quelle part (en %) prend le bruit au sein du signal peut étre

estimé par le rapport entre C et 'écart-type 0 & v = \/E de la mesure :

S —
B = \/E (87)

Sil’oncompte € = 100 = % = \/E = 10: 1 dixieme de la mesure est constitué de bruit aléatoire.

. - . S L
Si on divise le temps de comptage At par dix, alors 5= V10 = 3 et la part aléatoire dans la
mesure réalisée s’éleve au tiers celle-ci.
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BIBLIOGRAPHIE POUR ETUDIANTS EN SANTE

La courte bibliographie qui suit est tout sauf exhaustive. Elle constitue un choix hautement subjectif et
limité de I'auteur de ces lignes qui souhaite y mettre en avant quelques-unes des lectures qui lui
semblent les plus profitables a un étudiant en santé soucieux d’approfondir ses connaissances en
physique et chimie générale.

Physique pour les sciences de la vie. Alain Bouyssy, Michel Davier, Bernard Gatty.
Editions Belin. Collection Dia Université.

Tome 1: La physique et ses méthodes. 1987 ;

Tome 2 : La matiere. 1987.

% Tome 3:Les ondes 1988.

Une remarquable série d’ouvrage de physique écrits pour des étudiants en sciences de la
vie ou de la santé, sans exces de formalisme mathématique, mais sans sacrifier pour
autant la rigueur scientifique. Le tome 3, en particulier, reste une référence en la matiere.

Chimie générale. René Didier. Editions JB Bailliere. 1981, 1984 ou 1988.
Un exposé tres clair et rigoureux des notions de chimie-physique utiles aux
professionnels de santé, depuis la modélisation des atomes et des molécules jusqu’aux
éléments de thermodynamique appliqués a la chimie du vivant.

Le minimum théorique. Tout ce que vous avez besoin de savoir pour commencer a faire de
la physique. Léonard Susskind et al.
Tome 1 avec George Hrabovsky. Le minimum théorique (mécanique).
Tome 2, avec Art Friedman. Mécanique quantique.
Tome 3, avec Art Friedman. Relativité restreinte et théorie classique des champs.
Tome 4 avec André Cabannes. Relativité générale.
Presses polytechniques et universitaires romandes pour les tomes 1, 2 (2015) et 3 (2018) et
Editions du Bec de UAigle. 2023 pour le tome 4 (2023).
Une collection d’ouvrages de vulgarisation scientifique fondée sur un enseignement
donné a un public sans formation scientifique initiale par un physicien de renom de

Le

MINIMUM Uuniversité de Stanford. Le minimum théorique évoqué est ambitieux, mais la démarche,

THEORIQUTE

pédagogique et progressive, reste accessible a tous. On trouvera dans ces livres les
.2 notions permettant de comprendre les éléments de théorie sur lesquels se fonde la
physique moderne (tome 1), des éléments de mécanique quantique (tome 2), puis les
bases des théories de la relativité et de U'électromagnétisme (tomes 3 et 4).

Cours de physique pour débuter ses études en santé. Denis Mariano-Goulart.
Editions Ellipses. A paraitre en avril 2026.

— .. Lapremiere partie de ce livre est une version plus rédigée, développée et étoffée de ce
WSO polycopié. La seconde, qui compléte le programme de 1° année en santé, est écrite dans

?’ﬂrs-@_gﬁ le méme objectif d’expliquer d’ou proviennent les lois physiques. Elle traite de
'« |+ thermodynamique, des équilibres de solvant et de solutés de part et d’autre des
.

membranes biologiques, et des propriétés colligatives des solutions.
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